-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain_imp.py
370 lines (299 loc) · 19 KB
/
main_imp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import numpy as np
import os
import time
import random
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from train.train_imp import train_model_and_masker, eval_acc_with_mask, train_epoch, evaluate_network
from nets.superpixels_graph_classification.load_net import gnn_model, mask_model
from data.data import LoadData # import dataset
import pruning
import copy
import pdb
from utils import EMA
import pickle
from dgl.data.utils import save_graphs
class DGLFormDataset(torch.utils.data.Dataset):
"""
DGLFormDataset wrapping graph list and label list as per pytorch Dataset.
*lists (list): lists of 'graphs' and 'labels' with same len().
"""
def __init__(self, *lists):
assert all(len(lists[0]) == len(li) for li in lists)
self.lists = lists
self.graph_lists = lists[0]
self.graph_labels = lists[1]
def __getitem__(self, index):
return tuple(li[index] for li in self.lists)
def __len__(self):
return len(self.lists[0])
def train_get_mask(MODEL_NAME, dataset_ori, net_params, things_dict, imp_num, filename, pruned_filename, args):
t0 = time.time()
print("process ...")
#trainset_ori, valset_ori, testset_ori = dataset_ori.train, dataset_ori.val, dataset_ori.test
trainset_ori, valset_ori, biased_testset_ori, unbiased_testset_ori = dataset_ori.train, dataset_ori.val, dataset_ori.biased_test, dataset_ori.unbiased_test
train_loader_ori = DataLoader(trainset_ori, batch_size=net_params["batch_size"], shuffle=True, drop_last=False, collate_fn=dataset_ori.train_collate)
val_loader_ori = DataLoader(valset_ori, batch_size=net_params["batch_size"], shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
biased_test_loader_ori = DataLoader(biased_testset_ori, batch_size=net_params["batch_size"], shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
unbiased_test_loader_ori = DataLoader(unbiased_testset_ori, batch_size=net_params["batch_size"], shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
device = torch.device("cuda")
model_c = gnn_model(MODEL_NAME, net_params).to(device)
masker_c = mask_model(net_params).to(device)
model_b = gnn_model(MODEL_NAME, net_params).to(device)
masker_b = mask_model(net_params).to(device)
train_label = [train[1] for train in trainset_ori]
sample_loss_ema_c = EMA(torch.LongTensor(train_label), num_classes=10, alpha=0.7)
sample_loss_ema_b = EMA(torch.LongTensor(train_label), num_classes=10, alpha=0.7)
if things_dict is not None:
trainset_pru, valset_pru, biased_testset_pru, unbiased_testset_pru = things_dict['trainset_pru'], things_dict['valset_pru'], things_dict['biased_testset_pru'], things_dict['unbiased_testset_pru']
train_loader_pru = DataLoader(trainset_pru, batch_size=net_params["batch_size"], shuffle=True, drop_last=False, collate_fn=dataset_ori.train_collate)
val_loader_pru = DataLoader(valset_pru, batch_size=net_params["batch_size"], shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
biased_test_loader_pru = DataLoader(biased_testset_pru, batch_size=net_params["batch_size"], shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
unbiased_test_loader_pru = DataLoader(unbiased_testset_pru, batch_size=net_params["batch_size"], shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
rewind_weight_c = things_dict['rewind_weight_c']
rewind_weight_b = things_dict['rewind_weight_b']
rewind_weight2 = things_dict['rewind_weight2']
model_mask_dict_c = things_dict['model_mask_dict_c']
model_mask_dict_b = things_dict['model_mask_dict_b']
model_c.load_state_dict(rewind_weight_c)
model_b.load_state_dict(rewind_weight_b)
#pruning.pruning_model_by_mask(model_c, model_mask_dict_c)
#pruning.pruning_model_by_mask(model_b, model_mask_dict_b)
masker_c.load_state_dict(rewind_weight2)
else:
trainset_pru = copy.deepcopy(trainset_ori)
valset_pru = copy.deepcopy(valset_ori)
biased_testset_pru = copy.deepcopy(biased_testset_ori)
unbiased_testset_pru = copy.deepcopy(unbiased_testset_ori)
train_loader_pru = DataLoader(trainset_pru, batch_size=net_params["batch_size"], shuffle=True, drop_last=False, collate_fn=dataset_ori.train_collate)
val_loader_pru = DataLoader(valset_pru, batch_size=net_params["batch_size"], shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
biased_test_loader_pru = DataLoader(biased_testset_pru, batch_size=net_params["batch_size"], shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
unbiased_test_loader_pru = DataLoader(unbiased_testset_pru, batch_size=net_params["batch_size"], shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
rewind_weight_c = copy.deepcopy(model_c.state_dict())
rewind_weight_b = copy.deepcopy(model_b.state_dict())
rewind_weight2 = copy.deepcopy(masker_c.state_dict())
sp_train = pruning.print_pruning_percent(train_loader_ori, train_loader_pru, "train")
sp_val = pruning.print_pruning_percent(val_loader_ori, val_loader_pru, "val")
sp_biased_test = pruning.print_pruning_percent(biased_test_loader_ori, biased_test_loader_pru, "biased")
sp_unbiased_test = pruning.print_pruning_percent(unbiased_test_loader_ori, unbiased_test_loader_pru, "unbiased")
spa = (sp_train + sp_biased_test + sp_val + sp_unbiased_test) / 4
spw = pruning.see_zero_rate(model_c)
optimizer_c = optim.Adam([{'params': model_c.parameters(), 'lr': 0.01},
{'params': masker_c.parameters(),'lr': 0.01}], weight_decay=0)
scheduler_c = optim.lr_scheduler.ReduceLROnPlateau(optimizer_c, mode='min',factor=0.5, patience=20, verbose=True)
optimizer_b = optim.Adam([{'params': model_b.parameters(), 'lr': 0.01},
{'params': masker_b.parameters(),'lr': 0.01}], weight_decay=0)
scheduler_b = optim.lr_scheduler.ReduceLROnPlateau(optimizer_b, mode='min',factor=0.5, patience=20, verbose=True)
run_time, best_val_acc, best_epoch, update_biased_test_acc, update_unbiased_test_acc = 0, 0, 0, 0, 0
best_unbiased_test_acc, best_biased_test_acc = 0, 0
print("done! cost time:[{:.2f} min]".format((time.time() - t0) / 60))
for epoch in range(args.mask_epochs):
t0 = time.time()
epoch_train_loss, epoch_train_acc, optimizer, mask_distribution = train_model_and_masker(model_c, masker_c, model_b, masker_b, optimizer_c, optimizer_b, sample_loss_ema_c, sample_loss_ema_b, device, train_loader_pru, epoch, args)
epoch_val_loss, epoch_val_acc = eval_acc_with_mask(model_c, masker_c, model_b, device, val_loader_pru, epoch, args, val = True)
_, epoch_biased_test_acc = eval_acc_with_mask(model_c, masker_c, model_b, device, biased_test_loader_pru, epoch, args)
_, epoch_unbiased_test_acc = eval_acc_with_mask(model_c, masker_c, model_b, device, unbiased_test_loader_pru, epoch, args)
scheduler_c.step(epoch_val_loss)
scheduler_b.step(epoch_val_loss)
epoch_time = time.time() - t0
run_time += epoch_time
if epoch_val_acc > best_val_acc:
best_val_acc = epoch_val_acc
update_biased_test_acc = epoch_biased_test_acc
update_unbiased_test_acc = epoch_unbiased_test_acc
best_epoch = epoch
best_masker_state_dict = copy.deepcopy(masker_c.state_dict())
if epoch_biased_test_acc > best_biased_test_acc:
best_biased_test_acc = epoch_biased_test_acc
if epoch_unbiased_test_acc > best_unbiased_test_acc:
best_unbiased_test_acc = epoch_unbiased_test_acc
print('-'*120)
str1 = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' + 'Train IMP:[{}] spa[{:.2f}%] spw:[{:.2f}%] | Epoch [{}/{}] Loss:[{:.4f}] Train:[{:.2f}] Val:[{:.2f}] Biased Test:[{:.2f}] Update Biased Test:[{:.2f}] Best Biased Test:[{:.2f}]| Unbiased Test:[{:.2f}] Update Unbiased Test:[{:.2f}] Best Unbiased Test:[{:.2f}]| epoch:[{}] | Time:[{:.2f} min] | [{:.2f}%] [{:.2f}%] [{:.2f}%] [{:.2f}%] [{:.2f}%]'.format(imp_num,
spa * 100,
spw * 100,
epoch + 1,
args.mask_epochs,
epoch_train_loss,
epoch_train_acc * 100,
epoch_val_acc * 100,
epoch_biased_test_acc * 100,
update_biased_test_acc * 100,
best_biased_test_acc * 100,
epoch_unbiased_test_acc * 100,
update_unbiased_test_acc * 100,
best_unbiased_test_acc * 100,
best_epoch,
run_time / 60,
mask_distribution[0] * 100,
mask_distribution[1] * 100,
mask_distribution[2] * 100,
mask_distribution[3] * 100,
mask_distribution[4] * 100) + '\n'
with open(filename, 'a') as result_file:
result_file.write(str1)
result_file.close()
print( time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
'Train IMP:[{}] spa[{:.2f}%] spw:[{:.2f}%] | Epoch [{}/{}] Loss:[{:.4f}] Train:[{:.2f}] Val:[{:.2f}] Biased Test:[{:.2f}] Update Biased Test:[{:.2f}] Best Biased Test:[{:.2f}]| Unbiased Test:[{:.2f}] Update Unbiased Test:[{:.2f}] Best Unbiased Test:[{:.2f}] epoch:[{}] | Time:[{:.2f} min] | [{:.2f}%] [{:.2f}%] [{:.2f}%] [{:.2f}%] [{:.2f}%]'
.format(imp_num,
spa * 100,
spw * 100,
epoch + 1,
args.mask_epochs,
epoch_train_loss,
epoch_train_acc * 100,
epoch_val_acc * 100,
epoch_biased_test_acc * 100,
update_biased_test_acc * 100,
best_biased_test_acc * 100,
epoch_unbiased_test_acc * 100,
update_unbiased_test_acc * 100,
best_unbiased_test_acc * 100,
best_epoch,
run_time / 60,
mask_distribution[0] * 100,
mask_distribution[1] * 100,
mask_distribution[2] * 100,
mask_distribution[3] * 100,
mask_distribution[4] * 100))
print('-'*120)
things_dict = {}
with open(filename, 'a') as result_file:
result_file.write(str(epoch_unbiased_test_acc * 100)+'\n')
result_file.close()
'''
pruning.pruning_model(model_c, args.pw, random=False)
pruning.pruning_model(model_b, args.pw, random=False)
_ = pruning.see_zero_rate(model_c)
_ = pruning.see_zero_rate(model_b)
# masker.load_state_dict(best_masker_state_dict)
t0 = time.time()
trainset_data, trainset_label = pruning.masker_pruning_dataset(train_loader_pru, masker_c, device, args)
valset_data, valset_label = pruning.masker_pruning_dataset(val_loader_pru, masker_c, device, args)
unbiased_testset_data, unbiased_testset_label = pruning.masker_pruning_dataset(unbiased_test_loader_pru, masker_c, device, args)
biased_testset_data, biased_testset_label = pruning.masker_pruning_dataset(biased_test_loader_pru, masker_c, device, args)
t1 = time.time()
print("generate data done")
graph_labels = {"glabel": torch.tensor(trainset_label)}
save_graphs(pruned_filename + "_train.bin", trainset_data, graph_labels)
graph_labels = {"glabel": torch.tensor(valset_label)}
save_graphs(pruned_filename + "_val.bin", valset_data, graph_labels)
graph_labels = {"glabel": torch.tensor(biased_testset_label)}
save_graphs(pruned_filename + "_biased.bin", biased_testset_data, graph_labels)
graph_labels = {"glabel": torch.tensor(unbiased_testset_label)}
save_graphs(pruned_filename + "_unbiased.bin", unbiased_testset_data, graph_labels)
'''
print("save data done!")
print("INFO: Data Sparsity:[{:.2f}%] time:[{:.2f} min]".format(spa * 100, (t1 - t0)/60))
things_dict['trainset_pru'] = trainset_pru
things_dict['valset_pru'] = valset_pru
things_dict['biased_testset_pru'] = biased_testset_pru
things_dict['unbiased_testset_pru'] = unbiased_testset_pru
things_dict['rewind_weight_c'] = rewind_weight_c
things_dict['rewind_weight2'] = rewind_weight2
things_dict['rewind_weight_b'] = rewind_weight_b
things_dict['model_mask_dict_c'] = model_mask_dict_c
things_dict['model_mask_dict_b'] = model_mask_dict_b
return things_dict
def eval_tickets(dataset_ori, net_params, things_dict, imp_num, args):
trainset_ori, valset_ori, biased_testset_ori, unbiased_testset_ori = dataset_ori.train, dataset_ori.val, dataset_ori.biased_test, dataset_ori.unbiased_test
train_loader_ori = DataLoader(trainset_ori, batch_size=128, shuffle=True, drop_last=False, collate_fn=dataset_ori.collate)
val_loader_ori = DataLoader(valset_ori, batch_size=128, shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
biased_test_loader_ori = DataLoader(biased_testset_ori, batch_size=128, shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
unbiased_test_loader_ori = DataLoader(unbiased_testset_ori, batch_size=128, shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
device = torch.device("cuda")
model = gnn_model("GCN", net_params)
model = model.to(device)
trainset_pru, valset_pru, biased_testset_pru, unbiased_testset_pru = things_dict['trainset_pru'], things_dict['valset_pru'], things_dict['biased_testset_pru'], things_dict['unbiased_testset_pru']
train_loader_pru = DataLoader(trainset_pru, batch_size=128, shuffle=True, drop_last=False, collate_fn=dataset_ori.collate)
val_loader_pru = DataLoader(valset_pru, batch_size=128, shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
biased_test_loader_pru = DataLoader(biased_testset_pru, batch_size=128, shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
unbiased_test_loader_pru = DataLoader(unbiased_testset_pru, batch_size=128, shuffle=False, drop_last=False, collate_fn=dataset_ori.collate)
rewind_weight = things_dict['rewind_weight']
model_mask_dict = things_dict['model_mask_dict']
model.load_state_dict(rewind_weight)
pruning.pruning_model_by_mask(model, model_mask_dict)
sp_train = pruning.print_pruning_percent(train_loader_ori, train_loader_pru)
sp_val = pruning.print_pruning_percent(val_loader_ori, val_loader_pru)
sp_biased_test = pruning.print_pruning_percent(biased_test_loader_ori, biased_test_loader_pru)
sp_unbiased_test = pruning.print_pruning_percent(unbiased_test_loader_ori, unbiased_test_loader_pru)
spa = (sp_train + sp_biased_test + sp_unbiased_test + sp_val) / 4
spw = pruning.see_zero_rate(model)
optimizer = optim.Adam(model.parameters(), lr=0.01, weight_decay=0)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min',factor=0.5,patience=100,verbose=True)
run_time, best_val_acc, best_epoch, update_biased_test_acc, update_unbiased_test_acc = 0, 0, 0, 0, 0
for epoch in range(args.eval_epochs):
t0 = time.time()
epoch_train_loss, epoch_train_acc, optimizer = train_epoch(model, optimizer, device, train_loader_pru, epoch, args)
epoch_val_loss, epoch_val_acc = evaluate_network(model, device, val_loader_pru, epoch)
_, epoch_biased_test_acc = evaluate_network(model, device, biased_test_loader_pru, epoch)
_, epoch_unbiased_test_acc = evaluate_network(model, device, unbiased_test_loader_pru, epoch)
scheduler.step(epoch_val_loss)
epoch_time = time.time() - t0
run_time += epoch_time
if epoch_val_acc > best_val_acc:
best_val_acc = epoch_val_acc
update_biased_test_acc = epoch_biased_test_acc
update_unbiased_test_acc = epoch_unbiased_test_acc
best_epoch = epoch
print('-'*120)
print( time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
'Test IMP:[{}] spa[{:.2f}%] spw:[{:.2f}%] | Epoch [{}/{}]: Loss [{:.4f}] Train:[{:.2f}] Val:[{:.2f}] Biased Test:[{:.2f}] | Update Biased Test:[{:.2f}] Unbiased Test:[{:.2f}] | Update Unbiased Test:[{:.2f}] at epoch:[{}] | Run Total Time: [{:.2f} min]'
.format(imp_num,
spa * 100,
spw * 100,
epoch + 1,
args.eval_epochs,
epoch_train_loss,
epoch_train_acc * 100,
epoch_val_acc * 100,
epoch_biased_test_acc * 100,
update_biased_test_acc * 100,
epoch_unbiased_test_acc * 100,
update_unbiased_test_acc * 100,
best_epoch,
run_time / 60))
print('-'*120)
print("sydfinal IMP:[{}] | spa:[{:.2f}%] spw:[{:.2f}%] | Update Biased Test:[{:.2f}] Unbiased Test:[{:.2f}] at epoch:[{}]"
.format(imp_num,
spa * 100,
spw * 100,
update_biased_test_acc * 100,
update_unbiased_test_acc * 100,
best_epoch))
def main():
args = pruning.parser_loader().parse_args()
pruning.setup_seed(args.seed)
pruning.print_args(args)
with open(args.config) as f:
config = json.load(f)
DATASET_NAME = config['dataset']
MODEL_NAME = config['model']
print("DATASET_NAME", DATASET_NAME)
dataset = LoadData(DATASET_NAME, args.dataset, args.data_dir)
params = config['params']
params['seed'] = int(args.seed)
net_params = config['net_params']
net_params['batch_size'] = params['batch_size']
net_params['in_dim'] = dataset.train[0][0].ndata['feat'][0].size(0)
#net_params['in_dim_edge'] = dataset.train[0][0].edata['feat'][0].size(0)
net_params['irm_lambda'] = args.irm_lambda
net_params['in_dim_edge'] = 0
num_classes = len(np.unique(np.array(dataset.train[:][1])))
net_params['n_classes'] = num_classes
things_dict = None
filename = './results/'+args.out_dir +"_"+str(params['seed'])+ '.txt'
pruned_filename = './pruned_data/'+args.out_dir
if os.path.exists(filename):
os.remove(filename)
for imp_num in range(1, 2):
# args.pa = 0.05
# args.pw = 0.2
things_dict = train_get_mask(MODEL_NAME, dataset, net_params, things_dict, imp_num, filename, pruned_filename, args)
# eval_tickets(dataset, net_params, things_dict, imp_num, args)
print("Without mask!")
if __name__ == '__main__':
main()