forked from kutio/liblll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathliblll.py
339 lines (273 loc) · 8.65 KB
/
liblll.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Authors : kutio <kutioo[.at.]gmail[.dot.]com>
from fractions import Fraction
import math
# matrix multiplication
def mat_mult(a, b):
m = len(a)
n = len(b[0])
p = len(a[0])
res = [ [0 for j in range(n) ] for i in range(m)]
for i in range(m):
for j in range(n):
coeff = 0
for k in range(p):
coeff += a[i][k] * b[k][j]
res[i][j] = coeff
return res
# scalar product
def scalar_product(a, b):
m = len(a)
res = Fraction(0)
for i in range(m):
res += a[i] * b[i]
return res
# display matrix
def print_mat(n):
for row in n:
row_str = " ".join(["%s" % f for f in row])
print(row_str)
# display vector
def print_vector(v):
row_str = " ".join("%s" % i for i in v)
print(row_str)
# get vector j in the matrix n
def get_vector(n, j):
res = []
for i in range(len(n)):
res.append(n[i][j])
return res
# vector substraction
def vector_add(a, b):
res = []
for i in range(len(a)):
res.append(a[i] + b[i])
return res
# vector substraction
def vector_sub(a, b):
res = []
for i in range(len(a)):
res.append(a[i] - b[i])
return res
# vector multiplication with a constant
def vector_mult_const(v, k):
res = []
for i in range(len(v)):
res.append(v[i]*k)
return res
# set vector j in the matrix n with vector v
def set_matrix_vector(n, k, v):
row = len(n)
col = len(n[0])
# edit the good column
for i in range(row):
n[i][k] = v[i]
# norml2 : square of the L2-norm of the vector x
def norml2(a):
return scalar_product(a, a)
def create_matrix_from_knapsack(knap, the_sum):
n = len(knap)
result = [ [Fraction(0) for j in range(n+1) ] for i in range(n+1)]
# identity matrix
for i in range(n):
for j in range(n):
if i == j:
result[i][j] = Fraction(1)
i = i + 1
for k in range(n):
result[i][k] = Fraction(knap[k])
result[i][k+1] = -Fraction(the_sum)
return result
def round(num):
if (num > 0):
return int(num+Fraction(1,2))
else:
return int(num-Fraction(1,2))
def create_matrix(n):
row = len(n)
col = len(n[0])
res = [ [Fraction(n[i][j]) for j in range(col) ] for i in range(row)]
return res
# [ 0, 2, -1, ... , 0, 1 ] + [1, -2, 2, ..., 0, -1] = [ 1, 0, 1, ..., 0, 0]
def heuristic_u_plus_v(n):
row = len(n)
col = len(n[0])
#negative vectors
minus_1_tab = []
#positive vectors
plus_1_tab = []
# this vector finishes with -1
minus_1_vect = [ 0 for i in range(row) ]
# this vector finishes with 1
plus_1_vect = [ 0 for i in range(row) ]
for i in range(row):
if n[row-1][i] == 1:
for j in range(row):
plus_1_vect[j] = int(n[j][i])
if plus_1_vect not in plus_1_tab:
plus_1_tab.append(plus_1_vect)
elif n[row-1][i] == -1:
for j in range(row):
minus_1_vect[j] = int(n[j][i])
if minus_1_vect not in minus_1_tab:
minus_1_tab.append(minus_1_vect)
return vector_add(minus_1_vect, plus_1_vect)[:-1]
# retrieve the best vector for knapsack
def best_vect_knapsack(n):
row = len(n)
col = len(n[0])
best_vect = [ 0 for i in range(row) ]
solution = [ 0 for i in range(row-1) ]
for i in range(row):
if n[row-1][i] == 0:
take_it = 1
for j in range(col):
if n[j][i] != Fraction(1):
if n[j][i] != Fraction(0):
take_it = 0
if take_it:
for j in range(row):
if n[j][i] == 1:
best_vect[j] = 1
elif n[j][i] == 0:
best_vect[j] = 0
break;
apply_heuristic = True
for i in range(row):
if best_vect[i] != 0:
apply_heuristic = False
if apply_heuristic:
print("No direct solution found, apply heuristic")
solution = heuristic_u_plus_v(n)
for i in range(len(solution)):
if solution[i] != 1:
if solution[i] != 0:
# apply complement
print("no solution found with heuristics")
return [0]*row
else:
for i in range(row-1):
solution[i] = best_vect[i]
return solution
# gram schmidt algorithm
def gram_schmidt(g, m, mu, B):
row = len(m)
for i in range(row):
# bi* = bi
b_i = get_vector(g, i)
b_i_star = b_i
set_matrix_vector(m, i, b_i_star)
for j in range(i):
# u[i][j] = (bi, bj*)/Bj
b_j_star = get_vector(m, j)
b_i = get_vector(g, i)
B[j] = norml2(b_j_star)
mu[i][j] = Fraction(scalar_product(b_i, b_j_star), B[j])
# bi* = bi* - u[i][j]* bj*
b_i_star = vector_sub(b_i_star, vector_mult_const(b_j_star, mu[i][j]))
set_matrix_vector(m, i, b_i_star)
b_i_star = get_vector(m, i)
# B[i] = (bi*, bi*)
B[i] = scalar_product(b_i_star, b_i_star)
# reduce
def reduce(g, mu, k, l):
row = len(g)
col = len(g[0])
if math.fabs(mu[k][l]) > Fraction(1, 2):
r = round(mu[k][l])
b_k = get_vector(g, k)
b_l = get_vector(g, l)
# bk = bk - r*bl
set_matrix_vector(g, k, vector_sub(b_k, vector_mult_const(b_l, r)))
for j in range(l):
# u[k][j] = u[k][j] - r*u[l][j]
mu[k][j] = mu[k][j] - r*mu[l][j]
# u[k][l] = u[k][l] - r
mu[k][l] = mu[k][l] - r
# lll_reduction from LLL book
def lll_reduction(n, lc=Fraction(3, 4)):
row = len(n)
col = len(n[0])
m = [ [Fraction(0) for j in range(col) ] for i in range(row)]
mu = [ [Fraction(0) for j in range(col) ] for i in range(row)]
g = [ [n[i][j] for j in range(col) ] for i in range(row)]
B = [ Fraction(0) for j in range(row) ]
print m
print mu
print g
print B
print "-------------------"
gram_schmidt(g, m, mu, B)
print m
print mu
print g
print B
# k = 2
k = 1
while 1:
# 1 - perform (*) for l = k - 1
reduce(g, mu, k, k-1)
# lovasz condition
if B[k] < (lc - mu[k][k-1]*mu[k][k-1])*B[k-1]:
# 2
# u = u[k][k-1]
u = mu[k][k-1]
# B = Bk + u^2*Bk-1
big_B = B[k] + (u*u) * B[k-1]
# mu[k][k-1] = u * B[k-1] / B
mu[k][k-1] = u*Fraction(B[k-1], big_B)
# Bk = Bk-1 * Bk / B
B[k] = Fraction(B[k-1] * B[k], big_B)
# Bk-1 = B
B[k-1] = big_B
# exchange bk and bk-1
b_k = get_vector(g, k)
b_k_minus_1 = get_vector(g, k-1)
set_matrix_vector(g, k, b_k_minus_1)
set_matrix_vector(g, k-1, b_k)
# for j = 0 .. k-2
for j in range(k-1):
save = mu[k-1][j]
mu[k-1][j] = mu[k][j]
mu[k][j] = save
for i in range(k+1, row):
save = mu[i][k-1]
mu[i][k-1] = mu[k][k-1]*mu[i][k-1] + mu[i][k] - u*mu[i][k]*mu[k][k-1]
mu[i][k] = save - u*mu[i][k]
# if k > 2
if k > 1:
k = k - 1
else:
for l in range(k-2, -1, -1):
reduce(g, mu, k, l)
if k == row-1:
return g
k = k + 1
# definition from the LLL book
def islll(n, lc=Fraction(3, 4)):
row = len(n)
col = len(n[0])
m = [ [Fraction(0) for j in range(col) ] for i in range(row)]
mu = [ [Fraction(0) for j in range(col) ] for i in range(row)]
B = [ Fraction(0) for j in range(row) ]
gram_schmidt(n, m, mu, B)
for i in range(row):
for j in range(i):
if math.fabs(mu[i][j]) > Fraction(1, 2):
return False
for k in range(1, row):
if B[k] < (lc - mu[k][k-1]*mu[k][k-1])*B[k-1]:
return False
return True