We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Given an unsorted array, find the maximum difference between the successive elements in its sorted form.
Return 0 if the array contains less than 2 elements.
Example 1:
Input: [3,6,9,1] Output: 3 Explanation: The sorted form of the array is [1,3,6,9], either (3,6) or (6,9) has the maximum difference 3.
Example 2:
Input: [10] Output: 0 Explanation: The array contains less than 2 elements, therefore return 0.
Note:
遇到这类问题肯定先想到的是要给数组排序,但是题目要求是要线性的时间和空间,那么只能用桶排序或者基排序。这里用桶排序 Bucket Sort 来做,首先找出数组的最大值和最小值,然后要确定每个桶的容量,即为 (最大值 - 最小值) / 个数 + 1,在确定桶的个数,即为 (最大值 - 最小值) / 桶的容量 + 1,然后需要在每个桶中找出局部最大值和最小值,而最大间距的两个数不会在同一个桶中,而是一个桶的最小值和另一个桶的最大值之间的间距,这是因为所有的数字要尽量平均分配到每个桶中,而不是都拥挤在一个桶中,这样保证了最大值和最小值一定不会在同一个桶中,具体的证明博主也不会,只是觉得这样想挺有道理的,各位看官大神们若知道如何证明请务必留言告诉博主啊,参见代码如下:
class Solution { public: int maximumGap(vector<int>& nums) { if (nums.size() <= 1) return 0; int mx = INT_MIN, mn = INT_MAX, n = nums.size(), pre = 0, res = 0; for (int num : nums) { mx = max(mx, num); mn = min(mn, num); } int size = (mx - mn) / n + 1, cnt = (mx - mn) / size + 1; vector<int> bucket_min(cnt, INT_MAX), bucket_max(cnt, INT_MIN); for (int num : nums) { int idx = (num - mn) / size; bucket_min[idx] = min(bucket_min[idx], num); bucket_max[idx] = max(bucket_max[idx], num); } for (int i = 1; i < cnt; ++i) { if (bucket_min[i] == INT_MAX || bucket_max[i] == INT_MIN) continue; res = max(res, bucket_min[i] - bucket_max[pre]); pre = i; } return res; } };
Github 同步地址:
#164
参考资料:
https://leetcode.com/problems/maximum-gap
http://blog.csdn.net/u011345136/article/details/41963051
https://leetcode.com/problems/maximum-gap/discuss/50642/radix-sort-solution-in-java-with-explanation
https://leetcode.com/problems/maximum-gap/discuss/50643/bucket-sort-java-solution-with-explanation-on-time-and-space
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered:
自带的solution说的比较清楚 https://leetcode.com/problems/maximum-gap/solution/
首先明确对于n个元素,最大值max,最小值min,那么任意两个 大小相邻的元素 之间间隔的最大值 至少是 $t = (max - min) / (n - 1)$,(n个元素之间最多有n-1个间隔), 出现这种情况时 是n个元素均匀分布在min ~ max之间。 即这道题答案的最小值是$t$。
例如: [1, 10] 之间有 4个元素,最大间隔最小为3, 即 {1, 4, 7, 10}。
只要桶的大小 小于等于 $t = (max - min) / (n - 1)$ 即可保证 最大间隔在桶间而不是桶内。
Sorry, something went wrong.
No branches or pull requests
Given an unsorted array, find the maximum difference between the successive elements in its sorted form.
Return 0 if the array contains less than 2 elements.
Example 1:
Example 2:
Note:
遇到这类问题肯定先想到的是要给数组排序,但是题目要求是要线性的时间和空间,那么只能用桶排序或者基排序。这里用桶排序 Bucket Sort 来做,首先找出数组的最大值和最小值,然后要确定每个桶的容量,即为 (最大值 - 最小值) / 个数 + 1,在确定桶的个数,即为 (最大值 - 最小值) / 桶的容量 + 1,然后需要在每个桶中找出局部最大值和最小值,而最大间距的两个数不会在同一个桶中,而是一个桶的最小值和另一个桶的最大值之间的间距,这是因为所有的数字要尽量平均分配到每个桶中,而不是都拥挤在一个桶中,这样保证了最大值和最小值一定不会在同一个桶中,具体的证明博主也不会,只是觉得这样想挺有道理的,各位看官大神们若知道如何证明请务必留言告诉博主啊,参见代码如下:
Github 同步地址:
#164
参考资料:
https://leetcode.com/problems/maximum-gap
http://blog.csdn.net/u011345136/article/details/41963051
https://leetcode.com/problems/maximum-gap/discuss/50642/radix-sort-solution-in-java-with-explanation
https://leetcode.com/problems/maximum-gap/discuss/50643/bucket-sort-java-solution-with-explanation-on-time-and-space
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: