forked from NickLucche/pyramid-cnn-leaves-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
29 lines (24 loc) · 1.44 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from argparse import ArgumentParser
import torch
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if device == torch.device("cuda"):
print("Using device:", torch.cuda.get_device_name(0))
else:
print("Using device:", device)
def set_gpu_number(n_gpu):
global device
device = torch.device("cuda:{}".format(n_gpu)) if torch.cuda.is_available() else torch.device("cpu")
parser = ArgumentParser()
parser.add_argument('-e', '--epochs', help='Number of epochs the training will be run for', default=20, type=int)
parser.add_argument('--seed', type=int, default=7, help='random seed (default: 7)')
parser.add_argument('--log-interval', type=int, default=10,
help='how many batches to wait before logging training status')
parser.add_argument('-d', '--dataset-filepath', help='Filepath of the dataset to load', required=True)
parser.add_argument('--predictions-number', help='Number of predictions the network will do at different scales', default=5)
parser.add_argument('-s', '--save-path', help='Where to save model checkpoints', required=True)
parser.add_argument('-l', '--load-model', help='Where to load checkpoint of model from')
parser.add_argument('-v', '--viz-results', help='Toggle results visualization', action='store_true', default=False)
parser.add_argument('-i', '--image', help='Provide a custom image for testing net', type=str)
# todo save model
def parse_args():
return parser.parse_args()