-
Notifications
You must be signed in to change notification settings - Fork 39
/
gffread.cpp
894 lines (850 loc) · 33.4 KB
/
gffread.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
#include "GArgs.h"
#include "gff_utils.h"
#include <ctype.h>
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#define VERSION "0.12.8"
#define USAGE "gffread v" VERSION ". Usage:\n\
gffread [-g <genomic_seqs_fasta> | <dir>] [-s <seq_info.fsize>] \n\
[-o <outfile>] [-t <trackname>] [-r [<strand>]<chr>:<start>-<end> [-R]]\n\
[--jmatch <chr>:<start>-<end>] [--no-pseudo] \n\
[-CTVNJMKQAFPGUBHZWTOLE] [-w <exons.fa>] [-x <cds.fa>] [-y <tr_cds.fa>]\n\
[-j ][--ids <IDs.lst> | --nids <IDs.lst>] [--attrs <attr-list>] [-i <maxintron>]\n\
[--stream] [--bed | --gtf | --tlf] [--table <attrlist>] [--sort-by <ref.lst>]\n\
[<input_gff>] \n\n\
Filter, convert or cluster GFF/GTF/BED records, extract the sequence of\n\
transcripts (exon or CDS) and more.\n\
By default (i.e. without -O) only transcripts are processed, discarding any\n\
other non-transcript features. Default output is a simplified GFF3 with only\n\
the basic attributes.\n\
\n\
Options:\n\
--ids discard records/transcripts if their IDs are not listed in <IDs.lst>\n\
--nids discard records/transcripts if their IDs are listed in <IDs.lst>\n\
-i discard transcripts having an intron larger than <maxintron>\n\
-l discard transcripts shorter than <minlen> bases\n\
-r only show transcripts overlapping coordinate range <start>..<end>\n\
(on chromosome/contig <chr>, strand <strand> if provided)\n\
-R for -r option, discard all transcripts that are not fully \n\
contained within the given range\n\
--jmatch only output transcripts matching the given junction\n\
-U discard single-exon transcripts\n\
-C coding only: discard mRNAs that have no CDS features\n\
--nc non-coding only: discard mRNAs that have CDS features\n\
--ignore-locus : discard locus features and attributes found in the input\n\
-A use the description field from <seq_info.fsize> and add it\n\
as the value for a 'descr' attribute to the GFF record\n\
-s <seq_info.fsize> is a tab-delimited file providing this info\n\
for each of the mapped sequences:\n\
<seq-name> <seq-length> <seq-description>\n\
(useful for -A option with mRNA/EST/protein mappings)\n\
Sorting: (by default, chromosomes are kept in the order they were found)\n\
--sort-alpha : chromosomes (reference sequences) are sorted alphabetically\n\
--sort-by : sort the reference sequences by the order in which their\n\
names are given in the <refseq.lst> file\n\
Misc options: \n\
-F keep all GFF attributes (for non-exon features)\n\
--keep-exon-attrs : for -F option, do not attempt to reduce redundant\n\
exon/CDS attributes\n\
-G do not keep exon attributes, move them to the transcript feature\n\
(for GFF3 output)\n\
--attrs <attr-list> only output the GTF/GFF attributes listed in <attr-list>\n\
which is a comma delimited list of attribute names to\n\
--keep-genes : in transcript-only mode (default), also preserve gene records\n\
--keep-comments: for GFF3 input/output, try to preserve comments\n\
-O process other non-transcript GFF records (by default non-transcript\n\
records are ignored)\n\
-V discard any mRNAs with CDS having in-frame stop codons (requires -g)\n\
-H for -V option, check and adjust the starting CDS phase\n\
if the original phase leads to a translation with an \n\
in-frame stop codon\n\
-B for -V option, single-exon transcripts are also checked on the\n\
opposite strand (requires -g)\n\
-P add transcript level GFF attributes about the coding status of each\n\
transcript, including partialness or in-frame stop codons (requires -g)\n\
--add-hasCDS : add a \"hasCDS\" attribute with value \"true\" for transcripts\n\
that have CDS features\n\
--adj-stop stop codon adjustment: enables -P and performs automatic\n\
adjustment of the CDS stop coordinate if premature or downstream\n\
-N discard multi-exon mRNAs that have any intron with a non-canonical\n\
splice site consensus (i.e. not GT-AG, GC-AG or AT-AC)\n\
-J discard any mRNAs that either lack initial START codon\n\
or the terminal STOP codon, or have an in-frame stop codon\n\
(i.e. only print mRNAs with a complete CDS)\n\
--no-pseudo: filter out records matching the 'pseudo' keyword\n\
--in-bed: input should be parsed as BED format (automatic if the input\n\
filename ends with .bed*)\n\
--in-tlf: input GFF-like one-line-per-transcript format without exon/CDS\n\
features (see --tlf option below); automatic if the input\n\
filename ends with .tlf)\n\
--stream: fast processing of input GFF/BED transcripts as they are received\n\
((no sorting, exons must be grouped by transcript in the input data)\n\
Clustering:\n\
-M/--merge : cluster the input transcripts into loci, discarding\n\
\"redundant\" transcripts (those with the same exact introns\n\
and fully contained or equal boundaries)\n\
-d <dupinfo> : for -M option, write duplication info to file <dupinfo>\n\
--cluster-only: same as -M/--merge but without discarding any of the\n\
\"duplicate\" transcripts, only create \"locus\" features\n\
-K for -M option: also discard as redundant the shorter, fully contained\n\
transcripts (intron chains matching a part of the container)\n\
--cset for -K option, discard single exon transcripts when fully contained\n\
in an exon of a multi-exon transcript\n\
-Q for -M option, no longer require boundary containment when assessing\n\
redundancy (can be combined with -K); only introns have to match for\n\
multi-exon transcripts, and >=80% overlap for single-exon transcripts\n\
-Y for -M option, enforce -Q but also discard overlapping single-exon \n\
transcripts, even on the opposite strand (can be combined with -K)\n\
Output options:\n\
--force-exons: make sure that the lowest level GFF features are considered\n\
\"exon\" features\n\
--gene2exon: for single-line genes not parenting any transcripts, add an\n\
exon feature spanning the entire gene (treat it as a transcript)\n\
--t-adopt: try to find a parent gene overlapping/containing a transcript\n\
that does not have any explicit gene Parent\n\
-D decode url encoded characters within attributes\n\
-Z merge very close exons into a single exon (when intron size<4)\n\
-g full path to a multi-fasta file with the genomic sequences\n\
for all input mappings, OR a directory with single-fasta files\n\
(one per genomic sequence, with file names matching sequence names)\n\
-j output the junctions and the corresponding transcripts\n\
-u write a fasta file with the whole span of each transcript\n\
(including introns)\n\
-w write a fasta file with spliced exons for each transcript\n\
--w-add <N> for the -w option, extract additional <N> bases\n\
both upstream and downstream of the transcript boundaries\n\
(this also applies to -u option)\n\
--w-nocds for -w, disable the output of CDS info in the FASTA file\n\
-x write a fasta file with spliced CDS for each GFF transcript\n\
-y write a protein fasta file with the translation of CDS for each record\n\
-W for -w, -x and -y options, write in the FASTA defline all the exon\n\
coordinates projected onto the spliced sequence;\n\
-S for -y option, use '*' instead of '.' as stop codon translation\n\
-L Ensembl GTF to GFF3 conversion, adds version to IDs\n\
-m <chr_replace> is a name mapping table for converting reference \n\
sequence names, having this 2-column format:\n\
<original_ref_ID> <new_ref_ID>\n\
-t use <trackname> in the 2nd column of each GFF/GTF output line\n\
-o write the output records into <outfile> instead of stdout\n\
-T main output will be GTF instead of GFF3\n\
--bed output records in BED format instead of default GFF3\n\
--tlf output \"transcript line format\" which is like GFF\n\
but with exons and CDS related features stored as GFF \n\
attributes in the transcript feature line, like this:\n\
exoncount=N;exons=<exons>;CDSphase=<N>;CDS=<CDScoords> \n\
<exons> is a comma-delimited list of exon_start-exon_end coordinates;\n\
<CDScoords> is CDS_start:CDS_end coordinates or a list like <exons>\n\
--table output a simple tab delimited format instead of GFF, with columns\n\
having the values of GFF attributes given in <attrlist>; special\n\
pseudo-attributes (prefixed by @) are recognized:\n\
@id, @geneid, @chr, @start, @end, @strand, @track, @numexons, @exons,\n\
@cds, @introns, @covlen, @cdslen\n\
If any of -w/-y/-x FASTA output files are enabled, the same fields\n\
(excluding @id) are appended to the definition line of corresponding\n\
FASTA records\n\
-v,-E expose (warn about) duplicate transcript IDs and other potential\n\
problems with the given GFF/GTF records\n\
"
GStr sortBy; //file name with chromosomes listed in the desired order
bool BEDinput=false;
bool TLFinput=false;
//bool protmap=false;
//int maxintron=999000000;
//bool mergeCloseExons=false;
//range filter:
GffLoader gffloader;
GList<GenomicSeqData> g_data(true,true,true); //list of GFF records by genomic seq
void loadIDlist(FILE* f, GStrSet<> & idhash) {
GLineReader fr(f);
while (!fr.isEof()) {
char* line=fr.getLine();
if (line==NULL) break;
if (line[0]=='#') continue; //skip comments
GDynArray<char*> ids;
strsplit(line, ids);
for (uint i=0;i<ids.Count();i++) {
if (strlen(ids[i])>0)
idhash.Add(ids[i]);
}
}
}
void loadSeqInfo(FILE* f, GHash<SeqInfo*> &si) {
GLineReader fr(f);
while (!fr.isEof()) {
char* line=fr.getLine();
if (line==NULL) break;
char* id=line;
char* lenstr=NULL;
char* text=NULL;
char* p=line;
while (*p!=0 && !isspace(*p)) p++;
if (*p==0) continue;
*p=0;p++;
while (*p==' ' || *p=='\t') p++;
if (*p==0) continue;
lenstr=p;
while (*p!=0 && !isspace(*p)) p++;
if (*p!=0) { *p=0;p++; }
while (*p==' ' || *p=='\t') p++;
if (*p!=0) text=p; //else text remains NULL
int len=0;
if (!parseInt(lenstr,len)) {
GMessage("Warning: could not parse sequence length: %s %s\n",
id, lenstr);
continue;
}
// --- here we have finished parsing the line
si.Add(id, new SeqInfo(len,text));
} //while lines
}
void getAttrList(GStr& s) {
if (s.is_empty()) return;
s.startTokenize(",;:", tkCharSet);
GStr w;
while (s.nextToken(w)) {
if (w.length()>0)
attrList.Add(w.chars());
}
}
void setTableFormat(GStr& s) {
if (s.is_empty()) return;
GHash<ETableFieldType> specialFields;
specialFields.Add("chr", ctfGFF_chr);
specialFields.Add("track", ctfGFF_track);
specialFields.Add("id", ctfGFF_ID);
specialFields.Add("geneid", ctfGFF_geneID);
specialFields.Add("genename", ctfGFF_geneName);
specialFields.Add("parent", ctfGFF_Parent);
specialFields.Add("feature", ctfGFF_feature);
specialFields.Add("start", ctfGFF_start);
specialFields.Add("end", ctfGFF_end);
specialFields.Add("strand", ctfGFF_strand);
specialFields.Add("numexons", ctfGFF_numexons);
specialFields.Add("exons", ctfGFF_exons);
specialFields.Add("introns", ctfGFF_introns);
specialFields.Add("cds", ctfGFF_cds);
specialFields.Add("covlen", ctfGFF_covlen);
specialFields.Add("cdslen", ctfGFF_cdslen);
specialFields.Add("attrs", ctfGFF_all_attrs); //TODO: implement this -- all the attrs not already provided
s.startTokenize(" ,;.:", tkCharSet);
GStr w;
while (s.nextToken(w)) {
if (w[0]=='@') {
w=w.substr(1);
w.lower();
ETableFieldType* v=specialFields.Find(w.chars());
if (v!=NULL) {
CTableField tcol(*v);
tableCols.Add(tcol);
}
else GMessage("Warning: table field '@%s' not recognized!\n",w.chars());
continue;
}
if (w=="ID" || w=="transcript_id") {
CTableField tcol(ctfGFF_ID);
tableCols.Add(tcol);
continue;
}
if (w=="geneID" || w=="gene_id") {
CTableField tcol(ctfGFF_geneID);
tableCols.Add(tcol);
continue;
}
if (w=="Parent") {
CTableField tcol(ctfGFF_Parent);
tableCols.Add(tcol);
continue;
}
CTableField col(w);
tableCols.Add(col);
}
}
void loadRefTable(FILE* f, GHash<RefTran*>& rt) {
GLineReader fr(f);
char* line=NULL;
while ((line=fr.getLine())) {
char* orig_id=line;
char* p=line;
while (*p!=0 && !isspace(*p)) p++;
if (*p==0) continue;
*p=0;p++;//split the line here
while (*p==' ' || *p=='\t') p++;
if (*p==0) continue;
rt.Add(orig_id, new RefTran(p));
} //while lines
}
void openfw(FILE* &f, GArgs& args, char opt) {
GStr s=args.getOpt(opt);
if (!s.is_empty()) {
if (s=='-')
f=stdout;
else {
f=fopen(s,"w");
if (f==NULL) GError("Error creating file: %s\n", s.chars());
}
}
}
#define FWCLOSE(fh) if (fh!=NULL && fh!=stdout) fclose(fh)
void printGff3Header(FILE* f, GArgs& args) {
if (gffloader.keepGff3Comments) {
for (int i=0;i<gffloader.headerLines.Count();i++) {
fprintf(f, "%s\n", gffloader.headerLines[i]);
}
} else {
fprintf(f, "##gff-version 3\n");
fprintf(f, "# gffread v" VERSION "\n");
fprintf(f, "# ");args.printCmdLine(f);
}
}
void printGSeqHeader(FILE* f, GenomicSeqData* gdata) {
if (f && gffloader.keepGff3Comments && gdata->seqreg_start>0 && gdata->seqreg_end>0)
fprintf(f, "##sequence-region %s %d %d\n", gdata->gseq_name,
gdata->seqreg_start, gdata->seqreg_end);
}
void processGffComment(const char* cmline, GfList* gflst) {
if (cmline[0]!='#') return;
const char* p=cmline;
while (*p=='#') p++;
GStr s(p);
//this can be called only after gffloader initialization
// so we can use gffloader.names->gseqs.addName()
s.startTokenize("\t ", tkCharSet);
GStr w;
if (s.nextToken(w) && w=="sequence-region") {
GStr chr, wend;
if (s.nextToken(chr) && s.nextToken(w) && s.nextToken(wend)) {
int gseq_id=gffloader.names->gseqs.addName(chr.chars());
if (gseq_id>=0) {
GenomicSeqData* gseqdata=getGSeqData(g_data, gseq_id);
gseqdata->seqreg_start=w.asInt();
gseqdata->seqreg_end=wend.asInt();
}
else GError("Error adding ref seq ID %s\n", chr.chars());
}
return;
}
if (gflst->Count()==0) {
//initial Gff3 header, store it
char* hl=Gstrdup(cmline);
gffloader.headerLines.Add(hl);
}
}
void printGffObj(FILE* f, GffObj* gfo, GStr& locname, GffPrintMode exonPrinting, int& out_counter) {
GffObj& t=*gfo;
GTData* tdata=(GTData*)(t.uptr);
if (tdata->replaced_by!=NULL || !T_PRINTABLE(t.udata)) return;
//if (t.exons.Count()==0 && t.children.Count()==0 && forceExons)
// t.addExonSegment(t.start,t.end);
T_NO_PRINT(t.udata);
if (!fmtGFF3 && !gfo->isTranscript())
return; //only GFF3 prints non-transcript records (incl. parent genes)
t.addAttr("locus", locname.chars());
out_counter++;
if (fmtGFF3) {
//print the parent first, if any and if not printed already
if (t.parent!=NULL && T_PRINTABLE(t.parent->udata)) {
GTData* pdata=(GTData*)(t.parent->uptr);
if (pdata && pdata->geneinfo!=NULL)
pdata->geneinfo->finalize();
t.parent->addAttr("locus", locname.chars());
t.parent->printGxf(f, exonPrinting, tracklabel, NULL, decodeChars);
T_NO_PRINT(t.parent->udata);
}
}
t.printGxf(f, exonPrinting, tracklabel, NULL, decodeChars);
}
void printAsTable(FILE* f, GffObj* gfo, int* out_counter=NULL) {
GffObj& t=*gfo;
GTData* tdata=(GTData*)(t.uptr);
if (tdata->replaced_by!=NULL || !T_PRINTABLE(t.udata)) return;
T_NO_PRINT(t.udata);
if (out_counter!=NULL) (*out_counter)++;
//print the parent first, if any and if not printed already
if (t.parent!=NULL && T_PRINTABLE(t.parent->udata)) {
GTData* pdata=(GTData*)(t.parent->uptr);
if (pdata && pdata->geneinfo!=NULL)
pdata->geneinfo->finalize();
//t.parent->addAttr("locus", locname.chars());
//(*out_counter)++; ?
printTableData(f, *t.parent);
T_NO_PRINT(t.parent->udata);
}
printTableData(f, *gfo);
}
void shutDown() {
seqinfo.Clear();
//if (faseq!=NULL) delete faseq;
//if (gcdb!=NULL) delete gcdb;
delete fltRange;
delete fltJunction;
FWCLOSE(f_out);
FWCLOSE(f_w);
FWCLOSE(f_u);
FWCLOSE(f_x);
FWCLOSE(f_y);
FWCLOSE(f_j);
}
int main(int argc, char* argv[]) {
GArgs args(argc, argv,
"version;debug;merge;stream;adj-stop;bed;in-bed;tlf;in-tlf;cluster-only;nc;cset;cov-info;help;"
"sort-alpha;keep-genes;w-nocds;attrs=;w-add=;ids=;nids=;jmatch=;gtf;keep-comments;keep-exon-attrs;force-exons;t-adopt;gene2exon;"
"ignore-locus;no-pseudo;table=sort-by=hvOUNHPWCVJMKQYTDARSZFGLEBm:g:i:r:s:l:t:o:u:w:x:y:j:d:");
args.printError(USAGE, true);
int numfiles = args.startNonOpt();
if (args.getOpt("version")) {
printf(VERSION"\n");
exit(0);
}
if (args.getOpt('h') || args.getOpt("help") || ( numfiles==0 && !haveStdInput())) {
GMessage("%s",USAGE);
exit(1);
}
debugMode=(args.getOpt("debug")!=NULL);
decodeChars=(args.getOpt('D')!=NULL);
gffloader.forceExons=(args.getOpt("force-exons")!=NULL);
gffloader.streamIn=(args.getOpt("stream")!=NULL);
gffloader.noPseudo=(args.getOpt("no-pseudo")!=NULL);
gffloader.ignoreLocus=(args.getOpt("ignore-locus")!=NULL);
gffloader.transcriptsOnly=(args.getOpt('O')==NULL);
//sortByLoc=(args.getOpt('S')!=NULL);
addDescr=(args.getOpt('A')!=NULL);
verbose=(args.getOpt('v')!=NULL || args.getOpt('E')!=NULL);
wCDSonly=(args.getOpt('C')!=NULL);
wNConly=(args.getOpt("nc")!=NULL);
addCDSattrs=(args.getOpt('P')!=NULL);
add_hasCDS=(args.getOpt("add-hasCDS")!=NULL);
adjustStop=(args.getOpt("adj-stop")!=NULL);
if (adjustStop) addCDSattrs=true;
validCDSonly=(args.getOpt('V')!=NULL);
altPhases=(args.getOpt('H')!=NULL);
fmtGTF=(args.getOpt('T')!=NULL || args.getOpt("gtf")!=NULL); //switch output format to GTF
fmtBED=(args.getOpt("bed")!=NULL); //BED output
fmtTLF=(args.getOpt("tlf")!=NULL); //TLF output
if (fmtGTF || fmtBED || fmtTLF) {
if (!gffloader.transcriptsOnly) {
GMessage("Error: option -O is only supported with GFF3 output");
exit(1);
}
fmtGFF3=false;
}
BEDinput=(args.getOpt("in-bed")!=NULL);
TLFinput=(args.getOpt("in-tlf")!=NULL);
bothStrands=(args.getOpt('B')!=NULL);
fullCDSonly=(args.getOpt('J')!=NULL);
spliceCheck=(args.getOpt('N')!=NULL);
StarStop=(args.getOpt('S')!=NULL);
gffloader.keepGenes=(args.getOpt("keep-genes")!=NULL);
gffloader.trAdoption=(args.getOpt("t-adopt")!=NULL);
gffloader.keepGff3Comments=(args.getOpt("keep-comments")!=NULL);
gffloader.sortRefsAlpha=(args.getOpt("sort-alpha")!=NULL);
if (args.getOpt("sort-by")!=NULL) {
if (gffloader.sortRefsAlpha)
GError("Error: options --sort-by and --sort-alpha are mutually exclusive!\n");
sortBy=args.getOpt("sort-by");
}
if (!sortBy.is_empty())
gffloader.loadRefNames(sortBy);
gffloader.gene2exon=(args.getOpt("gene2exon")!=NULL);
gffloader.matchAllIntrons=(args.getOpt('K')==NULL); //when 0, contained chains are merged into container
gffloader.ncSpan=(args.getOpt('Q')!=NULL); //not requiring full-span containment;SETs are merged if they overlap 80%
gffloader.dOvlSET=(args.getOpt('Y')!=NULL);
if (args.getOpt('M') || args.getOpt("merge")) {
gffloader.doCluster=true;
gffloader.collapseRedundant=true;
} else {
if (!gffloader.matchAllIntrons || gffloader.ncSpan || gffloader.dOvlSET) {
GMessage("%s",USAGE);
GMessage("Error: options -K,-Q,-Y require -M/--merge option!\n");
exit(1);
}
}
if (args.getOpt("cset")) {
gffloader.cSETMerge=1;
if (gffloader.matchAllIntrons) {
GMessage("Error: option --cset requires option -K\n");
exit(1);
}
}
if (args.getOpt("cluster-only")) {
gffloader.doCluster=true;
gffloader.collapseRedundant=false;
if (!gffloader.matchAllIntrons || gffloader.ncSpan || gffloader.dOvlSET) {
GMessage("%s",USAGE);
GMessage("Error: option -K,-Q,-Y have no effect with --cluster-only.\n");
exit(1);
}
}
if (gffloader.dOvlSET)
gffloader.ncSpan=true; //-Q enforced by -Y
covInfo=(args.getOpt("cov-info"));
if (covInfo) gffloader.doCluster=true; //need to collapse overlapping exons
if (fullCDSonly) validCDSonly=true;
if (verbose) {
fprintf(stderr, "Command line was:\n");
args.printCmdLine(stderr);
}
gffloader.fullAttributes=(args.getOpt('F')!=NULL);
gffloader.keep_AllExonAttrs=(args.getOpt("keep-exon-attrs")!=NULL);
if (gffloader.keep_AllExonAttrs && !gffloader.fullAttributes) {
GMessage("Error: option --keep-exon-attrs requires option -F !\n");
exit(0);
}
if (args.getOpt('G')==NULL)
gffloader.gatherExonAttrs=!gffloader.fullAttributes;
else {
gffloader.gatherExonAttrs=true;
gffloader.fullAttributes=true;
}
if (gffloader.noPseudo && !gffloader.fullAttributes) {
gffloader.gatherExonAttrs=true;
gffloader.fullAttributes=true;
}
gffloader.ensemblProc=(args.getOpt('L')!=NULL);
if (gffloader.ensemblProc) {
gffloader.fullAttributes=true;
gffloader.gatherExonAttrs=false;
//sortByLoc=true;
}
tableFormat=args.getOpt("table");
if (!tableFormat.is_empty()) {
setTableFormat(tableFormat);
fmtTable=true;
fmtGFF3=false;
gffloader.fullAttributes=true;
}
gffloader.mergeCloseExons=(args.getOpt('Z')!=NULL);
multiExon=(args.getOpt('U')!=NULL);
writeExonSegs=(args.getOpt('W')!=NULL);
tracklabel=args.getOpt('t');
if (args.getOpt('g'))
gfasta.init(args.getOpt('g'));
//if (gfasta.fastaPath!=NULL)
// sortByLoc=true; //enforce sorting by chromosome/contig
GStr s=args.getOpt('i');
if (!s.is_empty()) maxintron=s.asInt();
s=args.getOpt('l');
if (!s.is_empty()) minLen=s.asInt();
TFilters=(multiExon || wCDSonly || wNConly); //TODO: all transcript filters should be included here through validateGffRec()
FILE* f_repl=NULL; //duplicate/collapsing info output file
s=args.getOpt('d');
if (!s.is_empty()) {
if (s=="-") f_repl=stdout;
else {
f_repl=fopen(s.chars(), "w");
if (f_repl==NULL) GError("Error creating file %s\n", s.chars());
}
}
s=args.getOpt("attrs");
if (!s.is_empty()) {
getAttrList(s);
gffloader.attrsFilter=(attrList.Count()>1);
gffloader.fullAttributes=true;
}
rfltWithin=(args.getOpt('R')!=NULL);
char* sz=args.getOpt('r');
if (sz) {
fltRange=new GRangeParser(sz);
if (fltRange->end==0) //end coordinate not given
fltRange->end=UINT_MAX;
} else {
if (rfltWithin)
GError("Error: option -R requires -r!\n");
}
sz=args.getOpt("jmatch");
if (sz) {
//TODO: check if this is a file?
fltJunction=new GRangeParser(sz);
if (fltJunction->strand=='.') fltJunction->strand=0;
} //gseq/range filtering
s=args.getOpt('m');
if (!s.is_empty()) {
FILE* ft=fopen(s,"r");
if (ft==NULL) GError("Error opening reference table: %s\n",s.chars());
loadRefTable(ft, reftbl);
fclose(ft);
}
s=args.getOpt('s');
if (!s.is_empty()) {
FILE* fsize=fopen(s,"r");
if (fsize==NULL) GError("Error opening info file: %s\n",s.chars());
loadSeqInfo(fsize, seqinfo);
fclose(fsize);
}
s=args.getOpt("ids");
if (s.is_empty()) {
s=args.getOpt("nids");
if (!s.is_empty())
IDflt=idFlt_Exclude;
} else {
IDflt=idFlt_Only;
}
if (!s.is_empty()) {
FILE* f=fopen(s,"r");
if (f==NULL) GError("Error opening ID list file: %s\n",s.chars());
loadIDlist(f, fltIDs);
if (fltIDs.Count()==0) {
GMessage("Warning: no IDs were loaded from file %s\n", s.chars());
IDflt=idFlt_None;
}
fclose(f);
}
openfw(f_out, args, 'o');
//if (f_out==NULL) f_out=stdout;
if (gfasta.fastaPath==NULL && (validCDSonly || spliceCheck || args.getOpt('w')!=NULL || args.getOpt('x')!=NULL ||
args.getOpt('y')!=NULL || args.getOpt('u')!=NULL))
GError("Error: -g option is required for options -w/x/y/u/V/N/M !\n");
openfw(f_w, args, 'w');
openfw(f_u, args, 'u');
openfw(f_x, args, 'x');
openfw(f_y, args, 'y');
openfw(f_j, args, 'j');
s=args.getOpt("w-add");
if (!s.is_empty()) {
if (f_w==NULL && f_u==NULL) GError("Error: --w-add option requires -w or -u option!\n");
wPadding=s.asInt();
}
if (f_w!=NULL && args.getOpt("w-nocds"))
wfaNoCDS=true;
if (f_out==NULL && f_w==NULL && f_u==NULL && f_x==NULL && f_y==NULL && f_j==NULL && !covInfo)
f_out=stdout;
//if (f_y!=NULL || f_x!=NULL) wCDSonly=true;
//useBadCDS=useBadCDS || (fgtfok==NULL && fgtfbad==NULL && f_y==NULL && f_x==NULL);
//GList<GffObj> gfkept(false,true); //unsorted, free items on delete
int out_counter=0; //number of records printed
if (fmtGTF)
exonPrinting = gffloader.forceExons ? pgtfBoth : pgtfAny;
else if (fmtBED)
exonPrinting=pgffBED;
else if (fmtTLF)
exonPrinting=pgffTLF;
else { //printing regular GFF3
exonPrinting = gffloader.forceExons ? pgffBoth : pgffAny;
}
while (true) {
GStr infile;
if (numfiles) {
infile=args.nextNonOpt();
if (infile.is_empty()) break;
if (infile=="-") { f_in=stdin; infile="stdin"; }
else if ((f_in=fopen(infile, "r"))==NULL)
GError("Error: cannot open input file %s!\n",infile.chars());
else fclose(f_in);
numfiles--;
}
else infile="-";
const char* fext=getFileExt(infile.chars());
if (BEDinput || (Gstricmp(fext, "bed")==0))
gffloader.BEDinput=true;
if (TLFinput || (Gstricmp(fext, "tlf")==0))
gffloader.TLFinput=true;
gffloader.openFile(infile);
if (gffloader.streamIn) { //streaming in - disable all bulk load features
gffloader.transcriptsOnly=true;
gffloader.doCluster=false;
covInfo=false;
}
gffloader.load(g_data, &processGffComment);
if (gffloader.streamIn) {
//we're done, GffLoader::load() took care of everything
shutDown();
return 0;
}
// will also place the transcripts in loci, if doCluster is enabled
if (gffloader.doCluster)
collectLocusData(g_data, covInfo);
if (numfiles==0) break;
}
if (covInfo) {
//report coverage info at STDOUT
uint64 f_bases=0;
uint64 r_bases=0;
uint64 u_bases=0;
for (int g=0;g<g_data.Count();g++) {
f_bases+=g_data[g]->f_bases;
r_bases+=g_data[g]->r_bases;
u_bases+=g_data[g]->u_bases;
}
fprintf(stdout, "Total bases covered by transcripts:\n");
if (f_bases>0) fprintf(stdout, "\t%" PRIu64 " on + strand\n", f_bases);
if (r_bases>0) fprintf(stdout, "\t%" PRIu64 " on - strand\n", r_bases);
if (u_bases>0) fprintf(stdout, "\t%" PRIu64 " on . strand\n", u_bases);
}
GStr loctrack("gffcl");
if (tracklabel) loctrack=tracklabel;
if (gffloader.sortRefsAlpha)
g_data.setSorted(&gseqCmpName);
bool firstGff3Print=fmtGFF3;
if (gffloader.doCluster) {
//grouped in loci
for (int g=0;g<g_data.Count();g++) {
GenomicSeqData* gdata=g_data[g];
bool firstGSeqHeader=fmtGFF3;
if (f_out && fmtGFF3 && gffloader.keepGff3Comments && gdata->seqreg_start>0)
fprintf(f_out, "##sequence-region %s %d %d\n", gdata->gseq_name,
gdata->seqreg_start, gdata->seqreg_end);
for (int l=0;l<gdata->loci.Count();l++) {
bool firstLocusPrint=true;
GffLocus& loc=*(gdata->loci[l]);
//check all non-replaced transcripts in this locus:
//int numvalid=0;
//int idxfirstvalid=-1;
for (int i=0;i<loc.rnas.Count();i++) {
GffObj& t=*(loc.rnas[i]);
GTData* tdata=(GTData*)(t.uptr);
if (tdata->replaced_by!=NULL) {
if (f_repl && T_DUPSHOWABLE(t.udata)) {
fprintf(f_repl, "%s", t.getID());
GTData* rby=tdata;
while (rby->replaced_by!=NULL) {
fprintf(f_repl," => %s", rby->replaced_by->getID());
T_NO_DUPSHOW(rby->rna->udata);
rby=(GTData*)(rby->replaced_by->uptr);
}
fprintf(f_repl, "\n");
}
T_NO_PRINT(t.udata);
if (verbose) {
GMessage("Info: %s discarded: superseded by %s\n",
t.getID(), tdata->replaced_by->getID());
}
continue;
}
//restore strand for dOvlSET
char orig_strand=T_OSTRAND(t.udata);
if (orig_strand!=0) t.strand=orig_strand;
/* -- transcripts are filtered upon loading
if (process_transcript(gfasta, t)) {
numvalid++;
if (idxfirstvalid<0) idxfirstvalid=i;
}
*/
} //for each transcript
int rnas_i=0;
//if (idxfirstvalid>=0) rnas_i=idxfirstvalid;
int gfs_i=0;
if (f_out) {
GStr locname("RLOC_");
locname.appendfmt("%08d",loc.locus_num);
//GMessage("Locus: %s (%d-%d), %d rnas, %d gfs\n", locname.chars(), loc.start, loc.end,
// loc.rnas.Count(), loc.gfs.Count());
while (gfs_i<loc.gfs.Count() || rnas_i<loc.rnas.Count()) {
if (gfs_i<loc.gfs.Count() && (rnas_i>=loc.rnas.Count() ||
loc.gfs[gfs_i]->start<=loc.rnas[rnas_i]->start) ) {
//print the gene object first
if (fmtGFF3) { //BED, TLF and GTF: only show transcripts
if (firstGff3Print) { printGff3Header(f_out, args);firstGff3Print=false; }
if (firstGSeqHeader) { printGSeqHeader(f_out, gdata); firstGSeqHeader=false; }
if (firstLocusPrint) {
//loc.print(f_out, idxfirstvalid, locname, loctrack);
loc.print(f_out, 0, locname, loctrack);
firstLocusPrint=false;
}
printGffObj(f_out, loc.gfs[gfs_i], locname, exonPrinting, out_counter);
}
++gfs_i;
continue;
}
if (rnas_i<loc.rnas.Count()) {
//loc.rnas[rnas_i]->printGxf(f_out, exonPrinting, tracklabel, NULL, decodeChars);
if (fmtGFF3) {
if (firstGff3Print) { printGff3Header(f_out, args); firstGff3Print=false; }
if (firstGSeqHeader) { printGSeqHeader(f_out, gdata); firstGSeqHeader=false; }
if (firstLocusPrint) {
//loc.print(f_out, idxfirstvalid, locname, loctrack);
loc.print(f_out, 0, locname, loctrack);
firstLocusPrint=false;
}
}
if (fmtTable) printAsTable(f_out, loc.rnas[rnas_i], &out_counter);
else printGffObj(f_out, loc.rnas[rnas_i], locname, exonPrinting, out_counter);
++rnas_i;
}
}
}
}//for each locus
} //for each genomic sequence
} //if Clustering enabled
else { //no clustering
//not grouped into loci, print the rnas with their parents, if any
//int numvalid=0;
for (int g=0;g<g_data.Count();g++) {
GenomicSeqData* gdata=g_data[g];
bool firstGSeqHeader=fmtGFF3;
int gfs_i=0;
for (int m=0;m<gdata->rnas.Count();m++) {
GffObj& t=*(gdata->rnas[m]);
if (f_out && (fmtGFF3 || fmtTable)) {
//print other non-transcript (gene?) feature that might be there before t
while (gfs_i<gdata->gfs.Count() && gdata->gfs[gfs_i]->start<=t.start) {
GffObj& gfst=*(gdata->gfs[gfs_i]);
if (TFilters && gfst.isGene() && gfst.children.Count()==0) // gene with no children left, skip it if filters were applied
{ ++gfs_i; continue; }
if T_PRINTABLE(gfst.udata) { //never printed
T_NO_PRINT(gfst.udata);
if (fmtGFF3) {
if (firstGff3Print) { printGff3Header(f_out, args);firstGff3Print=false; }
if (firstGSeqHeader) { printGSeqHeader(f_out, gdata); firstGSeqHeader=false; }
gfst.printGxf(f_out, exonPrinting, tracklabel, NULL, decodeChars);
}
else printTableData(f_out, gfst);
}
++gfs_i;
}
}
GTData* tdata=(GTData*)(t.uptr);
if (tdata->replaced_by!=NULL) continue;
//if (process_transcript(gfasta, t)) {
// numvalid++;
if (f_out && T_PRINTABLE(t.udata) ) {
T_NO_PRINT(t.udata);
if (fmtGFF3 || fmtTable || t.isTranscript()) {
if (tdata->geneinfo)
tdata->geneinfo->finalize();
out_counter++;
if (fmtGFF3) {
if (firstGff3Print) { printGff3Header(f_out, args);firstGff3Print=false; }
if (firstGSeqHeader) { printGSeqHeader(f_out, gdata); firstGSeqHeader=false; }
}
//for GFF3 && table output, print the parent first, if any
if ((fmtGFF3 || fmtTable) && t.parent!=NULL && T_PRINTABLE(t.parent->udata)) {
//GTData* pdata=(GTData*)(t.parent->uptr);
//if (pdata && pdata->geneinfo!=NULL)
// pdata->geneinfo->finalize();
if (fmtTable)
printTableData(f_out, *(t.parent));
else { //GFF3 output
t.parent->printGxf(f_out, exonPrinting, tracklabel, NULL, decodeChars);
}
T_NO_PRINT(t.parent->udata);
}
if (fmtTable)
printTableData(f_out, t);
else
t.printGxf(f_out, exonPrinting, tracklabel, NULL, decodeChars);
}
}//GFF/GTF output requested
//} //valid transcript
} //for each rna
//print the rest of the isolated pseudo/gene/region features not printed yet
if (f_out && (fmtGFF3 || fmtTable)) {
while (gfs_i<gdata->gfs.Count()) {
GffObj& gfst=*(gdata->gfs[gfs_i]);
if (TFilters && gfst.isGene() && gfst.children.Count()==0) // gene with no children left, skip it if filters were applied
{ ++gfs_i; continue; }
if T_PRINTABLE(gfst.udata) { //never printed
T_NO_PRINT(gfst.udata);
if (fmtGFF3) {
if (firstGff3Print) { printGff3Header(f_out, args); firstGff3Print=false; }
if (firstGSeqHeader) { printGSeqHeader(f_out, gdata); firstGSeqHeader=false; }
gfst.printGxf(f_out, exonPrinting, tracklabel, NULL, decodeChars);
} else
printTableData(f_out, gfst);
}
++gfs_i;
}
}
} //for each genomic seq
} //no clustering
if (f_repl && f_repl!=stdout) fclose(f_repl);
shutDown();
}