forked from baiwenjia/ukbb_cardiac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_ao.py
64 lines (53 loc) · 2.27 KB
/
predict_ao.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright 2017, Wenjia Bai. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
This script runs inference on a given dataset.
"""
import os
import sys
import urllib.request
import shutil
if __name__ == '__main__':
if len(sys.argv) != 3:
print(f'Usage: {sys.argv[0]} <data_dir> <blood_pressure_info.csv>', file=sys.stderr)
exit(-1)
# setup PYTHONPATH
PYTHONPATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
# The GPU device id
CUDA_VISIBLE_DEVICES = 0
DATA_DIR = sys.argv[1]
BP_INFO_CSV = sys.argv[2]
# remove trailing slash
if DATA_DIR.endswith('/'):
DATA_DIR = DATA_DIR[:-1]
if DATA_DIR.endswith('.converted') or DATA_DIR.endswith('-converted') or DATA_DIR.endswith('_converted'):
OUTPUT_CSV_DIR = DATA_DIR[:-10] + '.output_csv'
else:
OUTPUT_CSV_DIR = DATA_DIR + '.output_csv'
if not os.path.exists(OUTPUT_CSV_DIR):
os.mkdir(OUTPUT_CSV_DIR)
# Analyse aortic images
print('******************************')
print(' Aortic image analysis')
print('******************************')
# Deploy the segmentation network
print('Deploying the segmentation network ...')
os.system(f'PYTHONPATH={PYTHONPATH} CUDA_VISIBLE_DEVICES={CUDA_VISIBLE_DEVICES} python3 common/deploy_network_ao.py --seq_name ao --data_dir {DATA_DIR} '
f'--model_path trained_model/UNet-LSTM_ao')
# Evaluate aortic areas
print('Evaluating atrial areas ...')
os.system(f'PYTHONPATH={PYTHONPATH} python3 aortic/eval_aortic_area2.py --data_dir {DATA_DIR} '
f'--pressure_csv {BP_INFO_CSV} --output_csv {OUTPUT_CSV_DIR}/table_aortic_area.csv')
print('Done.')