This repository has been archived by the owner on Sep 30, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathestDemo.m
470 lines (334 loc) · 13.1 KB
/
estDemo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
function estDemo(t)
%%% project: emgr - EMpirical GRamian Framework ( https://gramian.de )
%%% version: 5.99 (2022-04-13)
%%% authors: Christian Himpe (0000-0003-2194-6754)
%%% license: BSD-2-Clause (opensource.org/licenses/BSD-2-Clause)
%%% summary: estDemo - run emgr examples via est
switch lower(t)
case 'hnm', hnm(); % Hyperbolic Network Model
case 'isp', isp(); % Inverse Sylvester Procedure
case 'fss', fss(); % Flexible Space Structures
case 'nrc', nrc(); % Nonlinear Resistor-Capacitor Cascade
case 'rqo', rqo(); % Random Diagonal System with Quadratic Output
case 'lte', lte(); % Linear Transport Equation
case 'aps', aps(); % All Pass System
case 'fbc', fbc(); % Five-Body Choreography
case 'qso', qso(); % Quasi-Stable Orbits Inside Black Holes
otherwise, error('Unknown example code!');
end%switch
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% HYPERBOLIC NETWORK MODEL
function hnm()
name = 'Hyperbolic Network Model';
disp(['Example: ',name]);
sys.M = 1; % Number of inputs
sys.N = 64; % Number of states
sys.Q = 1; % Number of outputs
A = sqrt(sys.N) * gallery('tridiag',sys.N,1,-2,1); % System matrix
B = tanh(1:sys.N)'; % Input matrix
C = B'; % Output matrix
sys.f = @(x,u,p,t) A * tanh(p.*x) + B * u; % Vector field
sys.g = @(x,u,p,t) C * x; % Output functional
sys.dt = 0.01; % Time step
sys.Tf = 1.0; % Time horizon
sys.p = ones(sys.N,1) * [0.5,1.0]; % Training parameter range
task.type = 'combined_reduction';
task.method = 'minimality';
task.variant = 'dominant_subspaces';
config.test = true;
config.num_test_param = 10;
config.pcentering = 'linear';
config.extra_input = 'yes';
config.skip_x = 3;
config.skip_p = 3;
config.ptype = 'exact_schur';
[R,S] = est(sys,task,config);
MORscore = S
figure('Name',name,'NumberTitle','off');
h = surf(R{1},R{2},R{5});
xlabel('State Dimension');
ylabel('Parameter Dimension');
zlabel('Relative Error');
xlim([R{1}(1),R{1}(end)]);
ylim([R{2}(1),R{2}(end)]);
zl = zlim();
zlim([zl(1),1]);
set(gca,'ZScale','log');
set(h,'CData',log10(get(h,'CData')));
set(gca,'CLim',log10(get(gca,'ZLim')));
view(135,15);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% INVERSE SYLVESTER PROCEDURE
function isp()
name = 'Inverse Sylvester Procedure';
disp(['Example: ',name]);
rand('seed',1009);
randn('seed',1009);
sys.M = 1; % Number of inputs
sys.N = 64; % Number of states
sys.Q = 1; % Number of outputs
a = 1e-1; % Minimum cross gramian singular value
b = 1e+1; % Maximum cross gramian singular value
WX = -diag( a*((b/a).^rand(sys.N,1)) ); % Balanced cross gramian
B = randn(sys.N,sys.M); % Balanced input and output matrix
A = sylvester(WX,WX,B*B') - sqrt(eps)*speye(sys.N); % Balanced system matrix
Q = orth(randn(sys.N,sys.N)); % Unbalancing transformation
A = Q'*A*Q; % Unbalanced system matrix
B = Q'*B; % Unbalanced input matrix
C = B'; % Unbalanced output matrix
sys.f = @(x,u,p,t) A*x + B*u; % Vector field
sys.g = @(x,u,p,t) C*x; % Output functional
sys.F = @(x,u,p,t) A'*x + C'*u; % Adjoint vector field
sys.dt = 0.01; % Time step
sys.Tf = 1.0; % Time horizon
task.type = 'model_reduction';
task.method = 'dominant_subspaces';
task.variant = 'minimality';
config.test = true;
config.linearity = 'linear';
[R,S] = est(sys,task,config);
MORscore = S
errorplot(name,R{1},R{3},R{4},R{5},R{6});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% FLEXIBLE SPACE STRUCTURES
function fss()
name = 'Flexible Space Structure';
disp(['Example: ',name]);
K = 32; % Number of subsystems
sys.M = 1; % Number of inputs
sys.N = 2*K; % Number of states
sys.Q = 1; % Number of outputs
xi = rand(1,K) * 0.001; % Sample damping ratio
omega = rand(1,K) * 10.0; % Sample natural frequencies
A_k = cellfun(@(p) sparse([-2.0*p(1)*p(2),-p(2);p(2),0]), ... % Subsystem blocks
num2cell([xi;omega],1),'UniformOutput',false);
A = blkdiag(A_k{:}); % System matrix
B = kron(rand(K,sys.M),[1;0]); % Input matrix
C = 10.0 * rand(sys.Q,2*K); % Output matrix
sys.f = @(x,u,p,t) A*x + B*u; % Vector field
sys.g = @(x,u,p,t) C*x; % Output functional
sys.F = @(x,u,p,t) A'*x + C'*u; % Adjoint vector field
sys.dt = 0.01; % Time step
sys.Tf = 1.0; % Time horizon
task.type = 'model_reduction';
task.method = 'dominant_subspaces';
task.variant = 'minimality';
config.test = true;
config.linearity = 'linear';
[R,S] = est(sys,task,config);
MORscore = S
errorplot(name,R{1},R{3},R{4},R{5},R{6});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% NONLINEAR RESISTOR CAPACITOR CASCADE
function nrc()
name = 'Nonlinear Resistor-Capacitor Cascade';
disp(['Example: ',name]);
sys.M = 1; % Number of inputs
sys.N = 64; % Number of states
sys.Q = 1; % Number of outputs
g = @(x) exp(x) + x - 1.0; % Diode nonlinearity
A0 = sparse(1,1,1,sys.N,sys.N);
A1 = spdiags(ones(sys.N-1,1),-1,sys.N,sys.N) - speye(sys.N);
A1(1,1) = 0;
A2 = spdiags([ones(sys.N-1,1);0],0,sys.N,sys.N) - spdiags(ones(sys.N,1),1,sys.N,sys.N);
B = sparse(1,1,1,sys.N,1);
sys.f = @(x,u,p,t) -g(A0*x) + g(A1*x) - g(A2*x) + B*u; % Vector field
sys.g = @(x,u,p,t) x(1); % Output functional
sys.dt = 0.01; % Time step
sys.Tf = 1.0; % Time horizon
%sys.v = @(t) ones(sys.M,1)*(t<=0.5*sys.Tf); % Test input
task.type = 'model_reduction';
task.method = 'dominant_subspaces';
task.variant = 'minimality';
config.test = true;
[R,S] = est(sys,task,config);
MORscore = S
errorplot(name,R{1},R{3},R{4},R{5},R{6});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% RANDOM DIAGONAL SYSTEM WITH QUADRATIC OUTPUT
function rqo()
name = 'Random Diagonal System with Quadratic Output';
disp(['Example: ',name]);
rand('seed',1009);
sys.M = 1;
sys.N = 64;
sys.Q = 1;
A = spdiags(-rand(sys.N,1),0,sys.N,sys.N);
B = rand(sys.N,1);
sys.f = @(x,u,p,t) A*x + B*u;
sys.g = @(x,u,p,t) norm(x);
sys.dt = 0.01;
sys.Tf = 1.0;
task.type = 'model_reduction';
task.method = 'dominant_subspaces';
task.variant = 'minimality';
config.test = true;
config.kernel = 'gauss';
[R,S] = est(sys,task,config);
MORscore = S
errorplot(name,R{1},R{3},R{4},R{5},R{6});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% LINEAR TRANSPORT EQUATION
function lte()
name = 'Linear Transport Equation';
disp(['Example: ',name]);
sys.M = 1; % Number of inputs
sys.N = 256; % Number of states
sys.Q = 1; % Number of outputs
A = spdiags(sys.N*ones(sys.N,1)*[1,-1],[-1,0],sys.N,sys.N); % System matrix
B = sparse(1,1,sys.N,sys.N,1); % Input matrix
C = sparse(1,sys.N,1.0,1,sys.N); % Output matrix
sys.f = @(x,u,p,t) p*A*x + B*u; % Vector field
sys.F = @(x,u,p,t) p*A'*x + C'*u; % Adjoint vector field
sys.g = @(x,u,p,t) C*x; % Output functional
sys.dt = 0.5./sys.N; % Time step
sys.Tf = 1.5; % Time horizon
sys.p = 1; % Transport velocity
task.type = 'model_reduction';
task.method = 'dominant_subspaces';
task.variant = 'minimality';
config.test = true;
config.linearity = 'linear';
config.skip_x = 4;
[R,S] = est(sys,task,config);
MORscore = S
errorplot(name,R{1},R{3},R{4},R{5},R{6});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% ALL PASS SYSTEM
function aps()
name = 'All Pass System';
disp(['Example: ',name]);
sys.M = 1; % Number of inputs
sys.N = 64; % Number of states
sys.Q = 1; % Number of outputs
A = gallery('tridiag',sys.N,-1,0,1); A(1,1) = -0.5; % System matrix
B = sparse(1,1,1,sys.N,1); % Input matrix
C = -B'; % Output matrix
sys.f = @(x,u,p,t) A*x + B*u; % Vector field
sys.g = @(x,u,p,t) C*x; % Output functional
sys.dt = 0.01; % Time step
sys.Tf = 1.0; % Time horizon
task.type = 'model_reduction';
task.method = 'dmd_galerkin';
task.variant = 'controllability';
config.test = true;
[R,S] = est(sys,task,config);
MORscore = S
errorplot(name,R{1},R{3},R{4},R{5},R{6});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% FIVE BODY CHOREOGRAPHY
function fbc()
name = 'Five-Body Choreography';
disp(['Example: ',name]);
n = 5; % Number of bodies
sys.M = 0; % Number of inputs
sys.N = 4*n; % Number of states
sys.Q = 2*n; % Number of outputs
sys.f = @(x,u,p,t) [x((2*n)+1:end);acc(x(1:2*n),u,p)]; % Vector field
sys.g = @(x,u,p,t) x(1:2*n); % Output functional
sys.dt = 0.01; % Time step
sys.Tf = 1.0; % Time horizon
sys.p = ones(n,1); % Parameters
sys.x0 = [1.449; 0.0; 0.400; -0.345; -1.125;... % Initial condition
0.448; -1.125; -0.448; 0.400; 0.345;...
0.0; -0.922; -1.335; 0.810; -0.919;...
-0.349; 0.919; -0.349; 1.335; 0.810];
task.type = 'model_reduction';
task.method = 'poor_man';
task.variant = 'observability';
config.centering = 'mean';
config.kernel = @(x,y) x(size(x,1)/2+2:end,:) * pinv(y(:,size(y,2)/2+1:end-1)'); % velocity dmd kernel
config.test = true;
[R,S] = est(sys,task,config);
MORscore = S
errorplot(name,R{1},R{3},R{4},R{5},R{6});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% QUASI STABLE ORBITS
function qso()
name = 'Quasi-Stable Orbits Inside Black Hole';
disp(['Example: ',name]);
sys.M = 1; % Number of inputs
sys.N = 4; % Number of states
sys.Q = 3; % Number of outputs
sys.f = @orbit; % Vector field
sys.g = @bl2c; % Output functional
sys.dt = 0.005; % Time step
sys.Tf = 5.0; % Time horizon
% Fermion
sys.xs = [0.4;0.5*pi;0;0]; % Initial state
sys.p = [[0.568;1.13;0.13;0.9982;0.05;1.0] * [0.9,1.1]; [-0.01,0.01]]; % Parameter range
task.type = 'parameter_sensitivity';
task.method = 'minimality';
config = struct();
RF = est(sys,task,config);
% Photon
EE = 10.5;
sys.xs = [0.2;0.5*pi;0;0]; % Initial state
sys.p = [[EE;1.38*EE;0.03*EE*EE;0.9982;0.05] * [0.9,1.1]; [-0.01,0.01;-0.01,0.01]]; % Parameter range
RP = est(sys,task,config);
figure('Name',name,'NumberTitle','off');
set(gca,'XLim',[0,8],'YLim',[1e-2,1e2], ...
'XTickLabel',{' ','E','L','Q','a','e','\mu','\epsilon',' '}, ...
'YScale','log', ...
'YGrid','on', ...
'NextPlot','add');
bar([RF,RP]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% HELPER FUNCTIONS
function errorplot(name,dims,l0,l1,l2,l8)
figure('Name',name,'NumberTitle','off');
set(gca,'XLim',[dims(1),dims(end)],'YLim',[1e-16,1.1],'YScale','log','Ytick',[1e-16,1e-8,1e-0],'YGrid','on','NextPlot','add');
plot(dims,l1+eps,'r','LineWidth',3);
plot(dims,l2+eps,'g','LineWidth',3);
plot(dims,l8+eps,'b','LineWidth',3);
plot(dims,l0+eps,'k--','LineWidth',3);
legend('L_1 Error','L_2 Error','L_\infty Error','L_0 Error','location','NorthEast');
xlabel('State Dimension');
ylabel('Relative Error');
pbaspect([2,1,1]);
end
function a = acc(x,u,p,t) % N-body acceleration vector field component
N = numel(x)/2;
A = reshape(x,[2,N]);
y = zeros(2,N);
for n = 1:N
B = bsxfun(@minus,A,A(:,n));
Z = p'./(sqrt(1e-6+(sum(B.^2))).^3);
B = bsxfun(@times,B,Z);
y(:,n) = sum(B,2);
end%for
a = y(:);
end
function x = orbit(x,u,p,t) % Generalized orbit vector-field
E = p(1); % E
L = p(2); % L
Q = p(3); % Q
a = p(4); % a
e = p(5); % e
mu = p(6); % mu
ep = p(7); % epsilon
D = x(1)^2 - 2.0*x(1) + a^2 + e^2;
S = x(1)^2 + a^2*cos(x(2))^2;
P = E*(x(1)^2 + a^2) + e*ep*x(1) - a*L;
Vt = Q - cos(x(2))^2*(a^2*(mu^2 - E^2) + L^2*sin(x(2))^(-2) );
Vr = P^2 - D*(mu^2*x(1)^2 + (L - a*E)^2 + Q);
x = abs([ sqrt(Vr) ; ...
sqrt(Vt) ; ...
L * sin(x(2))^(-2) + a*(P/D-E) ; ...
a * (L - a * E * sin(x(2))^2) + P/D * (x(1)^2 + a^2) ]./S);
end
function y = bl2c(x,u,p,t) % Boyer-Lindquist to Cartesian coordinate conversion
y = [ sqrt(x(1)^2 + p(4)^2) * sin(x(2)) * cos(x(3)); ...
sqrt(x(1)^2 + p(4)^2) * sin(x(2)) * sin(x(3)); ...
x(1) * cos(x(2)) ];
end