-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlstm.go
222 lines (184 loc) · 5.31 KB
/
lstm.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
package golgi
import (
"github.com/chewxy/hm"
"github.com/pkg/errors"
G "gorgonia.org/gorgonia"
"gorgonia.org/tensor"
)
// LSTM represents an LSTM RNN
type LSTM struct {
name string
g *G.ExprGraph
input lstmGate
forget lstmGate
output lstmGate
cell lstmGate
size int // for construction
initialized bool
dummyCell *G.Node
dummyHidden *G.Node
}
// FromLSTMData will initialize a new LSTM model
func FromLSTMData(g *G.ExprGraph, layer *LSTMData, name string) *LSTM {
retVal, err := layer.Make(g, name)
if err != nil {
panic(err)
}
return retVal.(*LSTM)
}
// ConsLSTM is a LSTM construction function. It takes a gorgonia.Input that has a *gorgonia.Node.
func ConsLSTM(in G.Input, opts ...ConsOpt) (retVal Layer, err error) {
x := in.Node()
if x == nil {
return nil, errors.Errorf("LSTM expects a *Node. Got input %v of %T instead", in, in)
}
// TODO: Ensure shape is being set correctly
inshape := x.Shape()
if inshape.Dims() > 2 || inshape.Dims() == 0 {
return nil, errors.Errorf("Expected shape is either a vector or a matrix")
}
l := &LSTM{}
for _, opt := range opts {
var (
o Layer
ok bool
)
if o, err = opt(l); err != nil {
return nil, err
}
if l, ok = o.(*LSTM); !ok {
err = errors.Errorf("Construction Option returned a non LSTM. Got %T instead", o)
return nil, err
}
}
if err = l.Init(x); err != nil {
return
}
retVal = l
return retVal, nil
}
// Model will return the gorgonia.Nodes associated with this LSTM
func (l *LSTM) Model() G.Nodes {
return G.Nodes{
l.input.wx, l.input.wh, l.input.b,
l.forget.wx, l.forget.wh, l.forget.b,
l.output.wx, l.output.wh, l.output.b,
l.cell.wx, l.cell.wh, l.cell.b,
}
}
// Fwd runs the equation forwards.
//
// While a *LSTM can take any gorgonia.Input as an input, it returns a gorgonia.Result,
// of which the concrete type is a lstimIO.
//
// The lstmIO type is not exported. Instead, to query the *Node of the gorgonia.Input or gorgonia.Result,
// use the Nodes() method.
//
// The Result will always be organized as such: [previousHidden, previousCell]
//
// e.g.
// out := lstm.Fwd(x)
// outNodes := out.Nodes()
// prevHidden := outNodes[0]
// prevCell := outNodes[1]
func (l *LSTM) Fwd(x G.Input) G.Result {
var (
inputVector *G.Node
prevHidden *G.Node
prevCell *G.Node
err error
)
if err = G.CheckOne(x); err != nil {
return G.Err(err)
}
ns := x.Nodes()
switch len(ns) {
case 0:
err = errors.New("input value does not contain any nodes")
return G.Err(err)
case 1:
inputVector = ns[0]
prevHidden = l.dummyHidden
prevCell = l.dummyCell
case 2:
err = errors.Errorf("invalid number of nodes, expected %d and received %d", 3, 2)
return G.Err(err)
case 3:
inputVector = ns[0]
prevHidden = ns[1]
prevCell = ns[2]
}
var inputGate *G.Node
if inputGate, err = l.input.activate(inputVector, prevHidden); err != nil {
return G.Err(err)
}
var forgetGate *G.Node
if forgetGate, err = l.forget.activate(inputVector, prevHidden); err != nil {
return G.Err(err)
}
var outputGate *G.Node
if outputGate, err = l.output.activate(inputVector, prevHidden); err != nil {
return G.Err(err)
}
var cellWrite *G.Node
if cellWrite, err = l.cell.activate(inputVector, prevHidden); err != nil {
return G.Err(err)
}
// Perform cell activations
var retain *G.Node
if retain, err = BroadcastHadamardProd(forgetGate, prevCell, nil, []byte{0}); err != nil {
return G.Err(err)
}
var write *G.Node
if write, err = BroadcastHadamardProd(inputGate, cellWrite, nil, []byte{0}); err != nil {
return G.Err(err)
}
var cell *G.Node
if cell, err = G.Add(retain, write); err != nil {
return G.Err(err)
}
var tahnCell *G.Node
if tahnCell, err = G.Tanh(cell); err != nil {
return G.Err(err)
}
var hidden *G.Node
if hidden, err = BroadcastHadamardProd(outputGate, tahnCell, nil, []byte{0}); err != nil {
return G.Err(err)
}
result := makeLSTMIO(inputVector, hidden, cell, nil)
return &result
}
// Type will return the hm.Type of the LSTM
func (l *LSTM) Type() hm.Type { return hm.NewFnType(hm.TypeVariable('a'), hm.TypeVariable('b')) }
// Shape will return the tensor.Shape of the LSTM
func (l *LSTM) Shape() tensor.Shape { return l.input.b.Shape() }
// Name will return the name of the LSTM
func (l *LSTM) Name() string { return l.name }
// Describe will describe a LSTM
func (l *LSTM) Describe() { panic("not implemented") }
// SetName will set the name of a fully connected layer
func (l *LSTM) SetName(a string) error {
l.name = a
return nil
}
// Init will initialize the fully connected layer
func (l *LSTM) Init(xs ...*G.Node) (err error) {
if len(xs) != 1 {
return errors.Errorf("Tried to initialize an LSTM with %d input nodes. Expected 1 only.", len(xs))
}
x := xs[0]
g := x.Graph()
of := x.Dtype()
X := x
inner := X.Shape()[1]
// initialize input gate
l.input.init(g, of, inner, l.size, l.name+"_i", G.Sigmoid)
l.forget.init(g, of, inner, l.size, l.name+"_f", G.Sigmoid)
l.output.init(g, of, inner, l.size, l.name+"_o", G.Sigmoid)
l.cell.init(g, of, inner, l.size, l.name+"_c", G.Tanh)
// initialize dummyPrev and dummyCell
l.dummyHidden = G.NewMatrix(g, of, G.WithShape(1, l.size), G.WithName(l.name+"dummyHidden"), G.WithInit(G.Zeroes()))
l.dummyCell = G.NewMatrix(g, of, G.WithShape(1, l.size), G.WithName(l.name+"dummySize"), G.WithInit(G.Zeroes()))
l.initialized = true
return nil
}