-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwot.py
722 lines (596 loc) · 27.2 KB
/
wot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
# coding: utf-8
import argparse
import os
import random
import shutil
import time, datetime
import warnings
import sys
import numpy as np
import distiller
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from eval_util import AverageMeter, ProgressMeter, accuracy
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
print(model_names)
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', default='/home/hguan2/datasets/imagenet/',
help='path to dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.0001, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true', default=False,
help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=1, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--mode', default='WOT',
help='the training mode: QAT, ADMM, WOT')
parser.add_argument('--beta', default=0.0015, type=float,
help='beta for ADMM')
parser.add_argument('--debug', action='store_true', default=False,
help='if true, validate using only two batches. admm update for every iteration')
parser.add_argument('--logdir', default='./trained/',
help='the directory to store trained models and train logs.')
class Mode:
QAT = 'QAT'
ADMM = 'ADMM'
WOT = 'WOT'
best_acc1 = 0
# use float32 as target accuracy
target_accs_float = {
"alexnet": 56.52,
"squeezenet1_0": 58.09,
"inception_v3": 69.54,
"resnet152": 78.31,
"resnet18": 69.76,
"resnet34": 73.31,
"resnet50": 76.13,
"vgg16_bn": 73.36,
"vgg16": 71.59,
}
# use int8 as target accuracy
target_accs_int8 = {
"alexnet": 55.8,
"squeezenet1_0": 57.01,
"inception_v3": 68.07,
"resnet152": 77.79,
"resnet18": 69.07,
"resnet34": 72.83,
"resnet50": 75.33,
"vgg16_bn": 72.01,
"vgg16": 71.51,
}
target_accs = target_accs_int8
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4f')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(val_loader), batch_time, losses, top1, top5,
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# if i % args.print_freq == 0:
# progress.print(i)
if i == 2 and args.debug:
break
return top1.avg
def save_checkpoint(state,
is_best):
global time_string
filename = os.path.join(args.logdir,
args.arch,
args.mode,
time_string,
'checkpoint.pth.tar')
torch.save(state, filename)
if is_best:
filedir = "/".join(filename.split('/')[:-1])
shutil.copyfile(filename, os.path.join(filedir, 'model_best.pth.tar'))
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def clean_directory(path):
if os.path.isdir(path):
shutil.rmtree(path)
print('path already exist! remove path:', path)
os.makedirs(path)
def check_directory(path):
if not os.path.isdir(path):
os.makedirs(path)
def write_log(info):
global time_string
filename = os.path.join(args.logdir,
args.arch,
args.mode,
time_string,
'train_details.log')
filedir = "/".join(filename.split('/')[:-1])
check_directory(filedir)
with open(filename, 'a') as f:
f.write(info)
f.write('\n')
def check_large_weights_count(model):
count = 0 # number of large weights
total = 0 # total number of weights
printed = False
for param_tensor in model.state_dict():
name_part = param_tensor.split('.')
if 'float_weight' in name_part:
quantized_weight_name = param_tensor.replace('float_weight','')+'weight'
quantized_weight_scale = param_tensor.replace('float_weight','')+'weight_scale'
float_weight = model.state_dict()[param_tensor]
weight = model.state_dict()[quantized_weight_name]
weight_scale = model.state_dict()[quantized_weight_scale]
weight_size = model.state_dict()[param_tensor].size()
upper_bound = 63./weight_scale
lower_bound = -64./weight_scale
weight_flat = weight.view(-1)
N = len(weight_flat)
total += N
if args.debug and not printed:
printed = True
print('Wq: {}'.format(weight_flat[:5]))
float_weight_flat = float_weight.view(-1)
print('Wf: {}'.format(float_weight_flat[:5]))
print('scale: {}'.format(weight_scale))
change_idx_list_l = np.nonzero(weight_flat > upper_bound)
change_idx_list_s = np.nonzero(weight_flat < lower_bound)
change_idx_l_flat = change_idx_list_l.view(-1)
change_idx_s_flat = change_idx_list_s.view(-1)
overide_idx_l = np.nonzero(change_idx_l_flat % 8 != 7)
overide_idx_s = np.nonzero(change_idx_s_flat % 8 != 7)
count += overide_idx_l.nelement()
count += overide_idx_s.nelement()
# print('weight statistics: ', count, total, count/total)
return count
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# create model
global model
global optimizer
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
else:
print("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch]()
if args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int(args.workers / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
if args.gpu is not None:
# best_acc1 may be from a checkpoint from a different GPU
best_acc1 = best_acc1.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
global train_loader
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
global val_loader
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
# add quantization scheduler
global compression_scheduler
compression_scheduler = distiller.CompressionScheduler(model)
compression_scheduler = distiller.file_config(
model,
optimizer,
'/home/hguan2/workspace/fault-tolerance/nips19/quant_aware_training.yaml',
compression_scheduler,
(args.start_epoch-1) if args.resume else None)
model.cuda()
global epoch
info = "before training, large_weights_count: {}".format(check_large_weights_count(model))
print(info)
write_log(info)
if args.mode == Mode.ADMM:
global W_list, Z_list, U_list
W_list = []
Z_list = []
U_list = []
init_admm_param(model, W_list, Z_list, U_list)
print("Initiaze ADMM parameters...")
print("W_list:", W_list[0].view(-1)[:5])
print("Z_list:", Z_list[0].view(-1)[:5])
print("U_list:", U_list[0].view(-1)[:5])
for epoch in range(args.start_epoch, args.epochs):
compression_scheduler.on_epoch_begin(epoch)
if args.distributed:
train_sampler.set_epoch(epoch)
# adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
regularized_train(compression_scheduler, train_loader, model, criterion, optimizer, epoch, args)
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, args)
info = "epoch: {}, iteration: {}, after epoch, large_weights_count: {}, accuracy: {:.3f}".format(
epoch,
len(train_loader),
check_large_weights_count(model),
acc1)
write_log(info)
print(info)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
compression_scheduler.on_epoch_end(epoch,optimizer)
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer' : optimizer.state_dict(),
}, is_best)
## when it is clipping-based training, stop whenever the accuracy is met
if args.mode == Mode.WOT and best_acc1 >= target_accs[args.arch] + 1e-5:
print("Reach best accuracy:{:.3f}, target_acc:{:.3f}".format(best_acc1, target_accs[args.arch]))
return
def init_admm_param(model, W_list, Z_list, U_list):
# TODO: see if we want to use the quantized weight or float weight here for the regularization
for param_tensor in model.state_dict():
name_part = param_tensor.split('.')
if 'float_weight' in name_part:
quantized_weight_name = param_tensor.replace('float_weight','')+'weight'
quantized_weight_scale = param_tensor.replace('float_weight','')+'weight_scale'
weight = model.state_dict()[quantized_weight_name]
weight_scale = model.state_dict()[quantized_weight_scale]
W_list.append(weight)
Z = weight.clone().detach()
Z = projection(Z, weight_scale)
Z_list.append(Z)
U = torch.zeros_like(Z)
U_list.append(U)
def update_admm_param(model, W_list, Z_list, U_list):
# update Z and U
idx = 0
W_Z_diff = 0
Z_diff = 0
U_norm = 0
for param_tensor in model.state_dict():
name_part = param_tensor.split('.')
if 'float_weight' in name_part:
quantized_weight_name = param_tensor.replace('float_weight','')+'weight'
quantized_weight_scale = param_tensor.replace('float_weight','')+'weight_scale'
weight = model.state_dict()[quantized_weight_name]
weight_scale = model.state_dict()[quantized_weight_scale]
Z = weight + U_list[idx]
Z = projection(Z, weight_scale)
Z_diff += torch.norm(Z - Z_list[idx])
W_Z_diff += torch.norm(weight - Z)
Z_list[idx]= Z
U = U_list[idx] + weight - Z
U_list[idx] = U
U_norm += torch.norm(U)
idx += 1
# print("W_list:", W_list[0].view(-1)[:5])
# print("Z_list:", Z_list[0].view(-1)[:5])
# print("U_list:", U_list[0].view(-1)[:5])
return W_Z_diff/len(W_list), Z_diff, U_norm/len(W_list)
def projection(weight, weight_scale):
target = [-64., 63.]
upper_bound = target[1]/weight_scale
lower_bound = target[0]/weight_scale
weight_flat = weight.view(-1)
change_idx_list_l = np.nonzero(weight_flat > upper_bound)
change_idx_list_s = np.nonzero(weight_flat < lower_bound)
change_idx_l_flat = change_idx_list_l.view(-1)
change_idx_s_flat = change_idx_list_s.view(-1)
overide_idx_l = np.nonzero(change_idx_l_flat % 8 != 7)
overide_idx_s = np.nonzero(change_idx_s_flat % 8 != 7)
weight_flat[change_idx_l_flat[overide_idx_l]] = upper_bound
weight_flat[change_idx_s_flat[overide_idx_s]] = lower_bound
return weight
def admm_loss(output, target, criterion):
loss = criterion(output, target)
admm_loss = 0
for W, U, Z in zip(W_list, U_list, Z_list):
admm_loss += 0.5 * args.beta * torch.norm(W - Z + U)
del U
del Z
if args.debug:
print('cross entroy loss:{}, admm loss:{}'.format(loss, admm_loss))
return loss + admm_loss
def regularized_train(compression_scheduler, train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4f')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(train_loader), batch_time, data_time, losses, top1,
top5, prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
avg_time = time.time()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
batch_time_total = time.time()
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# add quantization
compression_scheduler.on_minibatch_begin(epoch, i, optimizer)
# clipping weights
if args.mode == Mode.WOT:
regulate_quantized_weight(model)
# compute output
output = model(input)
if args.mode == Mode.ADMM:
loss = admm_loss(output, target, criterion)
else:
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
compression_scheduler.on_minibatch_end(epoch, i, len(train_loader))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
batch_time_total = time.time() - batch_time_total
if i % args.print_freq == 0:
progress.print(i)
update_freq = int(len(train_loader)//5)
if args.debug:
update_freq = 2
if i%update_freq == 0:
# print("evalute model before clipping...")
acc1 = validate(val_loader, model, criterion, args)
info = "epoch: {}, iteration: {}, before clipping, large_weights_count: {}, accuracy: {:.3f}, loss: {:.4f}".format(
epoch,
i,
check_large_weights_count(model),
acc1,
losses.avg)
write_log(info)
print(info)
if args.mode == Mode.WOT:
# print('evalaute model after clipping...')
regulate_quantized_weight(model)
acc1 = validate(val_loader, model, criterion, args)
info = "epoch: {}, iteration: {}, after clipping, large_weights_count: {}, accuracy: {:.3f}, ".format(
epoch,
i,
check_large_weights_count(model),
acc1)
write_log(info)
print(info)
if args.mode == Mode.ADMM:
# print("update ADMM param...")
W_Z_diff, Z_diff, U_norm = update_admm_param(model, W_list, Z_list, U_list)
info = "epoch: {}, iteration: {}, update admm, W_Z_diff: {:.4f}, Z_diff: {:.4f}, U_norm: {:.4f}".format(
epoch,
i,
W_Z_diff,
Z_diff,
U_norm)
write_log(info)
print(info)
## when it is clipping-based training, stop whenever the accuracy is met
if args.mode == Mode.WOT and acc1 >= target_accs[args.arch] + 1e-5:
print("Reach best accuracy:{:.3f}, target_acc:{:.3f}".format(acc1, target_accs[args.arch]))
return
# limit the quantized weight value to be -64 ~ 64. Downscale float weight accordingly
def regulate_quantized_weight(model):
layer_id = 0
for param_tensor in model.state_dict():
name_part = param_tensor.split('.')
if 'float_weight' in name_part:
quantized_weight_name = param_tensor.replace('float_weight','')+'weight'
quantized_weight_scale = param_tensor.replace('float_weight','')+'weight_scale'
float_weight = model.state_dict()[param_tensor]
weight = model.state_dict()[quantized_weight_name]
weight_scale = model.state_dict()[quantized_weight_scale]
# regulate the weight
upper_bound = 63./weight_scale
lower_bound = -64./weight_scale
weight_flat = weight.view(-1)
change_idx_list_l = np.nonzero(weight_flat > upper_bound)
change_idx_list_s = np.nonzero(weight_flat < lower_bound)
change_idx_l_flat = change_idx_list_l.view(-1)
change_idx_s_flat = change_idx_list_s.view(-1)
overide_idx_l = np.nonzero(change_idx_l_flat % 8 != 7)
overide_idx_s = np.nonzero(change_idx_s_flat % 8 != 7)
float_weight_flat = float_weight.view(-1)
float_weight_flat[change_idx_l_flat[overide_idx_l]] = float_weight_flat[change_idx_l_flat[overide_idx_l]]*upper_bound/ weight_flat[change_idx_l_flat[overide_idx_l]]
float_weight_flat[change_idx_s_flat[overide_idx_s]] = float_weight_flat[change_idx_s_flat[overide_idx_s]]*lower_bound/ weight_flat[change_idx_s_flat[overide_idx_s]]
weight_flat[change_idx_l_flat[overide_idx_l]] = upper_bound
weight_flat[change_idx_s_flat[overide_idx_s]] = lower_bound
args = parser.parse_args()
#args = parser.parse_args(["--pretrained", "--arch", "resnet18",
# "--batch-size", "128", "--gpu", "0", '--mode', 'WOT'])
# create unique folder name
named_tuple = time.localtime() # get struct_time
time_string = time.strftime("%m%d%Y%H%M%S", named_tuple)
# print time
info="\n\nstart a new train at time: {}".format(datetime.datetime.now())
write_log(info)
print(info)
# print arguments
info = str(args)
write_log(info)
print(info)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
# cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)