Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LeetCode] 795. Number of Subarrays with Bounded Maximum #795

Open
grandyang opened this issue May 30, 2019 · 0 comments
Open

[LeetCode] 795. Number of Subarrays with Bounded Maximum #795

grandyang opened this issue May 30, 2019 · 0 comments

Comments

@grandyang
Copy link
Owner

grandyang commented May 30, 2019

 

We are given an array A of positive integers, and two positive integers L and R (L <= R).

Return the number of (contiguous, non-empty) subarrays such that the value of the maximum array element in that subarray is at least L and at most R.

Example :
Input: 
A = [2, 1, 4, 3]
L = 2
R = 3
Output: 3
Explanation: There are three subarrays that meet the requirements: [2], [2, 1], [3].

Note:

  • L, R  and A[i] will be an integer in the range [0, 10^9].
  • The length of A will be in the range of [1, 50000].

 

这道题给了我们一个数组,又给了我们两个数字L和R,表示一个区间范围,让我们求有多少个这样的子数组,使得其最大值在[L, R]区间的范围内。既然是求子数组的问题,那么最直接,最暴力的方法就是遍历所有的子数组,然后维护一个当前的最大值,只要这个最大值在[L, R]区间的范围内,结果res自增1即可。但是这种最原始,最粗犷的暴力搜索法,OJ不答应。但是其实我们略作优化,就可以通过了。优化的方法是,首先,如果当前数字大于R了,那么其实后面就不用再遍历了,不管当前这个数字是不是最大值,它都已经大于R了,那么最大值可能会更大,所以没有必要再继续遍历下去了。同样的剪枝也要加在内层循环中加,当curMax大于R时,直接break掉内层循环即可,参见代码如下:

 

解法一:

class Solution {
public:
    int numSubarrayBoundedMax(vector<int>& A, int L, int R) {
        int res = 0, n = A.size();
        for (int i = 0; i < n; ++i) {
            if (A[i] > R) continue;
            int curMax = INT_MIN;
            for (int j = i; j < n; ++j) {
                curMax = max(curMax, A[j]);
                if (curMax > R) break;
                if (curMax >= L) ++res;
            }
        }
        return res;
    }
};

 

虽然上面的方法做了剪枝后能通过OJ,但是我们能不能在线性的时间复杂度内完成呢。答案是肯定的,我们先来看一种官方解答贴中的方法,这种方法是用一个子函数来算出最大值在[-∞, x]范围内的子数组的个数,而这种区间只需要一个循环就够了,为啥呢?我们来看数组[2, 1, 4, 3]的最大值在[-∞, 4]范围内的子数组的个数。当遍历到2时,只有一个子数组[2],遍历到1时,有三个子数组,[2], [1], [2,1]。当遍历到4时,有六个子数组,[2], [1], [4], [2,1], [1,4], [2,1,4]。当遍历到3时,有十个子数组。其实如果长度为n的数组的最大值在范围[-∞, x]内的话,其所有子数组都是符合题意的,而长度为n的数组共有n(n+1)/2个子数组,刚好是等差数列的求和公式。所以我们在遍历数组的时候,如果当前数组小于等于x,则cur自增1,然后将cur加到结果res中;如果大于x,则cur重置为0。这样我们可以正确求出最大值在[-∞, x]范围内的子数组的个数。而要求最大值在[L, R]范围内的子数组的个数,只需要用最大值在[-∞, R]范围内的子数组的个数,减去最大值在[-∞, L-1]范围内的子数组的个数即可,参见代码如下:

 

解法二:

class Solution {
public:
    int numSubarrayBoundedMax(vector<int>& A, int L, int R) {
        return count(A, R) - count(A, L - 1);
    }
    int count(vector<int>& A, int bound) {
        int res = 0, cur = 0;
        for (int x : A) {
            cur = (x <= bound) ? cur + 1 : 0;
            res += cur;
        }
        return res;
    }
};

 

下面这种解法也是线性时间复杂度的,跟上面解法的原理很类似,只不过没有写子函数而已。我们使用left和right来分别标记子数组的左右边界,使得其最大值在范围[L,R]内。那么当遍历到的数字大于等于L时,right赋值为当前位置i,那么每次res加上right - left,随着right的不停自增1,每次加上的right - left,实际上也是一个等差数列,跟上面解法中的子函数本质时一样的。当A[i]大于R的时候,left = i,那么此时A[i]肯定也大于等于L,于是rihgt=i,那么right - left为0,相当于上面的cur重置为0的操作,发现本质联系了吧,参见代码如下:

 

解法三:

class Solution {
public:
    int numSubarrayBoundedMax(vector<int>& A, int L, int R) {
        int res = 0, left = -1, right = -1;
        for (int i = 0; i < A.size(); ++i) {
            if (A[i] > R) left = i;
            if (A[i] >= L) right = i;
            res += right - left;
        }
        return res;
    }
};

 

我们可以对上面的解法稍稍做下优化,在A[i] > R的时候,left和right都赋值为i,然后continue,这样省去了后面的用0来更新结果res的步骤,能提高一些运行效率,参见代码如下:

 

解法四:

class Solution {
public:
    int numSubarrayBoundedMax(vector<int>& A, int L, int R) {
        int res = 0, left = -1, right = -1;
        for (int i = 0; i < A.size(); ++i) {
            if (A[i] > R) {
                left = right = i;
                continue;
            }
            if (A[i] >= L) right = i;
            res += right - left;
        }
        return res;
    }
};

 

参考资料:

https://leetcode.com/problems/number-of-subarrays-with-bounded-maximum/solution/

https://leetcode.com/problems/number-of-subarrays-with-bounded-maximum/discuss/117585/Java-9-liner

https://leetcode.com/problems/number-of-subarrays-with-bounded-maximum/discuss/117616/C++-O(n)-less10-lines

https://leetcode.com/problems/number-of-subarrays-with-bounded-maximum/discuss/119162/Clean-and-simple-O(n)-Java

 

LeetCode All in One 题目讲解汇总(持续更新中...)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant