-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNo_dedicatedpath result
48 lines (47 loc) · 1.53 KB
/
No_dedicatedpath result
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
GLPSOL: GLPK LP/MIP Solver, v4.52
Parameter(s) specified in the command line:
--cpxlp /tmp/19554-pulp.lp -o /tmp/19554-pulp.sol
Reading problem data from '/tmp/19554-pulp.lp'...
56 rows, 48 columns, 450 non-zeros
48 integer variables, none of which are binary
257 lines were read
GLPK Integer Optimizer, v4.52
56 rows, 48 columns, 450 non-zeros
48 integer variables, none of which are binary
Preprocessing...
13 rows, 21 columns, 33 non-zeros
21 integer variables, all of which are binary
Scaling...
A: min|aij| = 1.000e+00 max|aij| = 1.000e+00 ratio = 1.000e+00
Problem data seem to be well scaled
Constructing initial basis...
Size of triangular part is 13
Solving LP relaxation...
GLPK Simplex Optimizer, v4.52
13 rows, 21 columns, 33 non-zeros
0: obj = 2.400000000e+01 infeas = 6.000e+00 (0)
* 8: obj = 2.400000000e+01 infeas = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
Integer optimization begins...
+ 8: mip = not found yet >= -inf (1; 0)
+ 11: >>>>> 2.400000000e+01 >= 2.400000000e+01 0.0% (1; 0)
+ 11: mip = 2.400000000e+01 >= tree is empty 0.0% (0; 1)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.1 Mb (104400 bytes)
Writing MIP solution to `/tmp/19554-pulp.sol'...
status: Optimal
optimal cost: 24
f ((2, 5), 1) 1 : 1
f ((2, 5), 1) 3 : 1
f ((5, 6), 1) 3 : 1
f ((1, 3), 1) 2 : 1
f ((1, 3), 1) 3 : 1
f ((1, 6), 1) 2 : 1
f ((3, 4), 1) 3 : 1
f ((4, 1), 1) 2 : 1
f ((4, 1), 1) 3 : 1
f ((6, 2), 1) 3 : 1
f ((5, 3), 1) 1 : 1
f ((5, 3), 1) 2 : 1
f ((5, 3), 1) 3 : 1