-
Notifications
You must be signed in to change notification settings - Fork 13
/
train_with_hwdb2.py
259 lines (227 loc) · 10.8 KB
/
train_with_hwdb2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from models.model_with_TCN_big_new_one_batch_hwdb import Model
from dataset.data_utils_kernel_box import MyDataset, AlignCollate
from models.loss_kernels import DICE_loss
from models.loss_ctc import ctc_loss
from torch.utils.data import DataLoader
from torchvision import transforms
import torch
import torch.optim as optim
from tqdm import tqdm
from torch.cuda.amp import GradScaler
from dataset.hwdb2_0_chars import char_dict, char_set
import torch.multiprocessing
from torch.cuda.amp import autocast as autocast
torch.multiprocessing.set_sharing_strategy('file_system')
scaler = GradScaler()
def eval(model, evel_dataset, criterion_kernel, criterion_char, epoch, is_save=True):
eval_dataloader = DataLoader(dataset=evel_dataset, collate_fn=AlignCollate(), batch_size=2, shuffle=True, num_workers=0,
pin_memory=False)
evel_steps = len(eval_dataloader)
evel_iter = iter(eval_dataloader)
model.eval()
pbar = tqdm(total=evel_steps)
a_CR_correct_chars, a_AR_correct_chars, a_all_chars = 0, 0, 0
loss_all = 0
loss_kernel_all = 0
loss_char_all = 0
editdistence = []
with torch.no_grad():
for evel_step in range(evel_steps):
imgs, kernel_labels, text_polys, label_tensors, text_lengths, _ = next(evel_iter)
# torch.cuda.empty_cache()
imgs = imgs.to(device)
kernel_labels = kernel_labels.to(device)
kernels_pred, out_chars, sub_img_nums = model(imgs, text_polys, is_train=False)
loss_kernel = criterion_kernel(kernels_pred, kernel_labels)
loss_kernel_item = loss_kernel.item()
if (evel_step + 1) % 50 == 0:
torch.cuda.empty_cache()
is_print = False
else:
is_print = False
loss_char, CR_correct_chars, AR_correct_chars, all_chars = ctc_loss(criterion_char, out_chars, label_tensors, text_lengths,
sub_img_nums,
char_set, is_print)
a_CR_correct_chars += CR_correct_chars
a_AR_correct_chars += AR_correct_chars
a_all_chars += all_chars
loss_char_item = loss_char.item()
loss_all += 0.0 * loss_kernel_item + loss_char_item
loss_char_all += loss_char_item
loss_kernel_all += loss_kernel_item
AR = a_AR_correct_chars / (a_all_chars + 1)
CR = a_CR_correct_chars / (a_all_chars + 1)
if evel_step % 10 == 0:
pbar.display(
'eval epoch: {} '
'steps:{}/{} '
'loss_char_all:{:.6f} '
'loss_char:{:.4f} '
'loss_kernel_all:{:.6f} '
'loss_kernel:{:.4f} '
'AR:{:.4f} '
'CR:{:.4f} AR_all:{:.4f} '
'CR_all:{:.4f}\n'.
format(epoch,
evel_step,
evel_steps,
loss_char_all / (evel_step + 1),
loss_char_item,
loss_kernel_all / (evel_step + 1),
loss_kernel_item,
AR_correct_chars / all_chars,
CR_correct_chars / all_chars,
AR,
CR))
pbar.update(10)
pbar.close()
AR = a_AR_correct_chars / (a_all_chars + 1)
CR = a_CR_correct_chars / (a_all_chars + 1)
global max_CR
if is_save:
if CR > max_CR:
max_CR = CR
torch.save(model.state_dict(), './output/with_tcn_big_hwdb_all_t/model_c_'
'epoch_{}_'
'loss_char_all_{:.4f}_'
'loss_kernel_all_{:.4f}_'
'AR_{:.6f}_'
'CR_{:.6f}.pth'.format(epoch,
loss_char_all / (evel_steps + 1),
loss_kernel_all / (evel_steps + 1),
AR,
CR))
log_writer.write('eval epoch:{} loss_kernel:{:.4f} loss_char:{:.4f} AR:{:.4f} CR:{:.4f}\n'.format(
epoch,
loss_kernel_all / (evel_steps + 1),
loss_char_all / (evel_steps + 1),
a_AR_correct_chars / a_all_chars,
a_CR_correct_chars / a_all_chars))
def train(model, optimizer, train_dataset, criterion_kernel, criterion_char, epoch):
train_dataset.epoch_count = epoch
train_dataloader = DataLoader(dataset=train_dataset, collate_fn=AlignCollate(), batch_size=4, shuffle=True,
num_workers=4, pin_memory=False)
train_steps = len(train_dataloader)
train_iter = iter(train_dataloader)
model.train()
# model.PAN_layer.eval()
pbar = tqdm(total=train_steps)
a_CR_correct_chars, a_AR_correct_chars, a_all_chars = 0, 0, 0
loss_all = 0
loss_char_all = 0
loss_kernel_all = 0
for train_step in range(train_steps):
imgs, kernel_labels, text_polys, label_tensors, text_lengths, _ = next(train_iter)
# torch.cuda.empty_cache()
imgs = imgs.to(device)
kernel_labels = kernel_labels.to(device)
with autocast():
kernels_pred, out_chars, sub_img_nums = model(imgs, text_polys, is_train=True)
loss_kernel = criterion_kernel(kernels_pred, kernel_labels)
loss_kernel_item = loss_kernel.item()
if (train_step + 1) % 200 == 0:
is_print = False
else:
is_print = False
loss_char, CR_correct_chars, AR_correct_chars, all_chars = ctc_loss(criterion_char, out_chars, label_tensors, text_lengths,
sub_img_nums,
char_set, is_print)
a_CR_correct_chars += CR_correct_chars
a_AR_correct_chars += AR_correct_chars
a_all_chars += all_chars
loss_char_item = loss_char.item()
loss_char_all += loss_char_item
loss_kernel_all += loss_kernel_item
if loss_kernel_item > 0.13:
loss = 0.1 * loss_kernel + loss_char
else:
loss = loss_char
loss_all += loss.item()
optimizer.zero_grad()
# nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# loss.backward()
# optimizer.step()
# pbar.set_description(str((loss_kernel.item(),loss_char.item(),loss_all/(train_step+1))))
AR = a_AR_correct_chars / (a_all_chars + 1)
CR = a_CR_correct_chars / (a_all_chars + 1)
if (train_step + 1) % 10 == 0:
torch.cuda.empty_cache()
if (train_step + 1) % 10 == 0:
pbar.display(
'train epoch: {} '
'steps:{}/{} '
'loss_char_all:{:.6f} '
'loss_char:{:.4f} '
'loss_kernel_all:{:.6f} '
'loss_kernel:{:.4f} '
'AR:{:.4f} CR:{:.4f} '
'AR_all:{:.4f} '
'CR_all:{:.4f}\n'.
format(epoch,
train_step, train_steps,
loss_char_all / (train_step + 1),
loss_char_item,
loss_kernel_all / (train_step + 1),
loss_kernel_item,
AR_correct_chars / all_chars,
CR_correct_chars / all_chars,
AR,
CR))
pbar.update(10)
log_writer.write('train epoch:{} loss_kernel:{:.4f} loss_char:{:.4f} AR:{:.4f} CR:{:.4f}\n'.format(
epoch,
loss_kernel_all / (train_steps + 1),
loss_char_all / (train_steps + 1),
a_AR_correct_chars / a_all_chars,
a_CR_correct_chars / a_all_chars))
pbar.close()
if __name__ == '__main__':
device = torch.device('cuda')
max_CR = 0
model = Model(num_classes=3000, line_height=32, is_transformer=True, is_TCN=True).to(device)
train_data = MyDataset(
[
# '/home/project/hwdb_dect_reco/data/hwdb2/HWDB2.0Test',
'/home/project/hwdb_dect_reco/data/hwdb2/HWDB2.0Train',
# '/home/project/hwdb_dect_reco/data/hwdb2/HWDB2.1Test',
'/home/project/hwdb_dect_reco/data/hwdb2/HWDB2.1Train',
# '/home/project/hwdb_dect_reco/data/hwdb2/HWDB2.2Test',
'/home/project/hwdb_dect_reco/data/hwdb2/HWDB2.2Train',
# './data/gen_for_icdar',
# './data/gen_for_icdar1'
], char_dict,
data_shape=1600, n=2, m=0.6,
transform=transforms.ToTensor(), max_text_length=80)
evel_data = MyDataset(
[
'/home/project/hwdb_dect_reco/data/hwdb2/HWDB2.0Test',
'/home/project/hwdb_dect_reco/data/hwdb2/HWDB2.1Test',
'/home/project/hwdb_dect_reco/data/hwdb2/HWDB2.2Test',
], char_dict,
data_shape=1600, n=2, m=0.6,
transform=transforms.ToTensor(), max_text_length=80, is_train=False)
criterion_kernel = DICE_loss().to(device)
criterion_char = torch.nn.CTCLoss(blank=0, zero_infinity=True).to(device)
# pre_dict = torch.load(
# './output/with_tcn_big_icdar/model_new1_epoch_13_loss_char_all_0.3923_loss_kernel_all_0.1185_AR_0.911840_CR_0.920156.pth')
#
# # pre_dict.pop('DenseNet_layer.classifier.weight')
# # pre_dict.pop('DenseNet_layer.classifier.bias')
# model_dict = model.state_dict()
# pre_dict = {k: v for k, v in pre_dict.items() if k in model_dict}
#
# model_dict.update(pre_dict)
# model.load_state_dict(model_dict)
# model.load_state_dict(torch.load(
# r'./output/with_tcn_big_hwdb_all_t'
# r'/model_c_epoch_50_loss_char_all_0.0642_loss_kernel_all_0.1226_AR_0.987677_CR_0.990463.pth'))
log_writer = open('./output/with_tcn_big_hwdb_all_t/log.txt', 'a', encoding='utf-8')
# eval(model, evel_data, criterion_kernel, criterion_char, 0,is_save=False)
for epoch in range(0, 50):
optimizer = optim.Adam(
model.parameters(), lr=0.0001 * 0.9 ** (epoch), betas=(0.5, 0.999))
train(model, optimizer, train_data, criterion_kernel, criterion_char, epoch)
eval(model, evel_data, criterion_kernel, criterion_char, epoch)