forked from christophschuhmann/improved-aesthetic-predictor
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathvisulaize_100k_from_LAION400M.py
175 lines (120 loc) · 4.58 KB
/
visulaize_100k_from_LAION400M.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import webdataset as wds
from PIL import Image
import io
import matplotlib.pyplot as plt
import os
import json
from warnings import filterwarnings
# os.environ["CUDA_VISIBLE_DEVICES"] = "0" # choose GPU if you are on a multi GPU server
import numpy as np
import torch
import pytorch_lightning as pl
import torch.nn as nn
from torchvision import datasets, transforms
import tqdm
from os.path import join
from datasets import load_dataset
import pandas as pd
from torch.utils.data import Dataset, DataLoader
import json
import clip
#import open_clip
from PIL import Image, ImageFile
# if you changed the MLP architecture during training, change it also here:
class MLP(pl.LightningModule):
def __init__(self, input_size, xcol='emb', ycol='avg_rating'):
super().__init__()
self.input_size = input_size
self.xcol = xcol
self.ycol = ycol
self.layers = nn.Sequential(
nn.Linear(self.input_size, 1024),
#nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(1024, 128),
#nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(128, 64),
#nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 16),
#nn.ReLU(),
nn.Linear(16, 1)
)
def forward(self, x):
return self.layers(x)
def training_step(self, batch, batch_idx):
x = batch[self.xcol]
y = batch[self.ycol].reshape(-1, 1)
x_hat = self.layers(x)
loss = F.mse_loss(x_hat, y)
return loss
def validation_step(self, batch, batch_idx):
x = batch[self.xcol]
y = batch[self.ycol].reshape(-1, 1)
x_hat = self.layers(x)
loss = F.mse_loss(x_hat, y)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer
def normalized(a, axis=-1, order=2):
import numpy as np # pylint: disable=import-outside-toplevel
l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
l2[l2 == 0] = 1
return a / np.expand_dims(l2, axis)
model = MLP(768) # CLIP embedding dim is 768 for CLIP ViT L 14
s = torch.load("ava+logos-l14-linearMSE.pth") # load the model you trained previously or the model available in this repo
model.load_state_dict(s)
model.to("cuda")
model.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
model2, preprocess = clip.load("ViT-L/14", device=device) #RN50x64
c=0
urls= []
predictions=[]
# this will run inference over 10 webdataset tar files from LAION 400M and sort them into 20 categories
# you can DL LAION 400M and convert it to wds tar files with img2dataset ( https://github.com/rom1504/img2dataset )
for j in range(10):
if j<10:
# change the path to the tar files accordingly
dataset = wds.WebDataset("pipe:aws s3 cp s3://s-datasets/laion400m/laion400m-dat-release/0000"+str(j)+".tar -") #"pipe:aws s3 cp s3://s-datasets/laion400m/laion400m-dat-release/00625.tar -")
else:
dataset = wds.WebDataset("pipe:aws s3 cp s3://s-datasets/laion400m/laion400m-dat-release/000"+str(j)+".tar -") #"pipe:aws s3 cp s3://s-datasets/laion400m/laion400m-dat-release/00625.tar -")
for i, d in enumerate(dataset):
print(c)
metadata= json.loads(d['json'])
pil_image = Image.open(io.BytesIO(d['jpg']))
c=c+1
try:
image = preprocess(pil_image).unsqueeze(0).to(device)
except:
continue
with torch.no_grad():
image_features = model2.encode_image(image)
im_emb_arr = normalized(image_features.cpu().detach().numpy() )
prediction = model(torch.from_numpy(im_emb_arr).to(device).type(torch.cuda.FloatTensor))
urls.append(metadata["url"])
predictions.append(prediction)
df = pd.DataFrame(list(zip(urls, predictions)),
columns =['filepath', 'prediction'])
buckets = [(i, i+1) for i in range(20)]
html= "<h1>Aesthetic subsets in LAION 100k samples</h1>"
i =0
for [a,b] in buckets:
a = a/2
b = b/2
total_part = df[( (df["prediction"] ) *1>= a) & ( (df["prediction"] ) *1 <= b)]
print(a,b)
print(len(total_part) )
count_part = len(total_part) / len(df) * 100
estimated =int ( len(total_part) )
part = total_part[:50]
html+=f"<h2>In bucket {a} - {b} there is {count_part:.2f}% samples:{estimated:.2f} </h2> <div>"
for filepath in part["filepath"]:
html+='<img src="'+filepath +'" height="200" />'
html+="</div>"
i+=1
print(i)
with open("./aesthetic_viz_laion_ava+logos_L14_100k-linearMSE.html", "w") as f:
f.write(html)