diff --git a/Leaderboard.ipynb b/Leaderboard.ipynb
index 3bcbad8..9dc20b8 100644
--- a/Leaderboard.ipynb
+++ b/Leaderboard.ipynb
@@ -5360,8 +5360,8 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/Users/bigboi/opt/anaconda3/lib/python3.9/site-packages/pandas/core/indexing.py:719: FutureWarning: Slicing a positional slice with .loc is not supported, and will raise TypeError in a future version. Use .loc with labels or .iloc with positions instead.\n",
- " indexer = self._get_setitem_indexer(key)\n"
+ "/tmp/ipykernel_3014651/2713444043.py:6: FutureWarning: Slicing a positional slice with .loc is not supported, and will raise TypeError in a future version. Use .loc with labels or .iloc with positions instead.\n",
+ " triM_all_df.loc[1:, ['mean (%)', '95% CI']] = [\n"
]
},
{
@@ -5829,6 +5829,326 @@
"transductive_cnaps_imagenet_df"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Results from Hu et al. (2022)\n",
+ "\n",
+ "Shell Xu Hu, Da Li, Jan Stühmer, Minyoung Kim and Timothy Hospedales. Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference. CVPR 2022."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ref = (\"Hu et al. (2022)\",\n",
+ " \"Shell Xu Hu, Da Li, Jan Stühmer, Minyoung Kim and Timothy Hospedales.; \"\n",
+ " \"[_Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference._]\"\n",
+ " \"(https://arxiv.org/abs/2204.07305); \"\n",
+ " \"CVPR 2022.\")\n",
+ "references.append(ref)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### P>M>F pipeline with DINO ViT-Small (`PMF_DINOSmall`)\n",
+ "\n",
+ "* 128x128 input size\n",
+ "* ViT-Small backbone pre-trained with DINO self-supervised loss on ILSVRC\n",
+ "* Backbone is fine-tuned for each episode on its support set with domain-specifically validated learning rate"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " mean (%) | \n",
+ " 95% CI | \n",
+ " # episodes | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " ILSVRC (valid) | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " ILSVRC (test) | \n",
+ " 73.52 | \n",
+ " 0.8 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " Omniglot | \n",
+ " 92.17 | \n",
+ " 0.57 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " Aircraft | \n",
+ " 89.49 | \n",
+ " 0.52 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " Birds | \n",
+ " 91.04 | \n",
+ " 0.37 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " Textures | \n",
+ " 85.73 | \n",
+ " 0.62 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " QuickDraw | \n",
+ " 79.43 | \n",
+ " 0.67 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " Fungi | \n",
+ " 74.99 | \n",
+ " 0.94 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " VGG Flower | \n",
+ " 95.3 | \n",
+ " 0.44 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " Traffic signs | \n",
+ " 89.85 | \n",
+ " 0.76 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " MSCOCO | \n",
+ " 59.69 | \n",
+ " 1.02 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " mean (%) 95% CI # episodes\n",
+ "ILSVRC (valid) NaN NaN 600\n",
+ "ILSVRC (test) 73.52 0.8 600\n",
+ "Omniglot 92.17 0.57 600\n",
+ "Aircraft 89.49 0.52 600\n",
+ "Birds 91.04 0.37 600\n",
+ "Textures 85.73 0.62 600\n",
+ "QuickDraw 79.43 0.67 600\n",
+ "Fungi 74.99 0.94 600\n",
+ "VGG Flower 95.3 0.44 600\n",
+ "Traffic signs 89.85 0.76 600\n",
+ "MSCOCO 59.69 1.02 600"
+ ]
+ },
+ "execution_count": 55,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pmf_dinosmall_all_df = pd.DataFrame(\n",
+ " columns=['mean (%)', '95% CI', '# episodes'],\n",
+ " index=datasets\n",
+ ")\n",
+ "pmf_dinosmall_all_df['# episodes'] = 600\n",
+ "pmf_dinosmall_all_df.loc[datasets[1:], ['mean (%)', '95% CI']] = [\n",
+ " [73.52, 0.80],\n",
+ " [92.17, 0.57],\n",
+ " [89.49, 0.52],\n",
+ " [91.04, 0.37],\n",
+ " [85.73, 0.62],\n",
+ " [79.43, 0.67],\n",
+ " [74.99, 0.94],\n",
+ " [95.30, 0.44],\n",
+ " [89.85, 0.76],\n",
+ " [59.69, 1.02],\n",
+ "]\n",
+ "pmf_dinosmall_all_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " mean (%) | \n",
+ " 95% CI | \n",
+ " # episodes | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " ILSVRC (valid) | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " ILSVRC (test) | \n",
+ " 75.51 | \n",
+ " 0.72 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " Omniglot | \n",
+ " 82.81 | \n",
+ " 1.1 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " Aircraft | \n",
+ " 78.38 | \n",
+ " 1.09 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " Birds | \n",
+ " 85.18 | \n",
+ " 0.77 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " Textures | \n",
+ " 86.95 | \n",
+ " 0.6 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " QuickDraw | \n",
+ " 74.47 | \n",
+ " 0.83 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " Fungi | \n",
+ " 55.16 | \n",
+ " 1.09 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " VGG Flower | \n",
+ " 94.66 | \n",
+ " 0.48 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " Traffic signs | \n",
+ " 90.04 | \n",
+ " 0.81 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " MSCOCO | \n",
+ " 62.6 | \n",
+ " 0.96 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " mean (%) 95% CI # episodes\n",
+ "ILSVRC (valid) NaN NaN 600\n",
+ "ILSVRC (test) 75.51 0.72 600\n",
+ "Omniglot 82.81 1.1 600\n",
+ "Aircraft 78.38 1.09 600\n",
+ "Birds 85.18 0.77 600\n",
+ "Textures 86.95 0.6 600\n",
+ "QuickDraw 74.47 0.83 600\n",
+ "Fungi 55.16 1.09 600\n",
+ "VGG Flower 94.66 0.48 600\n",
+ "Traffic signs 90.04 0.81 600\n",
+ "MSCOCO 62.6 0.96 600"
+ ]
+ },
+ "execution_count": 56,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pmf_dinosmall_imagenet_df = pd.DataFrame(\n",
+ " columns=['mean (%)', '95% CI', '# episodes'],\n",
+ " index=datasets\n",
+ ")\n",
+ "pmf_dinosmall_imagenet_df['# episodes'] = 600\n",
+ "pmf_dinosmall_imagenet_df.loc[datasets[1:], ['mean (%)', '95% CI']] = [\n",
+ " [75.51, 0.72],\n",
+ " [82.81, 1.10],\n",
+ " [78.38, 1.09],\n",
+ " [85.18, 0.77],\n",
+ " [86.95, 0.60],\n",
+ " [74.47, 0.83],\n",
+ " [55.16, 1.09],\n",
+ " [94.66, 0.48],\n",
+ " [90.04, 0.81],\n",
+ " [62.60, 0.96],\n",
+ "]\n",
+ "pmf_dinosmall_imagenet_df"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {
@@ -5876,7 +6196,7 @@
},
{
"cell_type": "code",
- "execution_count": 54,
+ "execution_count": 57,
"metadata": {
"id": "bU1CMkCk3nP6"
},
@@ -5898,12 +6218,13 @@
" 'TransductiveCNAPS': transductive_cnaps_imagenet_df,\n",
" 'TSA_resnet18': tsa_resnet18_imagenet_df,\n",
" 'TSA_resnet34': tsa_resnet34_imagenet_df,\n",
+ " 'PMF-DINOSmall': pmf_dinosmall_imagenet_df,\n",
"}"
]
},
{
"cell_type": "code",
- "execution_count": 55,
+ "execution_count": 58,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -5939,10 +6260,10 @@
" MatchingNet | \n",
" ProtoNet | \n",
" ... | \n",
- " SimpleCNAPS | \n",
- " TransductiveCNAPS | \n",
+ " TransductiveCNAPS | \n",
" TSA_resnet18 | \n",
" TSA_resnet34 | \n",
+ " PMF-DINOSmall | \n",
" \n",
" \n",
" | \n",
@@ -6008,15 +6329,15 @@
" 50.5 | \n",
" ... | \n",
" 600 | \n",
- " 54.1 | \n",
- " 1.1 | \n",
- " 600 | \n",
" 59.5 | \n",
" 1.1 | \n",
" 600 | \n",
" 63.73 | \n",
" 0.99 | \n",
" 600 | \n",
+ " 75.51 | \n",
+ " 0.72 | \n",
+ " 600 | \n",
"
\n",
" \n",
" Omniglot | \n",
@@ -6032,15 +6353,15 @@
" 59.98 | \n",
" ... | \n",
" 600 | \n",
- " 62.9 | \n",
- " 1.3 | \n",
- " 600 | \n",
" 78.2 | \n",
" 1.2 | \n",
" 600 | \n",
" 82.58 | \n",
" 1.11 | \n",
" 600 | \n",
+ " 82.81 | \n",
+ " 1.1 | \n",
+ " 600 | \n",
"
\n",
" \n",
" Aircraft | \n",
@@ -6056,15 +6377,15 @@
" 53.1 | \n",
" ... | \n",
" 600 | \n",
- " 48.4 | \n",
- " 0.9 | \n",
- " 600 | \n",
" 72.2 | \n",
" 1.0 | \n",
" 600 | \n",
" 80.13 | \n",
" 1.01 | \n",
" 600 | \n",
+ " 78.38 | \n",
+ " 1.09 | \n",
+ " 600 | \n",
"
\n",
" \n",
" Birds | \n",
@@ -6080,15 +6401,15 @@
" 68.79 | \n",
" ... | \n",
" 600 | \n",
- " 67.3 | \n",
- " 0.9 | \n",
- " 600 | \n",
" 74.9 | \n",
" 0.9 | \n",
" 600 | \n",
" 83.39 | \n",
" 0.8 | \n",
" 600 | \n",
+ " 85.18 | \n",
+ " 0.77 | \n",
+ " 600 | \n",
"
\n",
" \n",
" Textures | \n",
@@ -6104,15 +6425,15 @@
" 66.56 | \n",
" ... | \n",
" 600 | \n",
- " 72.5 | \n",
- " 0.7 | \n",
- " 600 | \n",
" 77.3 | \n",
" 0.7 | \n",
" 600 | \n",
" 79.61 | \n",
" 0.68 | \n",
" 600 | \n",
+ " 86.95 | \n",
+ " 0.6 | \n",
+ " 600 | \n",
"
\n",
" \n",
" QuickDraw | \n",
@@ -6128,15 +6449,15 @@
" 48.96 | \n",
" ... | \n",
" 600 | \n",
- " 58.0 | \n",
- " 1.0 | \n",
- " 600 | \n",
" 67.6 | \n",
" 0.9 | \n",
" 600 | \n",
" 71.03 | \n",
" 0.84 | \n",
" 600 | \n",
+ " 74.47 | \n",
+ " 0.83 | \n",
+ " 600 | \n",
"
\n",
" \n",
" Fungi | \n",
@@ -6152,15 +6473,15 @@
" 39.71 | \n",
" ... | \n",
" 600 | \n",
- " 37.7 | \n",
- " 1.1 | \n",
- " 600 | \n",
" 44.7 | \n",
" 1.0 | \n",
" 600 | \n",
" 51.38 | \n",
" 1.17 | \n",
" 600 | \n",
+ " 55.16 | \n",
+ " 1.09 | \n",
+ " 600 | \n",
"
\n",
" \n",
" VGG Flower | \n",
@@ -6176,15 +6497,15 @@
" 85.27 | \n",
" ... | \n",
" 600 | \n",
- " 82.8 | \n",
- " 0.8 | \n",
- " 600 | \n",
" 90.9 | \n",
" 0.6 | \n",
" 600 | \n",
" 94.05 | \n",
" 0.45 | \n",
" 600 | \n",
+ " 94.66 | \n",
+ " 0.48 | \n",
+ " 600 | \n",
"
\n",
" \n",
" Traffic signs | \n",
@@ -6200,15 +6521,15 @@
" 47.12 | \n",
" ... | \n",
" 600 | \n",
- " 61.8 | \n",
- " 1.1 | \n",
- " 600 | \n",
" 82.5 | \n",
" 0.8 | \n",
" 600 | \n",
" 81.71 | \n",
" 0.95 | \n",
" 600 | \n",
+ " 90.04 | \n",
+ " 0.81 | \n",
+ " 600 | \n",
"
\n",
" \n",
" MSCOCO | \n",
@@ -6224,19 +6545,19 @@
" 41.0 | \n",
" ... | \n",
" 600 | \n",
- " 45.8 | \n",
- " 1.0 | \n",
- " 600 | \n",
" 59.0 | \n",
" 1.0 | \n",
" 600 | \n",
" 61.67 | \n",
" 0.95 | \n",
" 600 | \n",
+ " 62.6 | \n",
+ " 0.96 | \n",
+ " 600 | \n",
"
\n",
" \n",
"\n",
- "11 rows × 45 columns
\n",
+ "11 rows × 48 columns
\n",
""
],
"text/plain": [
@@ -6254,52 +6575,52 @@
"Traffic signs 44.59 1.19 600 66.79 1.31 600 \n",
"MSCOCO 30.38 0.99 600 34.86 0.97 600 \n",
"\n",
- " MatchingNet ProtoNet ... SimpleCNAPS \\\n",
- " mean (%) 95% CI # episodes mean (%) ... # episodes \n",
- "ILSVRC (valid) NaN NaN 600 NaN ... 600 \n",
- "ILSVRC (test) 45.0 1.1 600 50.5 ... 600 \n",
- "Omniglot 52.27 1.28 600 59.98 ... 600 \n",
- "Aircraft 48.97 0.93 600 53.1 ... 600 \n",
- "Birds 62.21 0.95 600 68.79 ... 600 \n",
- "Textures 64.15 0.85 600 66.56 ... 600 \n",
- "QuickDraw 42.87 1.09 600 48.96 ... 600 \n",
- "Fungi 33.97 1.0 600 39.71 ... 600 \n",
- "VGG Flower 80.13 0.71 600 85.27 ... 600 \n",
- "Traffic signs 47.8 1.14 600 47.12 ... 600 \n",
- "MSCOCO 34.99 1.0 600 41.0 ... 600 \n",
+ " MatchingNet ProtoNet ... TransductiveCNAPS \\\n",
+ " mean (%) 95% CI # episodes mean (%) ... # episodes \n",
+ "ILSVRC (valid) NaN NaN 600 NaN ... 600 \n",
+ "ILSVRC (test) 45.0 1.1 600 50.5 ... 600 \n",
+ "Omniglot 52.27 1.28 600 59.98 ... 600 \n",
+ "Aircraft 48.97 0.93 600 53.1 ... 600 \n",
+ "Birds 62.21 0.95 600 68.79 ... 600 \n",
+ "Textures 64.15 0.85 600 66.56 ... 600 \n",
+ "QuickDraw 42.87 1.09 600 48.96 ... 600 \n",
+ "Fungi 33.97 1.0 600 39.71 ... 600 \n",
+ "VGG Flower 80.13 0.71 600 85.27 ... 600 \n",
+ "Traffic signs 47.8 1.14 600 47.12 ... 600 \n",
+ "MSCOCO 34.99 1.0 600 41.0 ... 600 \n",
"\n",
- " TransductiveCNAPS TSA_resnet18 \\\n",
- " mean (%) 95% CI # episodes mean (%) 95% CI \n",
- "ILSVRC (valid) NaN NaN 600 NaN NaN \n",
- "ILSVRC (test) 54.1 1.1 600 59.5 1.1 \n",
- "Omniglot 62.9 1.3 600 78.2 1.2 \n",
- "Aircraft 48.4 0.9 600 72.2 1.0 \n",
- "Birds 67.3 0.9 600 74.9 0.9 \n",
- "Textures 72.5 0.7 600 77.3 0.7 \n",
- "QuickDraw 58.0 1.0 600 67.6 0.9 \n",
- "Fungi 37.7 1.1 600 44.7 1.0 \n",
- "VGG Flower 82.8 0.8 600 90.9 0.6 \n",
- "Traffic signs 61.8 1.1 600 82.5 0.8 \n",
- "MSCOCO 45.8 1.0 600 59.0 1.0 \n",
+ " TSA_resnet18 TSA_resnet34 \\\n",
+ " mean (%) 95% CI # episodes mean (%) 95% CI # episodes \n",
+ "ILSVRC (valid) NaN NaN 600 NaN NaN 600 \n",
+ "ILSVRC (test) 59.5 1.1 600 63.73 0.99 600 \n",
+ "Omniglot 78.2 1.2 600 82.58 1.11 600 \n",
+ "Aircraft 72.2 1.0 600 80.13 1.01 600 \n",
+ "Birds 74.9 0.9 600 83.39 0.8 600 \n",
+ "Textures 77.3 0.7 600 79.61 0.68 600 \n",
+ "QuickDraw 67.6 0.9 600 71.03 0.84 600 \n",
+ "Fungi 44.7 1.0 600 51.38 1.17 600 \n",
+ "VGG Flower 90.9 0.6 600 94.05 0.45 600 \n",
+ "Traffic signs 82.5 0.8 600 81.71 0.95 600 \n",
+ "MSCOCO 59.0 1.0 600 61.67 0.95 600 \n",
"\n",
- " TSA_resnet34 \n",
- " # episodes mean (%) 95% CI # episodes \n",
- "ILSVRC (valid) 600 NaN NaN 600 \n",
- "ILSVRC (test) 600 63.73 0.99 600 \n",
- "Omniglot 600 82.58 1.11 600 \n",
- "Aircraft 600 80.13 1.01 600 \n",
- "Birds 600 83.39 0.8 600 \n",
- "Textures 600 79.61 0.68 600 \n",
- "QuickDraw 600 71.03 0.84 600 \n",
- "Fungi 600 51.38 1.17 600 \n",
- "VGG Flower 600 94.05 0.45 600 \n",
- "Traffic signs 600 81.71 0.95 600 \n",
- "MSCOCO 600 61.67 0.95 600 \n",
+ " PMF-DINOSmall \n",
+ " mean (%) 95% CI # episodes \n",
+ "ILSVRC (valid) NaN NaN 600 \n",
+ "ILSVRC (test) 75.51 0.72 600 \n",
+ "Omniglot 82.81 1.1 600 \n",
+ "Aircraft 78.38 1.09 600 \n",
+ "Birds 85.18 0.77 600 \n",
+ "Textures 86.95 0.6 600 \n",
+ "QuickDraw 74.47 0.83 600 \n",
+ "Fungi 55.16 1.09 600 \n",
+ "VGG Flower 94.66 0.48 600 \n",
+ "Traffic signs 90.04 0.81 600 \n",
+ "MSCOCO 62.6 0.96 600 \n",
"\n",
- "[11 rows x 45 columns]"
+ "[11 rows x 48 columns]"
]
},
- "execution_count": 55,
+ "execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
@@ -6314,7 +6635,7 @@
},
{
"cell_type": "code",
- "execution_count": 56,
+ "execution_count": 59,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -6350,10 +6671,10 @@
" MatchingNet | \n",
" ProtoNet | \n",
" ... | \n",
- " FLUTE | \n",
- " URL | \n",
+ " URL | \n",
" TSA | \n",
" TriM | \n",
+ " PMF-DINOSmall | \n",
" \n",
" \n",
" | \n",
@@ -6419,15 +6740,15 @@
" 44.5 | \n",
" ... | \n",
" 600 | \n",
- " 57.51 | \n",
- " 1.08 | \n",
- " 600 | \n",
" 57.35 | \n",
" 1.05 | \n",
" 600 | \n",
" 58.6 | \n",
" 1.0 | \n",
" 600 | \n",
+ " 73.52 | \n",
+ " 0.8 | \n",
+ " 600 | \n",
"
\n",
" \n",
" Omniglot | \n",
@@ -6443,15 +6764,15 @@
" 79.56 | \n",
" ... | \n",
" 600 | \n",
- " 94.51 | \n",
- " 0.41 | \n",
- " 600 | \n",
" 94.96 | \n",
" 0.38 | \n",
" 600 | \n",
" 92.0 | \n",
" 0.6 | \n",
" 600 | \n",
+ " 92.17 | \n",
+ " 0.57 | \n",
+ " 600 | \n",
"
\n",
" \n",
" Aircraft | \n",
@@ -6467,15 +6788,15 @@
" 71.14 | \n",
" ... | \n",
" 600 | \n",
- " 88.59 | \n",
- " 0.46 | \n",
- " 600 | \n",
" 89.33 | \n",
" 0.44 | \n",
" 600 | \n",
" 82.8 | \n",
" 0.7 | \n",
" 600 | \n",
+ " 89.49 | \n",
+ " 0.52 | \n",
+ " 600 | \n",
"
\n",
" \n",
" Birds | \n",
@@ -6491,15 +6812,15 @@
" 67.01 | \n",
" ... | \n",
" 600 | \n",
- " 80.54 | \n",
- " 0.69 | \n",
- " 600 | \n",
" 81.42 | \n",
" 0.74 | \n",
" 600 | \n",
" 75.3 | \n",
" 0.8 | \n",
" 600 | \n",
+ " 91.04 | \n",
+ " 0.37 | \n",
+ " 600 | \n",
"
\n",
" \n",
" Textures | \n",
@@ -6515,15 +6836,15 @@
" 65.18 | \n",
" ... | \n",
" 600 | \n",
- " 76.17 | \n",
- " 0.67 | \n",
- " 600 | \n",
" 76.74 | \n",
" 0.72 | \n",
" 600 | \n",
" 71.2 | \n",
" 0.8 | \n",
" 600 | \n",
+ " 85.73 | \n",
+ " 0.62 | \n",
+ " 600 | \n",
"
\n",
" \n",
" QuickDraw | \n",
@@ -6539,15 +6860,15 @@
" 64.88 | \n",
" ... | \n",
" 600 | \n",
- " 81.94 | \n",
- " 0.56 | \n",
- " 600 | \n",
" 82.01 | \n",
" 0.57 | \n",
" 600 | \n",
" 77.3 | \n",
" 0.7 | \n",
" 600 | \n",
+ " 79.43 | \n",
+ " 0.67 | \n",
+ " 600 | \n",
"
\n",
" \n",
" Fungi | \n",
@@ -6563,15 +6884,15 @@
" 40.26 | \n",
" ... | \n",
" 600 | \n",
- " 68.75 | \n",
- " 0.95 | \n",
- " 600 | \n",
" 67.4 | \n",
" 0.99 | \n",
" 600 | \n",
" 48.5 | \n",
" 1.0 | \n",
" 600 | \n",
+ " 74.99 | \n",
+ " 0.94 | \n",
+ " 600 | \n",
"
\n",
" \n",
" VGG Flower | \n",
@@ -6587,15 +6908,15 @@
" 86.85 | \n",
" ... | \n",
" 600 | \n",
- " 92.11 | \n",
- " 0.48 | \n",
- " 600 | \n",
" 92.18 | \n",
" 0.52 | \n",
" 600 | \n",
" 90.5 | \n",
" 0.5 | \n",
" 600 | \n",
+ " 95.3 | \n",
+ " 0.44 | \n",
+ " 600 | \n",
"
\n",
" \n",
" Traffic signs | \n",
@@ -6611,15 +6932,15 @@
" 46.48 | \n",
" ... | \n",
" 600 | \n",
- " 63.34 | \n",
- " 1.19 | \n",
- " 600 | \n",
" 83.55 | \n",
" 0.9 | \n",
" 600 | \n",
" 63.0 | \n",
" 1.0 | \n",
" 600 | \n",
+ " 89.85 | \n",
+ " 0.76 | \n",
+ " 600 | \n",
"
\n",
" \n",
" MSCOCO | \n",
@@ -6635,19 +6956,19 @@
" 39.87 | \n",
" ... | \n",
" 600 | \n",
- " 54.03 | \n",
- " 0.96 | \n",
- " 600 | \n",
" 55.75 | \n",
" 1.06 | \n",
" 600 | \n",
" 52.8 | \n",
" 1.1 | \n",
" 600 | \n",
+ " 59.69 | \n",
+ " 1.02 | \n",
+ " 600 | \n",
"
\n",
" \n",
"\n",
- "11 rows × 54 columns
\n",
+ "11 rows × 57 columns
\n",
""
],
"text/plain": [
@@ -6665,7 +6986,7 @@
"Traffic signs 40.11 1.1 600 66.74 1.23 600 \n",
"MSCOCO 29.55 0.96 600 35.17 1.08 600 \n",
"\n",
- " MatchingNet ProtoNet ... FLUTE \\\n",
+ " MatchingNet ProtoNet ... URL \\\n",
" mean (%) 95% CI # episodes mean (%) ... # episodes \n",
"ILSVRC (valid) NaN NaN 600 NaN ... 600 \n",
"ILSVRC (test) 36.08 1.0 600 44.5 ... 600 \n",
@@ -6679,38 +7000,38 @@
"Traffic signs 55.57 1.08 600 46.48 ... 600 \n",
"MSCOCO 28.79 0.96 600 39.87 ... 600 \n",
"\n",
- " URL TSA TriM \\\n",
- " mean (%) 95% CI # episodes mean (%) 95% CI # episodes mean (%) \n",
- "ILSVRC (valid) NaN NaN 600 NaN NaN 600 NaN \n",
- "ILSVRC (test) 57.51 1.08 600 57.35 1.05 600 58.6 \n",
- "Omniglot 94.51 0.41 600 94.96 0.38 600 92.0 \n",
- "Aircraft 88.59 0.46 600 89.33 0.44 600 82.8 \n",
- "Birds 80.54 0.69 600 81.42 0.74 600 75.3 \n",
- "Textures 76.17 0.67 600 76.74 0.72 600 71.2 \n",
- "QuickDraw 81.94 0.56 600 82.01 0.57 600 77.3 \n",
- "Fungi 68.75 0.95 600 67.4 0.99 600 48.5 \n",
- "VGG Flower 92.11 0.48 600 92.18 0.52 600 90.5 \n",
- "Traffic signs 63.34 1.19 600 83.55 0.9 600 63.0 \n",
- "MSCOCO 54.03 0.96 600 55.75 1.06 600 52.8 \n",
+ " TSA TriM \\\n",
+ " mean (%) 95% CI # episodes mean (%) 95% CI # episodes \n",
+ "ILSVRC (valid) NaN NaN 600 NaN NaN 600 \n",
+ "ILSVRC (test) 57.35 1.05 600 58.6 1.0 600 \n",
+ "Omniglot 94.96 0.38 600 92.0 0.6 600 \n",
+ "Aircraft 89.33 0.44 600 82.8 0.7 600 \n",
+ "Birds 81.42 0.74 600 75.3 0.8 600 \n",
+ "Textures 76.74 0.72 600 71.2 0.8 600 \n",
+ "QuickDraw 82.01 0.57 600 77.3 0.7 600 \n",
+ "Fungi 67.4 0.99 600 48.5 1.0 600 \n",
+ "VGG Flower 92.18 0.52 600 90.5 0.5 600 \n",
+ "Traffic signs 83.55 0.9 600 63.0 1.0 600 \n",
+ "MSCOCO 55.75 1.06 600 52.8 1.1 600 \n",
"\n",
- " \n",
- " 95% CI # episodes \n",
- "ILSVRC (valid) NaN 600 \n",
- "ILSVRC (test) 1.0 600 \n",
- "Omniglot 0.6 600 \n",
- "Aircraft 0.7 600 \n",
- "Birds 0.8 600 \n",
- "Textures 0.8 600 \n",
- "QuickDraw 0.7 600 \n",
- "Fungi 1.0 600 \n",
- "VGG Flower 0.5 600 \n",
- "Traffic signs 1.0 600 \n",
- "MSCOCO 1.1 600 \n",
+ " PMF-DINOSmall \n",
+ " mean (%) 95% CI # episodes \n",
+ "ILSVRC (valid) NaN NaN 600 \n",
+ "ILSVRC (test) 73.52 0.8 600 \n",
+ "Omniglot 92.17 0.57 600 \n",
+ "Aircraft 89.49 0.52 600 \n",
+ "Birds 91.04 0.37 600 \n",
+ "Textures 85.73 0.62 600 \n",
+ "QuickDraw 79.43 0.67 600 \n",
+ "Fungi 74.99 0.94 600 \n",
+ "VGG Flower 95.3 0.44 600 \n",
+ "Traffic signs 89.85 0.76 600 \n",
+ "MSCOCO 59.69 1.02 600 \n",
"\n",
- "[11 rows x 54 columns]"
+ "[11 rows x 57 columns]"
]
},
- "execution_count": 56,
+ "execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
@@ -6735,6 +7056,7 @@
" 'URL': url_all_df,\n",
" 'TSA': tsa_all_df,\n",
" 'TriM': triM_all_df,\n",
+ " 'PMF-DINOSmall': pmf_dinosmall_all_df,\n",
"}\n",
"all_df = pd.concat(\n",
" all_dfs.values(),\n",
@@ -6745,7 +7067,7 @@
},
{
"cell_type": "code",
- "execution_count": 57,
+ "execution_count": 60,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -6876,6 +7198,10 @@
" TransductiveCNAPS | \n",
" [Bateni et al. (2022b), Bateni et al. (2022a)] | \n",
" \n",
+ " \n",
+ " PMF-DINOSmall | \n",
+ " [Hu et al. (2022)] | \n",
+ "
\n",
" \n",
"\n",
""
@@ -6905,10 +7231,11 @@
"TSA_resnet34 Li et al. (2021b)\n",
"TriM Liu et al. (2021b)\n",
"SimpleCNAPS [Bateni et al. (2022b), Bateni et al. (2020)]\n",
- "TransductiveCNAPS [Bateni et al. (2022b), Bateni et al. (2022a)]"
+ "TransductiveCNAPS [Bateni et al. (2022b), Bateni et al. (2022a)]\n",
+ "PMF-DINOSmall [Hu et al. (2022)]"
]
},
- "execution_count": 57,
+ "execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
@@ -6942,6 +7269,7 @@
" 'TriM': 'Liu et al. (2021b)',\n",
" 'SimpleCNAPS': ['Bateni et al. (2022b)', 'Bateni et al. (2020)'],\n",
" 'TransductiveCNAPS': ['Bateni et al. (2022b)', 'Bateni et al. (2022a)'],\n",
+ " 'PMF-DINOSmall': ['Hu et al. (2022)'],\n",
" })\n",
"models_df"
]
@@ -6957,7 +7285,7 @@
},
{
"cell_type": "code",
- "execution_count": 58,
+ "execution_count": 61,
"metadata": {
"id": "E6sHKzIvPiYD"
},
@@ -6979,7 +7307,7 @@
},
{
"cell_type": "code",
- "execution_count": 59,
+ "execution_count": 62,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -7014,9 +7342,9 @@
" Finetune | \n",
" MatchingNet | \n",
" ... | \n",
- " TransductiveCNAPS | \n",
- " TSA_resnet18 | \n",
+ " TSA_resnet18 | \n",
" TSA_resnet34 | \n",
+ " PMF-DINOSmall | \n",
" \n",
" \n",
" | \n",
@@ -7081,16 +7409,16 @@
" 600 | \n",
" 1.1 | \n",
" ... | \n",
- " 54.1 | \n",
- " 13.747136 | \n",
- " 600 | \n",
- " 1.1 | \n",
" 59.5 | \n",
" 13.747136 | \n",
" 600 | \n",
" 0.99 | \n",
" 63.73 | \n",
" 12.372423 | \n",
+ " 600 | \n",
+ " 0.72 | \n",
+ " 75.51 | \n",
+ " 8.998126 | \n",
"
\n",
" \n",
" Omniglot | \n",
@@ -7105,16 +7433,16 @@
" 600 | \n",
" 1.28 | \n",
" ... | \n",
- " 62.9 | \n",
- " 16.246616 | \n",
- " 600 | \n",
- " 1.2 | \n",
" 78.2 | \n",
" 14.996876 | \n",
" 600 | \n",
" 1.11 | \n",
" 82.58 | \n",
" 13.87211 | \n",
+ " 600 | \n",
+ " 1.1 | \n",
+ " 82.81 | \n",
+ " 13.747136 | \n",
"
\n",
" \n",
" Aircraft | \n",
@@ -7129,16 +7457,16 @@
" 600 | \n",
" 0.93 | \n",
" ... | \n",
- " 48.4 | \n",
- " 11.247657 | \n",
- " 600 | \n",
- " 1.0 | \n",
" 72.2 | \n",
" 12.497397 | \n",
" 600 | \n",
" 1.01 | \n",
" 80.13 | \n",
" 12.622371 | \n",
+ " 600 | \n",
+ " 1.09 | \n",
+ " 78.38 | \n",
+ " 13.622162 | \n",
"
\n",
" \n",
" Birds | \n",
@@ -7153,16 +7481,16 @@
" 600 | \n",
" 0.95 | \n",
" ... | \n",
- " 67.3 | \n",
- " 11.247657 | \n",
- " 600 | \n",
- " 0.9 | \n",
" 74.9 | \n",
" 11.247657 | \n",
" 600 | \n",
" 0.8 | \n",
" 83.39 | \n",
" 9.997917 | \n",
+ " 600 | \n",
+ " 0.77 | \n",
+ " 85.18 | \n",
+ " 9.622995 | \n",
"
\n",
" \n",
" Textures | \n",
@@ -7177,16 +7505,16 @@
" 600 | \n",
" 0.85 | \n",
" ... | \n",
- " 72.5 | \n",
- " 8.748178 | \n",
- " 600 | \n",
- " 0.7 | \n",
" 77.3 | \n",
" 8.748178 | \n",
" 600 | \n",
" 0.68 | \n",
" 79.61 | \n",
" 8.49823 | \n",
+ " 600 | \n",
+ " 0.6 | \n",
+ " 86.95 | \n",
+ " 7.498438 | \n",
"
\n",
" \n",
" QuickDraw | \n",
@@ -7201,16 +7529,16 @@
" 600 | \n",
" 1.09 | \n",
" ... | \n",
- " 58.0 | \n",
- " 12.497397 | \n",
- " 600 | \n",
- " 0.9 | \n",
" 67.6 | \n",
" 11.247657 | \n",
" 600 | \n",
" 0.84 | \n",
" 71.03 | \n",
" 10.497813 | \n",
+ " 600 | \n",
+ " 0.83 | \n",
+ " 74.47 | \n",
+ " 10.372839 | \n",
"
\n",
" \n",
" Fungi | \n",
@@ -7225,16 +7553,16 @@
" 600 | \n",
" 1.0 | \n",
" ... | \n",
- " 37.7 | \n",
- " 13.747136 | \n",
- " 600 | \n",
- " 1.0 | \n",
" 44.7 | \n",
" 12.497397 | \n",
" 600 | \n",
" 1.17 | \n",
" 51.38 | \n",
" 14.621954 | \n",
+ " 600 | \n",
+ " 1.09 | \n",
+ " 55.16 | \n",
+ " 13.622162 | \n",
"
\n",
" \n",
" VGG Flower | \n",
@@ -7249,16 +7577,16 @@
" 600 | \n",
" 0.71 | \n",
" ... | \n",
- " 82.8 | \n",
- " 9.997917 | \n",
- " 600 | \n",
- " 0.6 | \n",
" 90.9 | \n",
" 7.498438 | \n",
" 600 | \n",
" 0.45 | \n",
" 94.05 | \n",
" 5.623828 | \n",
+ " 600 | \n",
+ " 0.48 | \n",
+ " 94.66 | \n",
+ " 5.99875 | \n",
"
\n",
" \n",
" Traffic signs | \n",
@@ -7273,16 +7601,16 @@
" 600 | \n",
" 1.14 | \n",
" ... | \n",
- " 61.8 | \n",
- " 13.747136 | \n",
- " 600 | \n",
- " 0.8 | \n",
" 82.5 | \n",
" 9.997917 | \n",
" 600 | \n",
" 0.95 | \n",
" 81.71 | \n",
" 11.872527 | \n",
+ " 600 | \n",
+ " 0.81 | \n",
+ " 90.04 | \n",
+ " 10.122891 | \n",
"
\n",
" \n",
" MSCOCO | \n",
@@ -7297,20 +7625,20 @@
" 600 | \n",
" 1.0 | \n",
" ... | \n",
- " 45.8 | \n",
- " 12.497397 | \n",
- " 600 | \n",
- " 1.0 | \n",
" 59.0 | \n",
" 12.497397 | \n",
" 600 | \n",
" 0.95 | \n",
" 61.67 | \n",
" 11.872527 | \n",
+ " 600 | \n",
+ " 0.96 | \n",
+ " 62.6 | \n",
+ " 11.997501 | \n",
"
\n",
" \n",
"\n",
- "11 rows × 60 columns
\n",
+ "11 rows × 64 columns
\n",
""
],
"text/plain": [
@@ -7328,52 +7656,52 @@
"Traffic signs 600 1.19 44.59 14.871902 600 1.31 \n",
"MSCOCO 600 0.99 30.38 12.372423 600 0.97 \n",
"\n",
- " MatchingNet ... TransductiveCNAPS \\\n",
- " mean (%) stddev # episodes 95% CI ... mean (%) \n",
- "ILSVRC (valid) NaN NaN 600 NaN ... NaN \n",
- "ILSVRC (test) 45.78 13.747136 600 1.1 ... 54.1 \n",
- "Omniglot 60.85 19.745887 600 1.28 ... 62.9 \n",
- "Aircraft 68.69 15.74672 600 0.93 ... 48.4 \n",
- "Birds 57.31 15.74672 600 0.95 ... 67.3 \n",
- "Textures 69.05 11.247657 600 0.85 ... 72.5 \n",
- "QuickDraw 42.6 14.621954 600 1.09 ... 58.0 \n",
- "Fungi 38.2 12.747345 600 1.0 ... 37.7 \n",
- "VGG Flower 85.51 8.49823 600 0.71 ... 82.8 \n",
- "Traffic signs 66.79 16.37159 600 1.14 ... 61.8 \n",
- "MSCOCO 34.86 12.122475 600 1.0 ... 45.8 \n",
+ " MatchingNet ... TSA_resnet18 \\\n",
+ " mean (%) stddev # episodes 95% CI ... mean (%) \n",
+ "ILSVRC (valid) NaN NaN 600 NaN ... NaN \n",
+ "ILSVRC (test) 45.78 13.747136 600 1.1 ... 59.5 \n",
+ "Omniglot 60.85 19.745887 600 1.28 ... 78.2 \n",
+ "Aircraft 68.69 15.74672 600 0.93 ... 72.2 \n",
+ "Birds 57.31 15.74672 600 0.95 ... 74.9 \n",
+ "Textures 69.05 11.247657 600 0.85 ... 77.3 \n",
+ "QuickDraw 42.6 14.621954 600 1.09 ... 67.6 \n",
+ "Fungi 38.2 12.747345 600 1.0 ... 44.7 \n",
+ "VGG Flower 85.51 8.49823 600 0.71 ... 90.9 \n",
+ "Traffic signs 66.79 16.37159 600 1.14 ... 82.5 \n",
+ "MSCOCO 34.86 12.122475 600 1.0 ... 59.0 \n",
"\n",
- " TSA_resnet18 \\\n",
+ " TSA_resnet34 \\\n",
" stddev # episodes 95% CI mean (%) stddev \n",
"ILSVRC (valid) NaN 600 NaN NaN NaN \n",
- "ILSVRC (test) 13.747136 600 1.1 59.5 13.747136 \n",
- "Omniglot 16.246616 600 1.2 78.2 14.996876 \n",
- "Aircraft 11.247657 600 1.0 72.2 12.497397 \n",
- "Birds 11.247657 600 0.9 74.9 11.247657 \n",
- "Textures 8.748178 600 0.7 77.3 8.748178 \n",
- "QuickDraw 12.497397 600 0.9 67.6 11.247657 \n",
- "Fungi 13.747136 600 1.0 44.7 12.497397 \n",
- "VGG Flower 9.997917 600 0.6 90.9 7.498438 \n",
- "Traffic signs 13.747136 600 0.8 82.5 9.997917 \n",
- "MSCOCO 12.497397 600 1.0 59.0 12.497397 \n",
+ "ILSVRC (test) 13.747136 600 0.99 63.73 12.372423 \n",
+ "Omniglot 14.996876 600 1.11 82.58 13.87211 \n",
+ "Aircraft 12.497397 600 1.01 80.13 12.622371 \n",
+ "Birds 11.247657 600 0.8 83.39 9.997917 \n",
+ "Textures 8.748178 600 0.68 79.61 8.49823 \n",
+ "QuickDraw 11.247657 600 0.84 71.03 10.497813 \n",
+ "Fungi 12.497397 600 1.17 51.38 14.621954 \n",
+ "VGG Flower 7.498438 600 0.45 94.05 5.623828 \n",
+ "Traffic signs 9.997917 600 0.95 81.71 11.872527 \n",
+ "MSCOCO 12.497397 600 0.95 61.67 11.872527 \n",
"\n",
- " TSA_resnet34 \n",
- " # episodes 95% CI mean (%) stddev \n",
- "ILSVRC (valid) 600 NaN NaN NaN \n",
- "ILSVRC (test) 600 0.99 63.73 12.372423 \n",
- "Omniglot 600 1.11 82.58 13.87211 \n",
- "Aircraft 600 1.01 80.13 12.622371 \n",
- "Birds 600 0.8 83.39 9.997917 \n",
- "Textures 600 0.68 79.61 8.49823 \n",
- "QuickDraw 600 0.84 71.03 10.497813 \n",
- "Fungi 600 1.17 51.38 14.621954 \n",
- "VGG Flower 600 0.45 94.05 5.623828 \n",
- "Traffic signs 600 0.95 81.71 11.872527 \n",
- "MSCOCO 600 0.95 61.67 11.872527 \n",
+ " PMF-DINOSmall \n",
+ " # episodes 95% CI mean (%) stddev \n",
+ "ILSVRC (valid) 600 NaN NaN NaN \n",
+ "ILSVRC (test) 600 0.72 75.51 8.998126 \n",
+ "Omniglot 600 1.1 82.81 13.747136 \n",
+ "Aircraft 600 1.09 78.38 13.622162 \n",
+ "Birds 600 0.77 85.18 9.622995 \n",
+ "Textures 600 0.6 86.95 7.498438 \n",
+ "QuickDraw 600 0.83 74.47 10.372839 \n",
+ "Fungi 600 1.09 55.16 13.622162 \n",
+ "VGG Flower 600 0.48 94.66 5.99875 \n",
+ "Traffic signs 600 0.81 90.04 10.122891 \n",
+ "MSCOCO 600 0.96 62.6 11.997501 \n",
"\n",
- "[11 rows x 60 columns]"
+ "[11 rows x 64 columns]"
]
},
- "execution_count": 59,
+ "execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
@@ -7385,7 +7713,7 @@
},
{
"cell_type": "code",
- "execution_count": 60,
+ "execution_count": 63,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -7420,9 +7748,9 @@
" Finetune | \n",
" MatchingNet | \n",
" ... | \n",
- " URL | \n",
- " TSA | \n",
+ " TSA | \n",
" TriM | \n",
+ " PMF-DINOSmall | \n",
" \n",
" \n",
" | \n",
@@ -7487,16 +7815,16 @@
" 600 | \n",
" 1.0 | \n",
" ... | \n",
- " 57.51 | \n",
- " 13.497188 | \n",
- " 600 | \n",
- " 1.05 | \n",
" 57.35 | \n",
" 13.122266 | \n",
" 600 | \n",
" 1.0 | \n",
" 58.6 | \n",
" 12.497397 | \n",
+ " 600 | \n",
+ " 0.8 | \n",
+ " 73.52 | \n",
+ " 9.997917 | \n",
"
\n",
" \n",
" Omniglot | \n",
@@ -7511,16 +7839,16 @@
" 600 | \n",
" 1.01 | \n",
" ... | \n",
- " 94.51 | \n",
- " 5.123933 | \n",
- " 600 | \n",
- " 0.38 | \n",
" 94.96 | \n",
" 4.749011 | \n",
" 600 | \n",
" 0.6 | \n",
" 92.0 | \n",
" 7.498438 | \n",
+ " 600 | \n",
+ " 0.57 | \n",
+ " 92.17 | \n",
+ " 7.123516 | \n",
"
\n",
" \n",
" Aircraft | \n",
@@ -7535,16 +7863,16 @@
" 600 | \n",
" 0.96 | \n",
" ... | \n",
- " 88.59 | \n",
- " 5.748802 | \n",
- " 600 | \n",
- " 0.44 | \n",
" 89.33 | \n",
" 5.498855 | \n",
" 600 | \n",
" 0.7 | \n",
" 82.8 | \n",
" 8.748178 | \n",
+ " 600 | \n",
+ " 0.52 | \n",
+ " 89.49 | \n",
+ " 6.498646 | \n",
"
\n",
" \n",
" Birds | \n",
@@ -7559,16 +7887,16 @@
" 600 | \n",
" 1.0 | \n",
" ... | \n",
- " 80.54 | \n",
- " 8.623204 | \n",
- " 600 | \n",
- " 0.74 | \n",
" 81.42 | \n",
" 9.248074 | \n",
" 600 | \n",
" 0.8 | \n",
" 75.3 | \n",
" 9.997917 | \n",
+ " 600 | \n",
+ " 0.37 | \n",
+ " 91.04 | \n",
+ " 4.624037 | \n",
"
\n",
" \n",
" Textures | \n",
@@ -7583,16 +7911,16 @@
" 600 | \n",
" 0.74 | \n",
" ... | \n",
- " 76.17 | \n",
- " 8.373256 | \n",
- " 600 | \n",
- " 0.72 | \n",
" 76.74 | \n",
" 8.998126 | \n",
" 600 | \n",
" 0.8 | \n",
" 71.2 | \n",
" 9.997917 | \n",
+ " 600 | \n",
+ " 0.62 | \n",
+ " 85.73 | \n",
+ " 7.748386 | \n",
"
\n",
" \n",
" QuickDraw | \n",
@@ -7607,16 +7935,16 @@
" 600 | \n",
" 1.03 | \n",
" ... | \n",
- " 81.94 | \n",
- " 6.998542 | \n",
- " 600 | \n",
- " 0.57 | \n",
" 82.01 | \n",
" 7.123516 | \n",
" 600 | \n",
" 0.7 | \n",
" 77.3 | \n",
" 8.748178 | \n",
+ " 600 | \n",
+ " 0.67 | \n",
+ " 79.43 | \n",
+ " 8.373256 | \n",
"
\n",
" \n",
" Fungi | \n",
@@ -7631,16 +7959,16 @@
" 600 | \n",
" 1.04 | \n",
" ... | \n",
- " 68.75 | \n",
- " 11.872527 | \n",
- " 600 | \n",
- " 0.99 | \n",
" 67.4 | \n",
" 12.372423 | \n",
" 600 | \n",
" 1.0 | \n",
" 48.5 | \n",
" 12.497397 | \n",
+ " 600 | \n",
+ " 0.94 | \n",
+ " 74.99 | \n",
+ " 11.747553 | \n",
"
\n",
" \n",
" VGG Flower | \n",
@@ -7655,16 +7983,16 @@
" 600 | \n",
" 0.72 | \n",
" ... | \n",
- " 92.11 | \n",
- " 5.99875 | \n",
- " 600 | \n",
- " 0.52 | \n",
" 92.18 | \n",
" 6.498646 | \n",
" 600 | \n",
" 0.5 | \n",
" 90.5 | \n",
" 6.248698 | \n",
+ " 600 | \n",
+ " 0.44 | \n",
+ " 95.3 | \n",
+ " 5.498855 | \n",
"
\n",
" \n",
" Traffic signs | \n",
@@ -7679,16 +8007,16 @@
" 600 | \n",
" 1.08 | \n",
" ... | \n",
- " 63.34 | \n",
- " 14.871902 | \n",
- " 600 | \n",
- " 0.9 | \n",
" 83.55 | \n",
" 11.247657 | \n",
" 600 | \n",
" 1.0 | \n",
" 63.0 | \n",
" 12.497397 | \n",
+ " 600 | \n",
+ " 0.76 | \n",
+ " 89.85 | \n",
+ " 9.498021 | \n",
"
\n",
" \n",
" MSCOCO | \n",
@@ -7703,20 +8031,20 @@
" 600 | \n",
" 0.96 | \n",
" ... | \n",
- " 54.03 | \n",
- " 11.997501 | \n",
- " 600 | \n",
- " 1.06 | \n",
" 55.75 | \n",
" 13.24724 | \n",
" 600 | \n",
" 1.1 | \n",
" 52.8 | \n",
" 13.747136 | \n",
+ " 600 | \n",
+ " 1.02 | \n",
+ " 59.69 | \n",
+ " 12.747345 | \n",
"
\n",
" \n",
"\n",
- "11 rows × 72 columns
\n",
+ "11 rows × 76 columns
\n",
""
],
"text/plain": [
@@ -7734,52 +8062,52 @@
"Traffic signs 600 1.1 40.11 13.747136 600 1.23 \n",
"MSCOCO 600 0.96 29.55 11.997501 600 1.08 \n",
"\n",
- " MatchingNet ... URL \\\n",
+ " MatchingNet ... TSA \\\n",
" mean (%) stddev # episodes 95% CI ... mean (%) \n",
"ILSVRC (valid) NaN NaN 600 NaN ... NaN \n",
- "ILSVRC (test) 43.08 13.497188 600 1.0 ... 57.51 \n",
- "Omniglot 71.11 17.121433 600 1.01 ... 94.51 \n",
- "Aircraft 72.03 13.372214 600 0.96 ... 88.59 \n",
- "Birds 59.82 14.372006 600 1.0 ... 80.54 \n",
- "Textures 69.14 10.622787 600 0.74 ... 76.17 \n",
- "QuickDraw 47.05 14.49698 600 1.03 ... 81.94 \n",
- "Fungi 38.16 12.997293 600 1.04 ... 68.75 \n",
- "VGG Flower 85.28 8.623204 600 0.72 ... 92.11 \n",
- "Traffic signs 66.74 15.371798 600 1.08 ... 63.34 \n",
- "MSCOCO 35.17 13.497188 600 0.96 ... 54.03 \n",
+ "ILSVRC (test) 43.08 13.497188 600 1.0 ... 57.35 \n",
+ "Omniglot 71.11 17.121433 600 1.01 ... 94.96 \n",
+ "Aircraft 72.03 13.372214 600 0.96 ... 89.33 \n",
+ "Birds 59.82 14.372006 600 1.0 ... 81.42 \n",
+ "Textures 69.14 10.622787 600 0.74 ... 76.74 \n",
+ "QuickDraw 47.05 14.49698 600 1.03 ... 82.01 \n",
+ "Fungi 38.16 12.997293 600 1.04 ... 67.4 \n",
+ "VGG Flower 85.28 8.623204 600 0.72 ... 92.18 \n",
+ "Traffic signs 66.74 15.371798 600 1.08 ... 83.55 \n",
+ "MSCOCO 35.17 13.497188 600 0.96 ... 55.75 \n",
"\n",
- " TSA TriM \\\n",
- " stddev # episodes 95% CI mean (%) stddev # episodes \n",
- "ILSVRC (valid) NaN 600 NaN NaN NaN 600 \n",
- "ILSVRC (test) 13.497188 600 1.05 57.35 13.122266 600 \n",
- "Omniglot 5.123933 600 0.38 94.96 4.749011 600 \n",
- "Aircraft 5.748802 600 0.44 89.33 5.498855 600 \n",
- "Birds 8.623204 600 0.74 81.42 9.248074 600 \n",
- "Textures 8.373256 600 0.72 76.74 8.998126 600 \n",
- "QuickDraw 6.998542 600 0.57 82.01 7.123516 600 \n",
- "Fungi 11.872527 600 0.99 67.4 12.372423 600 \n",
- "VGG Flower 5.99875 600 0.52 92.18 6.498646 600 \n",
- "Traffic signs 14.871902 600 0.9 83.55 11.247657 600 \n",
- "MSCOCO 11.997501 600 1.06 55.75 13.24724 600 \n",
+ " TriM PMF-DINOSmall \\\n",
+ " stddev # episodes 95% CI mean (%) stddev # episodes \n",
+ "ILSVRC (valid) NaN 600 NaN NaN NaN 600 \n",
+ "ILSVRC (test) 13.122266 600 1.0 58.6 12.497397 600 \n",
+ "Omniglot 4.749011 600 0.6 92.0 7.498438 600 \n",
+ "Aircraft 5.498855 600 0.7 82.8 8.748178 600 \n",
+ "Birds 9.248074 600 0.8 75.3 9.997917 600 \n",
+ "Textures 8.998126 600 0.8 71.2 9.997917 600 \n",
+ "QuickDraw 7.123516 600 0.7 77.3 8.748178 600 \n",
+ "Fungi 12.372423 600 1.0 48.5 12.497397 600 \n",
+ "VGG Flower 6.498646 600 0.5 90.5 6.248698 600 \n",
+ "Traffic signs 11.247657 600 1.0 63.0 12.497397 600 \n",
+ "MSCOCO 13.24724 600 1.1 52.8 13.747136 600 \n",
"\n",
" \n",
" 95% CI mean (%) stddev \n",
"ILSVRC (valid) NaN NaN NaN \n",
- "ILSVRC (test) 1.0 58.6 12.497397 \n",
- "Omniglot 0.6 92.0 7.498438 \n",
- "Aircraft 0.7 82.8 8.748178 \n",
- "Birds 0.8 75.3 9.997917 \n",
- "Textures 0.8 71.2 9.997917 \n",
- "QuickDraw 0.7 77.3 8.748178 \n",
- "Fungi 1.0 48.5 12.497397 \n",
- "VGG Flower 0.5 90.5 6.248698 \n",
- "Traffic signs 1.0 63.0 12.497397 \n",
- "MSCOCO 1.1 52.8 13.747136 \n",
+ "ILSVRC (test) 0.8 73.52 9.997917 \n",
+ "Omniglot 0.57 92.17 7.123516 \n",
+ "Aircraft 0.52 89.49 6.498646 \n",
+ "Birds 0.37 91.04 4.624037 \n",
+ "Textures 0.62 85.73 7.748386 \n",
+ "QuickDraw 0.67 79.43 8.373256 \n",
+ "Fungi 0.94 74.99 11.747553 \n",
+ "VGG Flower 0.44 95.3 5.498855 \n",
+ "Traffic signs 0.76 89.85 9.498021 \n",
+ "MSCOCO 1.02 59.69 12.747345 \n",
"\n",
- "[11 rows x 72 columns]"
+ "[11 rows x 76 columns]"
]
},
- "execution_count": 60,
+ "execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
@@ -7800,7 +8128,7 @@
},
{
"cell_type": "code",
- "execution_count": 61,
+ "execution_count": 64,
"metadata": {
"id": "u0k0DqdXt07o"
},
@@ -7816,7 +8144,7 @@
},
{
"cell_type": "code",
- "execution_count": 62,
+ "execution_count": 65,
"metadata": {
"id": "0vn3fGqHnzJe"
},
@@ -7859,7 +8187,7 @@
},
{
"cell_type": "code",
- "execution_count": 63,
+ "execution_count": 66,
"metadata": {
"id": "0Ra3dxcIwYE4"
},
@@ -7877,7 +8205,7 @@
},
{
"cell_type": "code",
- "execution_count": 64,
+ "execution_count": 67,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -7970,23 +8298,23 @@
" 1.11 | \n",
" 52.8 | \n",
" 13.87211 | \n",
- " 7.5 | \n",
+ " 8.5 | \n",
" 600 | \n",
" 1.05 | \n",
" 51.92 | \n",
" 13.122266 | \n",
- " 7.5 | \n",
+ " 8.5 | \n",
" ... | \n",
" 600 | \n",
" 1.05 | \n",
" 49.53 | \n",
" 13.122266 | \n",
- " 9.5 | \n",
+ " 10.5 | \n",
" 600 | \n",
" 1.01 | \n",
" 41.03 | \n",
" 12.622371 | \n",
- " 14.0 | \n",
+ " 15.0 | \n",
" \n",
" \n",
" Omniglot | \n",
@@ -7994,23 +8322,23 @@
" 1.51 | \n",
" 61.87 | \n",
" 18.871069 | \n",
- " 7.5 | \n",
+ " 8.5 | \n",
" 600 | \n",
" 1.21 | \n",
" 67.57 | \n",
" 15.12185 | \n",
- " 4.5 | \n",
+ " 5.5 | \n",
" ... | \n",
" 600 | \n",
" 1.33 | \n",
" 63.37 | \n",
" 16.621538 | \n",
- " 7.5 | \n",
+ " 8.5 | \n",
" 600 | \n",
" 1.15 | \n",
" 37.07 | \n",
" 14.372006 | \n",
- " 15.0 | \n",
+ " 16.0 | \n",
"
\n",
" \n",
" Aircraft | \n",
@@ -8018,23 +8346,23 @@
" 1.1 | \n",
" 63.43 | \n",
" 13.747136 | \n",
- " 5.0 | \n",
+ " 6.0 | \n",
" 600 | \n",
" 0.9 | \n",
" 54.12 | \n",
" 11.247657 | \n",
- " 9.5 | \n",
+ " 10.5 | \n",
" ... | \n",
" 600 | \n",
" 0.99 | \n",
" 55.95 | \n",
" 12.372423 | \n",
- " 7.5 | \n",
+ " 8.5 | \n",
" 600 | \n",
" 0.89 | \n",
" 46.81 | \n",
" 11.122683 | \n",
- " 14.0 | \n",
+ " 15.0 | \n",
"
\n",
" \n",
" Birds | \n",
@@ -8042,23 +8370,23 @@
" 1.05 | \n",
" 69.75 | \n",
" 13.122266 | \n",
- " 5.5 | \n",
+ " 6.5 | \n",
" 600 | \n",
" 0.9 | \n",
" 70.69 | \n",
" 11.247657 | \n",
- " 5.5 | \n",
+ " 6.5 | \n",
" ... | \n",
" 600 | \n",
" 0.96 | \n",
" 68.66 | \n",
" 11.997501 | \n",
- " 7.5 | \n",
+ " 8.5 | \n",
" 600 | \n",
" 1.0 | \n",
" 50.13 | \n",
" 12.497397 | \n",
- " 14.5 | \n",
+ " 15.5 | \n",
"
\n",
" \n",
" Textures | \n",
@@ -8066,23 +8394,23 @@
" 0.88 | \n",
" 70.78 | \n",
" 10.997709 | \n",
- " 6.0 | \n",
+ " 7.0 | \n",
" 600 | \n",
" 0.76 | \n",
" 68.34 | \n",
" 9.498021 | \n",
- " 8.5 | \n",
+ " 9.5 | \n",
" ... | \n",
" 600 | \n",
" 0.83 | \n",
" 66.49 | \n",
" 10.372839 | \n",
- " 12.0 | \n",
+ " 13.0 | \n",
" 600 | \n",
" 0.75 | \n",
" 66.36 | \n",
" 9.373047 | \n",
- " 12.0 | \n",
+ " 13.0 | \n",
"
\n",
" \n",
" QuickDraw | \n",
@@ -8090,23 +8418,23 @@
" 1.16 | \n",
" 59.17 | \n",
" 14.49698 | \n",
- " 4.5 | \n",
+ " 5.5 | \n",
" 600 | \n",
" 1.04 | \n",
" 50.33 | \n",
" 12.997293 | \n",
- " 8.5 | \n",
+ " 9.5 | \n",
" ... | \n",
" 600 | \n",
" 1.0 | \n",
" 51.52 | \n",
" 12.497397 | \n",
- " 8.5 | \n",
+ " 9.5 | \n",
" 600 | \n",
" 1.08 | \n",
" 32.06 | \n",
" 13.497188 | \n",
- " 15.0 | \n",
+ " 16.0 | \n",
"
\n",
" \n",
" Fungi | \n",
@@ -8114,23 +8442,23 @@
" 1.17 | \n",
" 41.49 | \n",
" 14.621954 | \n",
- " 5.5 | \n",
+ " 6.5 | \n",
" 600 | \n",
" 1.12 | \n",
" 41.38 | \n",
" 13.997084 | \n",
- " 5.5 | \n",
+ " 6.5 | \n",
" ... | \n",
" 600 | \n",
" 1.14 | \n",
" 39.96 | \n",
" 14.247032 | \n",
- " 5.5 | \n",
+ " 6.5 | \n",
" 600 | \n",
" 1.02 | \n",
" 36.16 | \n",
" 12.747345 | \n",
- " 12.0 | \n",
+ " 13.0 | \n",
"
\n",
" \n",
" VGG Flower | \n",
@@ -8138,23 +8466,23 @@
" 0.77 | \n",
" 85.96 | \n",
" 9.622995 | \n",
- " 8.0 | \n",
+ " 9.0 | \n",
" 600 | \n",
" 0.59 | \n",
" 87.34 | \n",
" 7.373464 | \n",
- " 5.0 | \n",
+ " 6.0 | \n",
" ... | \n",
" 600 | \n",
" 0.69 | \n",
" 87.15 | \n",
" 8.623204 | \n",
- " 5.0 | \n",
+ " 6.0 | \n",
" 600 | \n",
" 0.68 | \n",
" 83.1 | \n",
" 8.49823 | \n",
- " 11.0 | \n",
+ " 12.0 | \n",
"
\n",
" \n",
" Traffic signs | \n",
@@ -8162,23 +8490,23 @@
" 1.29 | \n",
" 60.78 | \n",
" 16.121642 | \n",
- " 7.0 | \n",
+ " 8.0 | \n",
" 600 | \n",
" 1.04 | \n",
" 51.8 | \n",
" 12.997293 | \n",
- " 9.5 | \n",
+ " 10.5 | \n",
" ... | \n",
" 600 | \n",
" 1.09 | \n",
" 48.83 | \n",
" 13.622162 | \n",
- " 11.5 | \n",
+ " 12.5 | \n",
" 600 | \n",
" 1.19 | \n",
" 44.59 | \n",
" 14.871902 | \n",
- " 14.0 | \n",
+ " 15.0 | \n",
"
\n",
" \n",
" MSCOCO | \n",
@@ -8186,90 +8514,90 @@
" 1.14 | \n",
" 48.11 | \n",
" 14.247032 | \n",
- " 4.5 | \n",
+ " 5.5 | \n",
" 600 | \n",
" 0.99 | \n",
" 48.03 | \n",
" 12.372423 | \n",
- " 4.5 | \n",
+ " 5.5 | \n",
" ... | \n",
" 600 | \n",
" 1.12 | \n",
" 43.74 | \n",
" 13.997084 | \n",
- " 8.0 | \n",
+ " 9.0 | \n",
" 600 | \n",
" 0.99 | \n",
" 30.38 | \n",
" 12.372423 | \n",
- " 14.5 | \n",
+ " 15.5 | \n",
"
\n",
" \n",
"\n",
- "11 rows × 75 columns
\n",
+ "11 rows × 80 columns
\n",
""
],
"text/plain": [
" ALFA+fo-Proto-MAML BOHB \\\n",
" # episodes 95% CI mean (%) stddev rank # episodes \n",
"ILSVRC (valid) 600 NaN NaN NaN NaN 600 \n",
- "ILSVRC (test) 600 1.11 52.8 13.87211 7.5 600 \n",
- "Omniglot 600 1.51 61.87 18.871069 7.5 600 \n",
- "Aircraft 600 1.1 63.43 13.747136 5.0 600 \n",
- "Birds 600 1.05 69.75 13.122266 5.5 600 \n",
- "Textures 600 0.88 70.78 10.997709 6.0 600 \n",
- "QuickDraw 600 1.16 59.17 14.49698 4.5 600 \n",
- "Fungi 600 1.17 41.49 14.621954 5.5 600 \n",
- "VGG Flower 600 0.77 85.96 9.622995 8.0 600 \n",
- "Traffic signs 600 1.29 60.78 16.121642 7.0 600 \n",
- "MSCOCO 600 1.14 48.11 14.247032 4.5 600 \n",
+ "ILSVRC (test) 600 1.11 52.8 13.87211 8.5 600 \n",
+ "Omniglot 600 1.51 61.87 18.871069 8.5 600 \n",
+ "Aircraft 600 1.1 63.43 13.747136 6.0 600 \n",
+ "Birds 600 1.05 69.75 13.122266 6.5 600 \n",
+ "Textures 600 0.88 70.78 10.997709 7.0 600 \n",
+ "QuickDraw 600 1.16 59.17 14.49698 5.5 600 \n",
+ "Fungi 600 1.17 41.49 14.621954 6.5 600 \n",
+ "VGG Flower 600 0.77 85.96 9.622995 9.0 600 \n",
+ "Traffic signs 600 1.29 60.78 16.121642 8.0 600 \n",
+ "MSCOCO 600 1.14 48.11 14.247032 5.5 600 \n",
"\n",
- " ... fo-Proto-MAML \\\n",
- " 95% CI mean (%) stddev rank ... # episodes 95% CI \n",
- "ILSVRC (valid) NaN NaN NaN NaN ... 600 NaN \n",
- "ILSVRC (test) 1.05 51.92 13.122266 7.5 ... 600 1.05 \n",
- "Omniglot 1.21 67.57 15.12185 4.5 ... 600 1.33 \n",
- "Aircraft 0.9 54.12 11.247657 9.5 ... 600 0.99 \n",
- "Birds 0.9 70.69 11.247657 5.5 ... 600 0.96 \n",
- "Textures 0.76 68.34 9.498021 8.5 ... 600 0.83 \n",
- "QuickDraw 1.04 50.33 12.997293 8.5 ... 600 1.0 \n",
- "Fungi 1.12 41.38 13.997084 5.5 ... 600 1.14 \n",
- "VGG Flower 0.59 87.34 7.373464 5.0 ... 600 0.69 \n",
- "Traffic signs 1.04 51.8 12.997293 9.5 ... 600 1.09 \n",
- "MSCOCO 0.99 48.03 12.372423 4.5 ... 600 1.12 \n",
+ " ... fo-Proto-MAML \\\n",
+ " 95% CI mean (%) stddev rank ... # episodes 95% CI \n",
+ "ILSVRC (valid) NaN NaN NaN NaN ... 600 NaN \n",
+ "ILSVRC (test) 1.05 51.92 13.122266 8.5 ... 600 1.05 \n",
+ "Omniglot 1.21 67.57 15.12185 5.5 ... 600 1.33 \n",
+ "Aircraft 0.9 54.12 11.247657 10.5 ... 600 0.99 \n",
+ "Birds 0.9 70.69 11.247657 6.5 ... 600 0.96 \n",
+ "Textures 0.76 68.34 9.498021 9.5 ... 600 0.83 \n",
+ "QuickDraw 1.04 50.33 12.997293 9.5 ... 600 1.0 \n",
+ "Fungi 1.12 41.38 13.997084 6.5 ... 600 1.14 \n",
+ "VGG Flower 0.59 87.34 7.373464 6.0 ... 600 0.69 \n",
+ "Traffic signs 1.04 51.8 12.997293 10.5 ... 600 1.09 \n",
+ "MSCOCO 0.99 48.03 12.372423 5.5 ... 600 1.12 \n",
"\n",
" k-NN \\\n",
" mean (%) stddev rank # episodes 95% CI mean (%) \n",
"ILSVRC (valid) NaN NaN NaN 600 NaN NaN \n",
- "ILSVRC (test) 49.53 13.122266 9.5 600 1.01 41.03 \n",
- "Omniglot 63.37 16.621538 7.5 600 1.15 37.07 \n",
- "Aircraft 55.95 12.372423 7.5 600 0.89 46.81 \n",
- "Birds 68.66 11.997501 7.5 600 1.0 50.13 \n",
- "Textures 66.49 10.372839 12.0 600 0.75 66.36 \n",
- "QuickDraw 51.52 12.497397 8.5 600 1.08 32.06 \n",
- "Fungi 39.96 14.247032 5.5 600 1.02 36.16 \n",
- "VGG Flower 87.15 8.623204 5.0 600 0.68 83.1 \n",
- "Traffic signs 48.83 13.622162 11.5 600 1.19 44.59 \n",
- "MSCOCO 43.74 13.997084 8.0 600 0.99 30.38 \n",
+ "ILSVRC (test) 49.53 13.122266 10.5 600 1.01 41.03 \n",
+ "Omniglot 63.37 16.621538 8.5 600 1.15 37.07 \n",
+ "Aircraft 55.95 12.372423 8.5 600 0.89 46.81 \n",
+ "Birds 68.66 11.997501 8.5 600 1.0 50.13 \n",
+ "Textures 66.49 10.372839 13.0 600 0.75 66.36 \n",
+ "QuickDraw 51.52 12.497397 9.5 600 1.08 32.06 \n",
+ "Fungi 39.96 14.247032 6.5 600 1.02 36.16 \n",
+ "VGG Flower 87.15 8.623204 6.0 600 0.68 83.1 \n",
+ "Traffic signs 48.83 13.622162 12.5 600 1.19 44.59 \n",
+ "MSCOCO 43.74 13.997084 9.0 600 0.99 30.38 \n",
"\n",
" \n",
" stddev rank \n",
"ILSVRC (valid) NaN NaN \n",
- "ILSVRC (test) 12.622371 14.0 \n",
- "Omniglot 14.372006 15.0 \n",
- "Aircraft 11.122683 14.0 \n",
- "Birds 12.497397 14.5 \n",
- "Textures 9.373047 12.0 \n",
- "QuickDraw 13.497188 15.0 \n",
- "Fungi 12.747345 12.0 \n",
- "VGG Flower 8.49823 11.0 \n",
- "Traffic signs 14.871902 14.0 \n",
- "MSCOCO 12.372423 14.5 \n",
+ "ILSVRC (test) 12.622371 15.0 \n",
+ "Omniglot 14.372006 16.0 \n",
+ "Aircraft 11.122683 15.0 \n",
+ "Birds 12.497397 15.5 \n",
+ "Textures 9.373047 13.0 \n",
+ "QuickDraw 13.497188 16.0 \n",
+ "Fungi 12.747345 13.0 \n",
+ "VGG Flower 8.49823 12.0 \n",
+ "Traffic signs 14.871902 15.0 \n",
+ "MSCOCO 12.372423 15.5 \n",
"\n",
- "[11 rows x 75 columns]"
+ "[11 rows x 80 columns]"
]
},
- "execution_count": 64,
+ "execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
@@ -8281,7 +8609,7 @@
},
{
"cell_type": "code",
- "execution_count": 65,
+ "execution_count": 68,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -8374,23 +8702,23 @@
" 1.1 | \n",
" 50.8 | \n",
" 13.747136 | \n",
- " 10.5 | \n",
+ " 11.5 | \n",
" 600 | \n",
" 1.1 | \n",
" 51.8 | \n",
" 13.747136 | \n",
- " 10.5 | \n",
+ " 11.5 | \n",
" ... | \n",
" 600 | \n",
" 1.05 | \n",
" 46.52 | \n",
" 13.122266 | \n",
- " 12.0 | \n",
+ " 13.0 | \n",
" 600 | \n",
" 0.94 | \n",
" 38.55 | \n",
" 11.747553 | \n",
- " 15.5 | \n",
+ " 16.5 | \n",
" \n",
" \n",
" Omniglot | \n",
@@ -8398,7 +8726,7 @@
" 0.5 | \n",
" 91.7 | \n",
" 6.248698 | \n",
- " 8.0 | \n",
+ " 8.5 | \n",
" 600 | \n",
" 0.5 | \n",
" 93.2 | \n",
@@ -8409,12 +8737,12 @@
" 0.97 | \n",
" 82.69 | \n",
" 12.122475 | \n",
- " 13.5 | \n",
+ " 14.5 | \n",
" 600 | \n",
" 1.08 | \n",
" 74.6 | \n",
" 13.497188 | \n",
- " 17.0 | \n",
+ " 18.0 | \n",
"
\n",
" \n",
" Aircraft | \n",
@@ -8422,23 +8750,23 @@
" 0.6 | \n",
" 83.7 | \n",
" 7.498438 | \n",
- " 7.5 | \n",
+ " 8.5 | \n",
" 600 | \n",
" 0.5 | \n",
" 87.2 | \n",
" 6.248698 | \n",
- " 3.0 | \n",
+ " 4.0 | \n",
" ... | \n",
" 600 | \n",
" 0.76 | \n",
" 75.23 | \n",
" 9.498021 | \n",
- " 13.0 | \n",
+ " 14.0 | \n",
" 600 | \n",
" 0.82 | \n",
" 64.98 | \n",
" 10.247865 | \n",
- " 18.0 | \n",
+ " 19.0 | \n",
"
\n",
" \n",
" Birds | \n",
@@ -8446,23 +8774,23 @@
" 0.9 | \n",
" 73.6 | \n",
" 11.247657 | \n",
- " 10.0 | \n",
+ " 11.0 | \n",
" 600 | \n",
" 0.8 | \n",
" 79.2 | \n",
" 9.997917 | \n",
- " 3.5 | \n",
+ " 4.5 | \n",
" ... | \n",
" 600 | \n",
" 1.02 | \n",
" 69.88 | \n",
" 12.747345 | \n",
- " 11.5 | \n",
+ " 12.5 | \n",
" 600 | \n",
" 0.92 | \n",
" 66.35 | \n",
" 11.497605 | \n",
- " 13.5 | \n",
+ " 14.5 | \n",
"
\n",
" \n",
" Textures | \n",
@@ -8470,23 +8798,23 @@
" 0.7 | \n",
" 59.5 | \n",
" 8.748178 | \n",
- " 17.0 | \n",
+ " 18.0 | \n",
" 600 | \n",
" 0.8 | \n",
" 68.8 | \n",
" 9.997917 | \n",
- " 10.5 | \n",
+ " 11.5 | \n",
" ... | \n",
" 600 | \n",
" 0.81 | \n",
" 68.25 | \n",
" 10.122891 | \n",
- " 10.5 | \n",
+ " 11.5 | \n",
" 600 | \n",
" 0.79 | \n",
" 63.58 | \n",
" 9.872943 | \n",
- " 14.5 | \n",
+ " 15.5 | \n",
"
\n",
" \n",
" QuickDraw | \n",
@@ -8494,23 +8822,23 @@
" 0.8 | \n",
" 74.7 | \n",
" 9.997917 | \n",
- " 11.0 | \n",
+ " 12.0 | \n",
" 600 | \n",
" 0.7 | \n",
" 79.5 | \n",
" 8.748178 | \n",
- " 5.0 | \n",
+ " 5.5 | \n",
" ... | \n",
" 600 | \n",
" 0.94 | \n",
" 66.84 | \n",
" 11.747553 | \n",
- " 12.0 | \n",
+ " 13.0 | \n",
" 600 | \n",
" 1.05 | \n",
" 44.88 | \n",
" 13.122266 | \n",
- " 18.0 | \n",
+ " 19.0 | \n",
"
\n",
" \n",
" Fungi | \n",
@@ -8518,23 +8846,23 @@
" 1.1 | \n",
" 50.2 | \n",
" 13.747136 | \n",
- " 7.5 | \n",
+ " 8.5 | \n",
" 600 | \n",
" 1.1 | \n",
" 58.1 | \n",
" 13.747136 | \n",
- " 5.0 | \n",
+ " 6.0 | \n",
" ... | \n",
" 600 | \n",
" 1.17 | \n",
" 41.99 | \n",
" 14.621954 | \n",
- " 12.0 | \n",
+ " 13.0 | \n",
" 600 | \n",
" 1.06 | \n",
" 37.12 | \n",
" 13.24724 | \n",
- " 14.5 | \n",
+ " 15.5 | \n",
"
\n",
" \n",
" VGG Flower | \n",
@@ -8542,23 +8870,23 @@
" 0.5 | \n",
" 88.9 | \n",
" 6.248698 | \n",
- " 10.0 | \n",
+ " 11.0 | \n",
" 600 | \n",
" 0.6 | \n",
" 91.6 | \n",
" 7.498438 | \n",
- " 3.0 | \n",
+ " 4.0 | \n",
" ... | \n",
" 600 | \n",
" 0.67 | \n",
" 88.72 | \n",
" 8.373256 | \n",
- " 10.0 | \n",
+ " 11.0 | \n",
" 600 | \n",
" 0.61 | \n",
" 83.47 | \n",
" 7.623412 | \n",
- " 14.5 | \n",
+ " 15.5 | \n",
"
\n",
" \n",
" Traffic signs | \n",
@@ -8566,23 +8894,23 @@
" 1.1 | \n",
" 56.5 | \n",
" 13.747136 | \n",
- " 8.5 | \n",
+ " 9.5 | \n",
" 600 | \n",
" 1.1 | \n",
" 58.4 | \n",
" 13.747136 | \n",
- " 6.0 | \n",
+ " 7.0 | \n",
" ... | \n",
" 600 | \n",
" 1.08 | \n",
" 52.42 | \n",
" 13.497188 | \n",
- " 11.5 | \n",
+ " 12.5 | \n",
" 600 | \n",
" 1.1 | \n",
" 40.11 | \n",
" 13.747136 | \n",
- " 17.0 | \n",
+ " 18.0 | \n",
"
\n",
" \n",
" MSCOCO | \n",
@@ -8590,76 +8918,76 @@
" 1.0 | \n",
" 39.4 | \n",
" 12.497397 | \n",
- " 12.5 | \n",
+ " 13.5 | \n",
" 600 | \n",
" 1.0 | \n",
" 50.0 | \n",
" 12.497397 | \n",
- " 7.0 | \n",
+ " 8.0 | \n",
" ... | \n",
" 600 | \n",
" 1.13 | \n",
" 41.74 | \n",
" 14.122058 | \n",
- " 10.0 | \n",
+ " 11.0 | \n",
" 600 | \n",
" 0.96 | \n",
" 29.55 | \n",
" 11.997501 | \n",
- " 16.0 | \n",
+ " 17.0 | \n",
"
\n",
" \n",
"\n",
- "11 rows × 90 columns
\n",
+ "11 rows × 95 columns
\n",
""
],
"text/plain": [
" CNAPs FLUTE \\\n",
" # episodes 95% CI mean (%) stddev rank # episodes 95% CI \n",
"ILSVRC (valid) 600 NaN NaN NaN NaN 600 NaN \n",
- "ILSVRC (test) 600 1.1 50.8 13.747136 10.5 600 1.1 \n",
- "Omniglot 600 0.5 91.7 6.248698 8.0 600 0.5 \n",
- "Aircraft 600 0.6 83.7 7.498438 7.5 600 0.5 \n",
- "Birds 600 0.9 73.6 11.247657 10.0 600 0.8 \n",
- "Textures 600 0.7 59.5 8.748178 17.0 600 0.8 \n",
- "QuickDraw 600 0.8 74.7 9.997917 11.0 600 0.7 \n",
- "Fungi 600 1.1 50.2 13.747136 7.5 600 1.1 \n",
- "VGG Flower 600 0.5 88.9 6.248698 10.0 600 0.6 \n",
- "Traffic signs 600 1.1 56.5 13.747136 8.5 600 1.1 \n",
- "MSCOCO 600 1.0 39.4 12.497397 12.5 600 1.0 \n",
+ "ILSVRC (test) 600 1.1 50.8 13.747136 11.5 600 1.1 \n",
+ "Omniglot 600 0.5 91.7 6.248698 8.5 600 0.5 \n",
+ "Aircraft 600 0.6 83.7 7.498438 8.5 600 0.5 \n",
+ "Birds 600 0.9 73.6 11.247657 11.0 600 0.8 \n",
+ "Textures 600 0.7 59.5 8.748178 18.0 600 0.8 \n",
+ "QuickDraw 600 0.8 74.7 9.997917 12.0 600 0.7 \n",
+ "Fungi 600 1.1 50.2 13.747136 8.5 600 1.1 \n",
+ "VGG Flower 600 0.5 88.9 6.248698 11.0 600 0.6 \n",
+ "Traffic signs 600 1.1 56.5 13.747136 9.5 600 1.1 \n",
+ "MSCOCO 600 1.0 39.4 12.497397 13.5 600 1.0 \n",
"\n",
" ... fo-Proto-MAML \\\n",
" mean (%) stddev rank ... # episodes 95% CI mean (%) \n",
"ILSVRC (valid) NaN NaN NaN ... 600 NaN NaN \n",
- "ILSVRC (test) 51.8 13.747136 10.5 ... 600 1.05 46.52 \n",
+ "ILSVRC (test) 51.8 13.747136 11.5 ... 600 1.05 46.52 \n",
"Omniglot 93.2 6.248698 5.5 ... 600 0.97 82.69 \n",
- "Aircraft 87.2 6.248698 3.0 ... 600 0.76 75.23 \n",
- "Birds 79.2 9.997917 3.5 ... 600 1.02 69.88 \n",
- "Textures 68.8 9.997917 10.5 ... 600 0.81 68.25 \n",
- "QuickDraw 79.5 8.748178 5.0 ... 600 0.94 66.84 \n",
- "Fungi 58.1 13.747136 5.0 ... 600 1.17 41.99 \n",
- "VGG Flower 91.6 7.498438 3.0 ... 600 0.67 88.72 \n",
- "Traffic signs 58.4 13.747136 6.0 ... 600 1.08 52.42 \n",
- "MSCOCO 50.0 12.497397 7.0 ... 600 1.13 41.74 \n",
+ "Aircraft 87.2 6.248698 4.0 ... 600 0.76 75.23 \n",
+ "Birds 79.2 9.997917 4.5 ... 600 1.02 69.88 \n",
+ "Textures 68.8 9.997917 11.5 ... 600 0.81 68.25 \n",
+ "QuickDraw 79.5 8.748178 5.5 ... 600 0.94 66.84 \n",
+ "Fungi 58.1 13.747136 6.0 ... 600 1.17 41.99 \n",
+ "VGG Flower 91.6 7.498438 4.0 ... 600 0.67 88.72 \n",
+ "Traffic signs 58.4 13.747136 7.0 ... 600 1.08 52.42 \n",
+ "MSCOCO 50.0 12.497397 8.0 ... 600 1.13 41.74 \n",
"\n",
" k-NN \n",
" stddev rank # episodes 95% CI mean (%) stddev rank \n",
"ILSVRC (valid) NaN NaN 600 NaN NaN NaN NaN \n",
- "ILSVRC (test) 13.122266 12.0 600 0.94 38.55 11.747553 15.5 \n",
- "Omniglot 12.122475 13.5 600 1.08 74.6 13.497188 17.0 \n",
- "Aircraft 9.498021 13.0 600 0.82 64.98 10.247865 18.0 \n",
- "Birds 12.747345 11.5 600 0.92 66.35 11.497605 13.5 \n",
- "Textures 10.122891 10.5 600 0.79 63.58 9.872943 14.5 \n",
- "QuickDraw 11.747553 12.0 600 1.05 44.88 13.122266 18.0 \n",
- "Fungi 14.621954 12.0 600 1.06 37.12 13.24724 14.5 \n",
- "VGG Flower 8.373256 10.0 600 0.61 83.47 7.623412 14.5 \n",
- "Traffic signs 13.497188 11.5 600 1.1 40.11 13.747136 17.0 \n",
- "MSCOCO 14.122058 10.0 600 0.96 29.55 11.997501 16.0 \n",
+ "ILSVRC (test) 13.122266 13.0 600 0.94 38.55 11.747553 16.5 \n",
+ "Omniglot 12.122475 14.5 600 1.08 74.6 13.497188 18.0 \n",
+ "Aircraft 9.498021 14.0 600 0.82 64.98 10.247865 19.0 \n",
+ "Birds 12.747345 12.5 600 0.92 66.35 11.497605 14.5 \n",
+ "Textures 10.122891 11.5 600 0.79 63.58 9.872943 15.5 \n",
+ "QuickDraw 11.747553 13.0 600 1.05 44.88 13.122266 19.0 \n",
+ "Fungi 14.621954 13.0 600 1.06 37.12 13.24724 15.5 \n",
+ "VGG Flower 8.373256 11.0 600 0.61 83.47 7.623412 15.5 \n",
+ "Traffic signs 13.497188 12.5 600 1.1 40.11 13.747136 18.0 \n",
+ "MSCOCO 14.122058 11.0 600 0.96 29.55 11.997501 17.0 \n",
"\n",
- "[11 rows x 90 columns]"
+ "[11 rows x 95 columns]"
]
},
- "execution_count": 65,
+ "execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
@@ -8671,7 +8999,7 @@
},
{
"cell_type": "code",
- "execution_count": 66,
+ "execution_count": 69,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -8683,25 +9011,26 @@
{
"data": {
"text/plain": [
- "ALFA+fo-Proto-MAML 6.10\n",
- "BOHB 6.85\n",
- "CTX 1.75\n",
- "Finetune 9.45\n",
- "MatchingNet 12.55\n",
- "ProtoNet 9.75\n",
- "ProtoNet (large) 6.25\n",
- "RelationNet 14.55\n",
- "SimpleCNAPS 7.75\n",
- "TSA_resnet18 2.80\n",
- "TSA_resnet34 1.50\n",
- "TransductiveCNAPS 7.60\n",
- "fo-MAML 11.25\n",
- "fo-Proto-MAML 8.25\n",
- "k-NN 13.60\n",
+ "ALFA+fo-Proto-MAML 7.10\n",
+ "BOHB 7.85\n",
+ "CTX 2.50\n",
+ "Finetune 10.45\n",
+ "MatchingNet 13.55\n",
+ "PMF-DINOSmall 1.50\n",
+ "ProtoNet 10.75\n",
+ "ProtoNet (large) 7.25\n",
+ "RelationNet 15.55\n",
+ "SimpleCNAPS 8.75\n",
+ "TSA_resnet18 3.80\n",
+ "TSA_resnet34 2.25\n",
+ "TransductiveCNAPS 8.60\n",
+ "fo-MAML 12.25\n",
+ "fo-Proto-MAML 9.25\n",
+ "k-NN 14.60\n",
"dtype: float64"
]
},
- "execution_count": 66,
+ "execution_count": 69,
"metadata": {},
"output_type": "execute_result"
}
@@ -8712,7 +9041,7 @@
},
{
"cell_type": "code",
- "execution_count": 67,
+ "execution_count": 70,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -8724,28 +9053,29 @@
{
"data": {
"text/plain": [
- "CNAPs 10.25\n",
- "FLUTE 5.90\n",
- "Finetune 13.10\n",
- "MatchingNet 15.40\n",
- "ProtoNet 13.50\n",
- "RelationNet 16.80\n",
- "SUR 7.65\n",
- "SUR-pnf 8.20\n",
- "SimpleCNAPS 7.45\n",
- "TSA 1.65\n",
- "TransductiveCNAPS 6.05\n",
- "TriM 6.60\n",
- "URL 2.15\n",
- "URT 6.05\n",
- "URT-pf 7.55\n",
- "fo-MAML 15.25\n",
- "fo-Proto-MAML 11.60\n",
- "k-NN 15.85\n",
+ "CNAPs 11.20\n",
+ "FLUTE 6.75\n",
+ "Finetune 14.10\n",
+ "MatchingNet 16.40\n",
+ "PMF-DINOSmall 2.25\n",
+ "ProtoNet 14.50\n",
+ "RelationNet 17.80\n",
+ "SUR 8.45\n",
+ "SUR-pnf 9.20\n",
+ "SimpleCNAPS 8.40\n",
+ "TSA 2.40\n",
+ "TransductiveCNAPS 6.95\n",
+ "TriM 7.55\n",
+ "URL 2.95\n",
+ "URT 6.85\n",
+ "URT-pf 8.55\n",
+ "fo-MAML 16.25\n",
+ "fo-Proto-MAML 12.60\n",
+ "k-NN 16.85\n",
"dtype: float64"
]
},
- "execution_count": 67,
+ "execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
@@ -8768,7 +9098,7 @@
},
{
"cell_type": "code",
- "execution_count": 68,
+ "execution_count": 71,
"metadata": {
"id": "u0S8Uno9yem3"
},
@@ -8789,7 +9119,7 @@
},
{
"cell_type": "code",
- "execution_count": 69,
+ "execution_count": 72,
"metadata": {
"id": "_uFqczyza6XZ"
},
@@ -8819,7 +9149,7 @@
},
{
"cell_type": "code",
- "execution_count": 70,
+ "execution_count": 73,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -8833,246 +9163,260 @@
"data": {
"text/html": [
"\n",
- "\n",
+ "\n",
" \n",
" \n",
" | \n",
- " Avg rank | \n",
- " ILSVRC (test) | \n",
- " Omniglot | \n",
- " Aircraft | \n",
- " Birds | \n",
- " Textures | \n",
- " QuickDraw | \n",
- " Fungi | \n",
- " VGG Flower | \n",
- " Traffic signs | \n",
- " MSCOCO | \n",
+ " Avg rank | \n",
+ " ILSVRC (test) | \n",
+ " Omniglot | \n",
+ " Aircraft | \n",
+ " Birds | \n",
+ " Textures | \n",
+ " QuickDraw | \n",
+ " Fungi | \n",
+ " VGG Flower | \n",
+ " Traffic signs | \n",
+ " MSCOCO | \n",
"
\n",
" \n",
" \n",
" \n",
- " k-NN | \n",
- " 13.6 | \n",
- " 41.03±1.01 (14) | \n",
- " 37.07±1.15 (15) | \n",
- " 46.81±0.89 (14) | \n",
- " 50.13±1.0 (14.5) | \n",
- " 66.36±0.75 (12) | \n",
- " 32.06±1.08 (15) | \n",
- " 36.16±1.02 (12) | \n",
- " 83.1±0.68 (11) | \n",
- " 44.59±1.19 (14) | \n",
- " 30.38±0.99 (14.5) | \n",
- "
\n",
- " \n",
- " Finetune | \n",
- " 9.45 | \n",
- " 45.78±1.1 (12) | \n",
- " 60.85±1.58 (10.5) | \n",
- " 68.69±1.26 (4) | \n",
- " 57.31±1.26 (13) | \n",
- " 69.05±0.9 (8.5) | \n",
- " 42.6±1.17 (12.5) | \n",
- " 38.2±1.02 (10) | \n",
- " 85.51±0.68 (8) | \n",
- " 66.79±1.31 (4) | \n",
- " 34.86±0.97 (12) | \n",
- "
\n",
- " \n",
- " MatchingNet | \n",
- " 12.55 | \n",
- " 45.0±1.1 (12) | \n",
- " 52.27±1.28 (13) | \n",
- " 48.97±0.93 (12) | \n",
- " 62.21±0.95 (11.5) | \n",
- " 64.15±0.85 (14) | \n",
- " 42.87±1.09 (12.5) | \n",
- " 33.97±1.0 (13) | \n",
- " 80.13±0.71 (14) | \n",
- " 47.8±1.14 (11.5) | \n",
- " 34.99±1.0 (12) | \n",
- "
\n",
- " \n",
- " ProtoNet | \n",
- " 9.75 | \n",
- " 50.5±1.08 (9.5) | \n",
- " 59.98±1.35 (10.5) | \n",
- " 53.1±1.0 (9.5) | \n",
- " 68.79±1.01 (7.5) | \n",
- " 66.56±0.83 (12) | \n",
- " 48.96±1.08 (10) | \n",
- " 39.71±1.11 (8) | \n",
- " 85.27±0.77 (8) | \n",
- " 47.12±1.1 (13) | \n",
- " 41.0±1.1 (9.5) | \n",
- "
\n",
- " \n",
- " fo-MAML | \n",
- " 11.25 | \n",
- " 45.51±1.11 (12) | \n",
- " 55.55±1.54 (12) | \n",
- " 56.24±1.11 (7.5) | \n",
- " 63.61±1.06 (11.5) | \n",
- " 68.04±0.81 (8.5) | \n",
- " 43.96±1.29 (12.5) | \n",
- " 32.1±1.1 (14) | \n",
- " 81.74±0.83 (13) | \n",
- " 50.93±1.51 (9.5) | \n",
- " 35.3±1.23 (12) | \n",
- "
\n",
- " \n",
- " RelationNet | \n",
- " 14.55 | \n",
- " 34.69±1.01 (15) | \n",
- " 45.35±1.36 (14) | \n",
- " 40.73±0.83 (15) | \n",
- " 49.51±1.05 (14.5) | \n",
- " 52.97±0.69 (15) | \n",
- " 43.3±1.08 (12.5) | \n",
- " 30.55±1.04 (15) | \n",
- " 68.76±0.83 (15) | \n",
- " 33.67±1.05 (15) | \n",
- " 29.15±1.01 (14.5) | \n",
- "
\n",
- " \n",
- " fo-Proto-MAML | \n",
- " 8.25 | \n",
- " 49.53±1.05 (9.5) | \n",
- " 63.37±1.33 (7.5) | \n",
- " 55.95±0.99 (7.5) | \n",
- " 68.66±0.96 (7.5) | \n",
- " 66.49±0.83 (12) | \n",
- " 51.52±1.0 (8.5) | \n",
- " 39.96±1.14 (5.5) | \n",
- " 87.15±0.69 (5) | \n",
- " 48.83±1.09 (11.5) | \n",
- " 43.74±1.12 (8) | \n",
- "
\n",
- " \n",
- " ALFA+fo-Proto-MAML | \n",
- " 6.1 | \n",
- " 52.8±1.11 (7.5) | \n",
- " 61.87±1.51 (7.5) | \n",
- " 63.43±1.1 (5) | \n",
- " 69.75±1.05 (5.5) | \n",
- " 70.78±0.88 (6) | \n",
- " 59.17±1.16 (4.5) | \n",
- " 41.49±1.17 (5.5) | \n",
- " 85.96±0.77 (8) | \n",
- " 60.78±1.29 (7) | \n",
- " 48.11±1.14 (4.5) | \n",
- "
\n",
- " \n",
- " ProtoNet (large) | \n",
- " 6.25 | \n",
- " 53.69±1.07 (5) | \n",
- " 68.5±1.27 (4.5) | \n",
- " 58.04±0.96 (6) | \n",
- " 74.07±0.92 (3.5) | \n",
- " 68.76±0.77 (8.5) | \n",
- " 53.3±1.06 (7) | \n",
- " 40.73±1.15 (5.5) | \n",
- " 86.96±0.73 (5) | \n",
- " 58.11±1.05 (8) | \n",
- " 41.7±1.08 (9.5) | \n",
- "
\n",
- " \n",
- " CTX | \n",
- " 1.75 | \n",
- " 62.76±0.99 (1.5) | \n",
- " 82.21±1.0 (1.5) | \n",
- " 79.49±0.89 (1.5) | \n",
- " 80.63±0.88 (2) | \n",
- " 75.57±0.64 (3) | \n",
- " 72.68±0.82 (1) | \n",
- " 51.58±1.11 (1.5) | \n",
- " 95.34±0.37 (1) | \n",
- " 82.65±0.76 (2) | \n",
- " 59.9±1.02 (2.5) | \n",
- "
\n",
- " \n",
- " BOHB | \n",
- " 6.85 | \n",
- " 51.92±1.05 (7.5) | \n",
- " 67.57±1.21 (4.5) | \n",
- " 54.12±0.9 (9.5) | \n",
- " 70.69±0.9 (5.5) | \n",
- " 68.34±0.76 (8.5) | \n",
- " 50.33±1.04 (8.5) | \n",
- " 41.38±1.12 (5.5) | \n",
- " 87.34±0.59 (5) | \n",
- " 51.8±1.04 (9.5) | \n",
- " 48.03±0.99 (4.5) | \n",
- "
\n",
- " \n",
- " SimpleCNAPS | \n",
- " 7.75 | \n",
- " 54.8±1.2 (5) | \n",
- " 62.0±1.3 (7.5) | \n",
- " 49.2±0.9 (12) | \n",
- " 66.5±1.0 (9.5) | \n",
- " 71.6±0.7 (4.5) | \n",
- " 56.6±1.0 (6) | \n",
- " 37.5±1.2 (10) | \n",
- " 82.1±0.9 (11) | \n",
- " 63.1±1.1 (5.5) | \n",
- " 45.8±1.0 (6.5) | \n",
- "
\n",
- " \n",
- " TransductiveCNAPS | \n",
- " 7.6 | \n",
- " 54.1±1.1 (5) | \n",
- " 62.9±1.3 (7.5) | \n",
- " 48.4±0.9 (12) | \n",
- " 67.3±0.9 (9.5) | \n",
- " 72.5±0.7 (4.5) | \n",
- " 58.0±1.0 (4.5) | \n",
- " 37.7±1.1 (10) | \n",
- " 82.8±0.8 (11) | \n",
- " 61.8±1.1 (5.5) | \n",
- " 45.8±1.0 (6.5) | \n",
- "
\n",
- " \n",
- " TSA_resnet18 | \n",
- " 2.8 | \n",
- " 59.5±1.1 (3) | \n",
- " 78.2±1.2 (3) | \n",
- " 72.2±1.0 (3) | \n",
- " 74.9±0.9 (3.5) | \n",
- " 77.3±0.7 (2) | \n",
- " 67.6±0.9 (3) | \n",
- " 44.7±1.0 (3) | \n",
- " 90.9±0.6 (3) | \n",
- " 82.5±0.8 (2) | \n",
- " 59.0±1.0 (2.5) | \n",
- "
\n",
- " \n",
- " TSA_resnet34 | \n",
- " 1.5 | \n",
- " 63.73±0.99 (1.5) | \n",
- " 82.58±1.11 (1.5) | \n",
- " 80.13±1.01 (1.5) | \n",
- " 83.39±0.8 (1) | \n",
- " 79.61±0.68 (1) | \n",
- " 71.03±0.84 (2) | \n",
- " 51.38±1.17 (1.5) | \n",
- " 94.05±0.45 (2) | \n",
- " 81.71±0.95 (2) | \n",
- " 61.67±0.95 (1) | \n",
+ " k-NN | \n",
+ " 14.6 | \n",
+ " 41.03±1.01 (15) | \n",
+ " 37.07±1.15 (16) | \n",
+ " 46.81±0.89 (15) | \n",
+ " 50.13±1.0 (15.5) | \n",
+ " 66.36±0.75 (13) | \n",
+ " 32.06±1.08 (16) | \n",
+ " 36.16±1.02 (13) | \n",
+ " 83.1±0.68 (12) | \n",
+ " 44.59±1.19 (15) | \n",
+ " 30.38±0.99 (15.5) | \n",
+ "
\n",
+ " \n",
+ " Finetune | \n",
+ " 10.45 | \n",
+ " 45.78±1.1 (13) | \n",
+ " 60.85±1.58 (11.5) | \n",
+ " 68.69±1.26 (5) | \n",
+ " 57.31±1.26 (14) | \n",
+ " 69.05±0.9 (9.5) | \n",
+ " 42.6±1.17 (13.5) | \n",
+ " 38.2±1.02 (11) | \n",
+ " 85.51±0.68 (9) | \n",
+ " 66.79±1.31 (5) | \n",
+ " 34.86±0.97 (13) | \n",
+ "
\n",
+ " \n",
+ " MatchingNet | \n",
+ " 13.55 | \n",
+ " 45.0±1.1 (13) | \n",
+ " 52.27±1.28 (14) | \n",
+ " 48.97±0.93 (13) | \n",
+ " 62.21±0.95 (12.5) | \n",
+ " 64.15±0.85 (15) | \n",
+ " 42.87±1.09 (13.5) | \n",
+ " 33.97±1.0 (14) | \n",
+ " 80.13±0.71 (15) | \n",
+ " 47.8±1.14 (12.5) | \n",
+ " 34.99±1.0 (13) | \n",
+ "
\n",
+ " \n",
+ " ProtoNet | \n",
+ " 10.75 | \n",
+ " 50.5±1.08 (10.5) | \n",
+ " 59.98±1.35 (11.5) | \n",
+ " 53.1±1.0 (10.5) | \n",
+ " 68.79±1.01 (8.5) | \n",
+ " 66.56±0.83 (13) | \n",
+ " 48.96±1.08 (11) | \n",
+ " 39.71±1.11 (9) | \n",
+ " 85.27±0.77 (9) | \n",
+ " 47.12±1.1 (14) | \n",
+ " 41.0±1.1 (10.5) | \n",
+ "
\n",
+ " \n",
+ " fo-MAML | \n",
+ " 12.25 | \n",
+ " 45.51±1.11 (13) | \n",
+ " 55.55±1.54 (13) | \n",
+ " 56.24±1.11 (8.5) | \n",
+ " 63.61±1.06 (12.5) | \n",
+ " 68.04±0.81 (9.5) | \n",
+ " 43.96±1.29 (13.5) | \n",
+ " 32.1±1.1 (15) | \n",
+ " 81.74±0.83 (14) | \n",
+ " 50.93±1.51 (10.5) | \n",
+ " 35.3±1.23 (13) | \n",
+ "
\n",
+ " \n",
+ " RelationNet | \n",
+ " 15.55 | \n",
+ " 34.69±1.01 (16) | \n",
+ " 45.35±1.36 (15) | \n",
+ " 40.73±0.83 (16) | \n",
+ " 49.51±1.05 (15.5) | \n",
+ " 52.97±0.69 (16) | \n",
+ " 43.3±1.08 (13.5) | \n",
+ " 30.55±1.04 (16) | \n",
+ " 68.76±0.83 (16) | \n",
+ " 33.67±1.05 (16) | \n",
+ " 29.15±1.01 (15.5) | \n",
+ "
\n",
+ " \n",
+ " fo-Proto-MAML | \n",
+ " 9.25 | \n",
+ " 49.53±1.05 (10.5) | \n",
+ " 63.37±1.33 (8.5) | \n",
+ " 55.95±0.99 (8.5) | \n",
+ " 68.66±0.96 (8.5) | \n",
+ " 66.49±0.83 (13) | \n",
+ " 51.52±1.0 (9.5) | \n",
+ " 39.96±1.14 (6.5) | \n",
+ " 87.15±0.69 (6) | \n",
+ " 48.83±1.09 (12.5) | \n",
+ " 43.74±1.12 (9) | \n",
+ "
\n",
+ " \n",
+ " ALFA+fo-Proto-MAML | \n",
+ " 7.1 | \n",
+ " 52.8±1.11 (8.5) | \n",
+ " 61.87±1.51 (8.5) | \n",
+ " 63.43±1.1 (6) | \n",
+ " 69.75±1.05 (6.5) | \n",
+ " 70.78±0.88 (7) | \n",
+ " 59.17±1.16 (5.5) | \n",
+ " 41.49±1.17 (6.5) | \n",
+ " 85.96±0.77 (9) | \n",
+ " 60.78±1.29 (8) | \n",
+ " 48.11±1.14 (5.5) | \n",
+ "
\n",
+ " \n",
+ " ProtoNet (large) | \n",
+ " 7.25 | \n",
+ " 53.69±1.07 (6) | \n",
+ " 68.5±1.27 (5.5) | \n",
+ " 58.04±0.96 (7) | \n",
+ " 74.07±0.92 (4.5) | \n",
+ " 68.76±0.77 (9.5) | \n",
+ " 53.3±1.06 (8) | \n",
+ " 40.73±1.15 (6.5) | \n",
+ " 86.96±0.73 (6) | \n",
+ " 58.11±1.05 (9) | \n",
+ " 41.7±1.08 (10.5) | \n",
+ "
\n",
+ " \n",
+ " CTX | \n",
+ " 2.5 | \n",
+ " 62.76±0.99 (2.5) | \n",
+ " 82.21±1.0 (2) | \n",
+ " 79.49±0.89 (1.5) | \n",
+ " 80.63±0.88 (3) | \n",
+ " 75.57±0.64 (4) | \n",
+ " 72.68±0.82 (2) | \n",
+ " 51.58±1.11 (2.5) | \n",
+ " 95.34±0.37 (1) | \n",
+ " 82.65±0.76 (3) | \n",
+ " 59.9±1.02 (3.5) | \n",
+ "
\n",
+ " \n",
+ " BOHB | \n",
+ " 7.85 | \n",
+ " 51.92±1.05 (8.5) | \n",
+ " 67.57±1.21 (5.5) | \n",
+ " 54.12±0.9 (10.5) | \n",
+ " 70.69±0.9 (6.5) | \n",
+ " 68.34±0.76 (9.5) | \n",
+ " 50.33±1.04 (9.5) | \n",
+ " 41.38±1.12 (6.5) | \n",
+ " 87.34±0.59 (6) | \n",
+ " 51.8±1.04 (10.5) | \n",
+ " 48.03±0.99 (5.5) | \n",
+ "
\n",
+ " \n",
+ " SimpleCNAPS | \n",
+ " 8.75 | \n",
+ " 54.8±1.2 (6) | \n",
+ " 62.0±1.3 (8.5) | \n",
+ " 49.2±0.9 (13) | \n",
+ " 66.5±1.0 (10.5) | \n",
+ " 71.6±0.7 (5.5) | \n",
+ " 56.6±1.0 (7) | \n",
+ " 37.5±1.2 (11) | \n",
+ " 82.1±0.9 (12) | \n",
+ " 63.1±1.1 (6.5) | \n",
+ " 45.8±1.0 (7.5) | \n",
+ "
\n",
+ " \n",
+ " TransductiveCNAPS | \n",
+ " 8.6 | \n",
+ " 54.1±1.1 (6) | \n",
+ " 62.9±1.3 (8.5) | \n",
+ " 48.4±0.9 (13) | \n",
+ " 67.3±0.9 (10.5) | \n",
+ " 72.5±0.7 (5.5) | \n",
+ " 58.0±1.0 (5.5) | \n",
+ " 37.7±1.1 (11) | \n",
+ " 82.8±0.8 (12) | \n",
+ " 61.8±1.1 (6.5) | \n",
+ " 45.8±1.0 (7.5) | \n",
+ "
\n",
+ " \n",
+ " TSA_resnet18 | \n",
+ " 3.8 | \n",
+ " 59.5±1.1 (4) | \n",
+ " 78.2±1.2 (4) | \n",
+ " 72.2±1.0 (4) | \n",
+ " 74.9±0.9 (4.5) | \n",
+ " 77.3±0.7 (3) | \n",
+ " 67.6±0.9 (4) | \n",
+ " 44.7±1.0 (4) | \n",
+ " 90.9±0.6 (4) | \n",
+ " 82.5±0.8 (3) | \n",
+ " 59.0±1.0 (3.5) | \n",
+ "
\n",
+ " \n",
+ " TSA_resnet34 | \n",
+ " 2.25 | \n",
+ " 63.73±0.99 (2.5) | \n",
+ " 82.58±1.11 (2) | \n",
+ " 80.13±1.01 (1.5) | \n",
+ " 83.39±0.8 (2) | \n",
+ " 79.61±0.68 (2) | \n",
+ " 71.03±0.84 (3) | \n",
+ " 51.38±1.17 (2.5) | \n",
+ " 94.05±0.45 (2.5) | \n",
+ " 81.71±0.95 (3) | \n",
+ " 61.67±0.95 (1.5) | \n",
+ "
\n",
+ " \n",
+ " PMF-DINOSmall | \n",
+ " 1.5 | \n",
+ " 75.51±0.72 (1) | \n",
+ " 82.81±1.1 (2) | \n",
+ " 78.38±1.09 (3) | \n",
+ " 85.18±0.77 (1) | \n",
+ " 86.95±0.6 (1) | \n",
+ " 74.47±0.83 (1) | \n",
+ " 55.16±1.09 (1) | \n",
+ " 94.66±0.48 (2.5) | \n",
+ " 90.04±0.81 (1) | \n",
+ " 62.6±0.96 (1.5) | \n",
"
\n",
" \n",
"
\n"
],
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 70,
+ "execution_count": 73,
"metadata": {},
"output_type": "execute_result"
}
@@ -9084,7 +9428,7 @@
},
{
"cell_type": "code",
- "execution_count": 71,
+ "execution_count": 74,
"metadata": {
"id": "dMjhdJkiimQx"
},
@@ -9095,7 +9439,7 @@
},
{
"cell_type": "code",
- "execution_count": 72,
+ "execution_count": 75,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -9109,288 +9453,302 @@
"data": {
"text/html": [
"\n",
- "\n",
+ "\n",
" \n",
" \n",
" | \n",
- " Avg rank | \n",
- " ILSVRC (test) | \n",
- " Omniglot | \n",
- " Aircraft | \n",
- " Birds | \n",
- " Textures | \n",
- " QuickDraw | \n",
- " Fungi | \n",
- " VGG Flower | \n",
- " Traffic signs | \n",
- " MSCOCO | \n",
+ " Avg rank | \n",
+ " ILSVRC (test) | \n",
+ " Omniglot | \n",
+ " Aircraft | \n",
+ " Birds | \n",
+ " Textures | \n",
+ " QuickDraw | \n",
+ " Fungi | \n",
+ " VGG Flower | \n",
+ " Traffic signs | \n",
+ " MSCOCO | \n",
"
\n",
" \n",
" \n",
" \n",
- " k-NN | \n",
- " 15.85 | \n",
- " 38.55±0.94 (15.5) | \n",
- " 74.6±1.08 (17) | \n",
- " 64.98±0.82 (18) | \n",
- " 66.35±0.92 (13.5) | \n",
- " 63.58±0.79 (14.5) | \n",
- " 44.88±1.05 (18) | \n",
- " 37.12±1.06 (14.5) | \n",
- " 83.47±0.61 (14.5) | \n",
- " 40.11±1.1 (17) | \n",
- " 29.55±0.96 (16) | \n",
- "
\n",
- " \n",
- " Finetune | \n",
- " 13.1 | \n",
- " 43.08±1.08 (13.5) | \n",
- " 71.11±1.37 (18) | \n",
- " 72.03±1.07 (14.5) | \n",
- " 59.82±1.15 (16) | \n",
- " 69.14±0.85 (8.5) | \n",
- " 47.05±1.16 (17) | \n",
- " 38.16±1.04 (14.5) | \n",
- " 85.28±0.69 (13) | \n",
- " 66.74±1.23 (2) | \n",
- " 35.17±1.08 (14) | \n",
- "
\n",
- " \n",
- " MatchingNet | \n",
- " 15.4 | \n",
- " 36.08±1.0 (17) | \n",
- " 78.25±1.01 (15.5) | \n",
- " 69.17±0.96 (16.5) | \n",
- " 56.4±1.0 (17) | \n",
- " 61.8±0.74 (16) | \n",
- " 60.81±1.03 (14.5) | \n",
- " 33.7±1.04 (17) | \n",
- " 81.9±0.72 (16) | \n",
- " 55.57±1.08 (8.5) | \n",
- " 28.79±0.96 (16) | \n",
- "
\n",
- " \n",
- " ProtoNet | \n",
- " 13.5 | \n",
- " 44.5±1.05 (13.5) | \n",
- " 79.56±1.12 (15.5) | \n",
- " 71.14±0.86 (14.5) | \n",
- " 67.01±1.02 (13.5) | \n",
- " 65.18±0.84 (12.5) | \n",
- " 64.88±0.89 (13) | \n",
- " 40.26±1.13 (13) | \n",
- " 86.85±0.71 (12) | \n",
- " 46.48±1.0 (15) | \n",
- " 39.87±1.06 (12.5) | \n",
- "
\n",
- " \n",
- " fo-MAML | \n",
- " 15.25 | \n",
- " 37.83±1.01 (15.5) | \n",
- " 83.92±0.95 (13.5) | \n",
- " 76.41±0.69 (12) | \n",
- " 62.43±1.08 (15) | \n",
- " 64.16±0.83 (14.5) | \n",
- " 59.73±1.1 (16) | \n",
- " 33.54±1.11 (17) | \n",
- " 79.94±0.84 (17) | \n",
- " 42.91±1.31 (16) | \n",
- " 29.37±1.08 (16) | \n",
- "
\n",
- " \n",
- " RelationNet | \n",
- " 16.8 | \n",
- " 30.89±0.93 (18) | \n",
- " 86.57±0.79 (12) | \n",
- " 69.71±0.83 (16.5) | \n",
- " 54.14±0.99 (18) | \n",
- " 56.56±0.73 (18) | \n",
- " 61.75±0.97 (14.5) | \n",
- " 32.56±1.08 (17) | \n",
- " 76.08±0.76 (18) | \n",
- " 37.48±0.93 (18) | \n",
- " 27.41±0.89 (18) | \n",
- "
\n",
- " \n",
- " fo-Proto-MAML | \n",
- " 11.6 | \n",
- " 46.52±1.05 (12) | \n",
- " 82.69±0.97 (13.5) | \n",
- " 75.23±0.76 (13) | \n",
- " 69.88±1.02 (11.5) | \n",
- " 68.25±0.81 (10.5) | \n",
- " 66.84±0.94 (12) | \n",
- " 41.99±1.17 (12) | \n",
- " 88.72±0.67 (10) | \n",
- " 52.42±1.08 (11.5) | \n",
- " 41.74±1.13 (10) | \n",
- "
\n",
- " \n",
- " CNAPs | \n",
- " 10.25 | \n",
- " 50.8±1.1 (10.5) | \n",
- " 91.7±0.5 (8) | \n",
- " 83.7±0.6 (7.5) | \n",
- " 73.6±0.9 (10) | \n",
- " 59.5±0.7 (17) | \n",
- " 74.7±0.8 (11) | \n",
- " 50.2±1.1 (7.5) | \n",
- " 88.9±0.5 (10) | \n",
- " 56.5±1.1 (8.5) | \n",
- " 39.4±1.0 (12.5) | \n",
- "
\n",
- " \n",
- " SUR | \n",
- " 7.65 | \n",
- " 56.1±1.1 (7) | \n",
- " 93.1±0.5 (5.5) | \n",
- " 84.6±0.7 (5.5) | \n",
- " 70.6±1.0 (11.5) | \n",
- " 71.0±0.8 (6.5) | \n",
- " 81.3±0.6 (4) | \n",
- " 64.2±1.1 (3.5) | \n",
- " 82.8±0.8 (14.5) | \n",
- " 53.4±1.0 (11.5) | \n",
- " 50.1±1.0 (7) | \n",
- "
\n",
- " \n",
- " SUR-pnf | \n",
- " 8.2 | \n",
- " 56.0±1.1 (7) | \n",
- " 90.0±0.6 (10.5) | \n",
- " 79.7±0.8 (10.5) | \n",
- " 75.9±0.9 (7.5) | \n",
- " 72.5±0.7 (4.5) | \n",
- " 76.7±0.7 (8.5) | \n",
- " 49.8±1.1 (7.5) | \n",
- " 90.0±0.6 (7.5) | \n",
- " 52.2±0.8 (11.5) | \n",
- " 50.2±1.1 (7) | \n",
- "
\n",
- " \n",
- " SimpleCNAPS | \n",
- " 7.45 | \n",
- " 56.5±1.1 (7) | \n",
- " 91.9±0.6 (8) | \n",
- " 83.8±0.6 (7.5) | \n",
- " 76.1±0.9 (7.5) | \n",
- " 70.0±0.8 (8.5) | \n",
- " 78.3±0.7 (6.5) | \n",
- " 49.1±1.2 (7.5) | \n",
- " 91.3±0.6 (6) | \n",
- " 59.2±1.0 (6) | \n",
- " 42.4±1.1 (10) | \n",
- "
\n",
- " \n",
- " TransductiveCNAPS | \n",
- " 6.05 | \n",
- " 57.9±1.1 (2.5) | \n",
- " 94.3±0.4 (3.5) | \n",
- " 84.7±0.5 (5.5) | \n",
- " 78.8±0.7 (3.5) | \n",
- " 66.2±0.8 (12.5) | \n",
- " 77.9±0.6 (6.5) | \n",
- " 48.9±1.2 (7.5) | \n",
- " 92.3±0.4 (3) | \n",
- " 59.7±1.1 (6) | \n",
- " 42.5±1.1 (10) | \n",
- "
\n",
- " \n",
- " URT | \n",
- " 6.05 | \n",
- " 55.7±1.0 (7) | \n",
- " 94.4±0.4 (3.5) | \n",
- " 85.8±0.6 (4) | \n",
- " 76.3±0.8 (7.5) | \n",
- " 71.8±0.7 (4.5) | \n",
- " 82.5±0.6 (2) | \n",
- " 63.5±1.0 (3.5) | \n",
- " 88.2±0.6 (10) | \n",
- " 51.1±1.1 (14) | \n",
- " 52.2±1.1 (4.5) | \n",
- "
\n",
- " \n",
- " URT-pf | \n",
- " 7.55 | \n",
- " 55.5±1.1 (7) | \n",
- " 90.2±0.6 (10.5) | \n",
- " 79.8±0.7 (10.5) | \n",
- " 77.5±0.8 (5) | \n",
- " 73.5±0.7 (3) | \n",
- " 75.8±0.7 (10) | \n",
- " 48.1±0.9 (10.5) | \n",
- " 91.9±0.5 (3) | \n",
- " 52.0±1.4 (11.5) | \n",
- " 52.1±1.0 (4.5) | \n",
- "
\n",
- " \n",
- " FLUTE | \n",
- " 5.9 | \n",
- " 51.8±1.1 (10.5) | \n",
- " 93.2±0.5 (5.5) | \n",
- " 87.2±0.5 (3) | \n",
- " 79.2±0.8 (3.5) | \n",
- " 68.8±0.8 (10.5) | \n",
- " 79.5±0.7 (5) | \n",
- " 58.1±1.1 (5) | \n",
- " 91.6±0.6 (3) | \n",
- " 58.4±1.1 (6) | \n",
- " 50.0±1.0 (7) | \n",
- "
\n",
- " \n",
- " URL | \n",
- " 2.15 | \n",
- " 57.51±1.08 (2.5) | \n",
- " 94.51±0.41 (1.5) | \n",
- " 88.59±0.46 (2) | \n",
- " 80.54±0.69 (1.5) | \n",
- " 76.17±0.67 (1.5) | \n",
- " 81.94±0.56 (2) | \n",
- " 68.75±0.95 (1.5) | \n",
- " 92.11±0.48 (3) | \n",
- " 63.34±1.19 (3.5) | \n",
- " 54.03±0.96 (2.5) | \n",
- "
\n",
- " \n",
- " TSA | \n",
- " 1.65 | \n",
- " 57.35±1.05 (2.5) | \n",
- " 94.96±0.38 (1.5) | \n",
- " 89.33±0.44 (1) | \n",
- " 81.42±0.74 (1.5) | \n",
- " 76.74±0.72 (1.5) | \n",
- " 82.01±0.57 (2) | \n",
- " 67.4±0.99 (1.5) | \n",
- " 92.18±0.52 (3) | \n",
- " 83.55±0.9 (1) | \n",
- " 55.75±1.06 (1) | \n",
- "
\n",
- " \n",
- " TriM | \n",
- " 6.6 | \n",
- " 58.6±1.0 (2.5) | \n",
- " 92.0±0.6 (8) | \n",
- " 82.8±0.7 (9) | \n",
- " 75.3±0.8 (7.5) | \n",
- " 71.2±0.8 (6.5) | \n",
- " 77.3±0.7 (8.5) | \n",
- " 48.5±1.0 (10.5) | \n",
- " 90.5±0.5 (7.5) | \n",
- " 63.0±1.0 (3.5) | \n",
- " 52.8±1.1 (2.5) | \n",
+ " k-NN | \n",
+ " 16.85 | \n",
+ " 38.55±0.94 (16.5) | \n",
+ " 74.6±1.08 (18) | \n",
+ " 64.98±0.82 (19) | \n",
+ " 66.35±0.92 (14.5) | \n",
+ " 63.58±0.79 (15.5) | \n",
+ " 44.88±1.05 (19) | \n",
+ " 37.12±1.06 (15.5) | \n",
+ " 83.47±0.61 (15.5) | \n",
+ " 40.11±1.1 (18) | \n",
+ " 29.55±0.96 (17) | \n",
+ "
\n",
+ " \n",
+ " Finetune | \n",
+ " 14.1 | \n",
+ " 43.08±1.08 (14.5) | \n",
+ " 71.11±1.37 (19) | \n",
+ " 72.03±1.07 (15.5) | \n",
+ " 59.82±1.15 (17) | \n",
+ " 69.14±0.85 (9.5) | \n",
+ " 47.05±1.16 (18) | \n",
+ " 38.16±1.04 (15.5) | \n",
+ " 85.28±0.69 (14) | \n",
+ " 66.74±1.23 (3) | \n",
+ " 35.17±1.08 (15) | \n",
+ "
\n",
+ " \n",
+ " MatchingNet | \n",
+ " 16.4 | \n",
+ " 36.08±1.0 (18) | \n",
+ " 78.25±1.01 (16.5) | \n",
+ " 69.17±0.96 (17.5) | \n",
+ " 56.4±1.0 (18) | \n",
+ " 61.8±0.74 (17) | \n",
+ " 60.81±1.03 (15.5) | \n",
+ " 33.7±1.04 (18) | \n",
+ " 81.9±0.72 (17) | \n",
+ " 55.57±1.08 (9.5) | \n",
+ " 28.79±0.96 (17) | \n",
+ "
\n",
+ " \n",
+ " ProtoNet | \n",
+ " 14.5 | \n",
+ " 44.5±1.05 (14.5) | \n",
+ " 79.56±1.12 (16.5) | \n",
+ " 71.14±0.86 (15.5) | \n",
+ " 67.01±1.02 (14.5) | \n",
+ " 65.18±0.84 (13.5) | \n",
+ " 64.88±0.89 (14) | \n",
+ " 40.26±1.13 (14) | \n",
+ " 86.85±0.71 (13) | \n",
+ " 46.48±1.0 (16) | \n",
+ " 39.87±1.06 (13.5) | \n",
+ "
\n",
+ " \n",
+ " fo-MAML | \n",
+ " 16.25 | \n",
+ " 37.83±1.01 (16.5) | \n",
+ " 83.92±0.95 (14.5) | \n",
+ " 76.41±0.69 (13) | \n",
+ " 62.43±1.08 (16) | \n",
+ " 64.16±0.83 (15.5) | \n",
+ " 59.73±1.1 (17) | \n",
+ " 33.54±1.11 (18) | \n",
+ " 79.94±0.84 (18) | \n",
+ " 42.91±1.31 (17) | \n",
+ " 29.37±1.08 (17) | \n",
+ "
\n",
+ " \n",
+ " RelationNet | \n",
+ " 17.8 | \n",
+ " 30.89±0.93 (19) | \n",
+ " 86.57±0.79 (13) | \n",
+ " 69.71±0.83 (17.5) | \n",
+ " 54.14±0.99 (19) | \n",
+ " 56.56±0.73 (19) | \n",
+ " 61.75±0.97 (15.5) | \n",
+ " 32.56±1.08 (18) | \n",
+ " 76.08±0.76 (19) | \n",
+ " 37.48±0.93 (19) | \n",
+ " 27.41±0.89 (19) | \n",
+ "
\n",
+ " \n",
+ " fo-Proto-MAML | \n",
+ " 12.6 | \n",
+ " 46.52±1.05 (13) | \n",
+ " 82.69±0.97 (14.5) | \n",
+ " 75.23±0.76 (14) | \n",
+ " 69.88±1.02 (12.5) | \n",
+ " 68.25±0.81 (11.5) | \n",
+ " 66.84±0.94 (13) | \n",
+ " 41.99±1.17 (13) | \n",
+ " 88.72±0.67 (11) | \n",
+ " 52.42±1.08 (12.5) | \n",
+ " 41.74±1.13 (11) | \n",
+ "
\n",
+ " \n",
+ " CNAPs | \n",
+ " 11.2 | \n",
+ " 50.8±1.1 (11.5) | \n",
+ " 91.7±0.5 (8.5) | \n",
+ " 83.7±0.6 (8.5) | \n",
+ " 73.6±0.9 (11) | \n",
+ " 59.5±0.7 (18) | \n",
+ " 74.7±0.8 (12) | \n",
+ " 50.2±1.1 (8.5) | \n",
+ " 88.9±0.5 (11) | \n",
+ " 56.5±1.1 (9.5) | \n",
+ " 39.4±1.0 (13.5) | \n",
+ "
\n",
+ " \n",
+ " SUR | \n",
+ " 8.45 | \n",
+ " 56.1±1.1 (8) | \n",
+ " 93.1±0.5 (5.5) | \n",
+ " 84.6±0.7 (6.5) | \n",
+ " 70.6±1.0 (12.5) | \n",
+ " 71.0±0.8 (7.5) | \n",
+ " 81.3±0.6 (4) | \n",
+ " 64.2±1.1 (4.5) | \n",
+ " 82.8±0.8 (15.5) | \n",
+ " 53.4±1.0 (12.5) | \n",
+ " 50.1±1.0 (8) | \n",
+ "
\n",
+ " \n",
+ " SUR-pnf | \n",
+ " 9.2 | \n",
+ " 56.0±1.1 (8) | \n",
+ " 90.0±0.6 (11.5) | \n",
+ " 79.7±0.8 (11.5) | \n",
+ " 75.9±0.9 (8.5) | \n",
+ " 72.5±0.7 (5.5) | \n",
+ " 76.7±0.7 (9.5) | \n",
+ " 49.8±1.1 (8.5) | \n",
+ " 90.0±0.6 (8.5) | \n",
+ " 52.2±0.8 (12.5) | \n",
+ " 50.2±1.1 (8) | \n",
+ "
\n",
+ " \n",
+ " SimpleCNAPS | \n",
+ " 8.4 | \n",
+ " 56.5±1.1 (8) | \n",
+ " 91.9±0.6 (8.5) | \n",
+ " 83.8±0.6 (8.5) | \n",
+ " 76.1±0.9 (8.5) | \n",
+ " 70.0±0.8 (9.5) | \n",
+ " 78.3±0.7 (7.5) | \n",
+ " 49.1±1.2 (8.5) | \n",
+ " 91.3±0.6 (7) | \n",
+ " 59.2±1.0 (7) | \n",
+ " 42.4±1.1 (11) | \n",
+ "
\n",
+ " \n",
+ " TransductiveCNAPS | \n",
+ " 6.95 | \n",
+ " 57.9±1.1 (3.5) | \n",
+ " 94.3±0.4 (3.5) | \n",
+ " 84.7±0.5 (6.5) | \n",
+ " 78.8±0.7 (4.5) | \n",
+ " 66.2±0.8 (13.5) | \n",
+ " 77.9±0.6 (7.5) | \n",
+ " 48.9±1.2 (8.5) | \n",
+ " 92.3±0.4 (4) | \n",
+ " 59.7±1.1 (7) | \n",
+ " 42.5±1.1 (11) | \n",
+ "
\n",
+ " \n",
+ " URT | \n",
+ " 6.85 | \n",
+ " 55.7±1.0 (8) | \n",
+ " 94.4±0.4 (3.5) | \n",
+ " 85.8±0.6 (5) | \n",
+ " 76.3±0.8 (8.5) | \n",
+ " 71.8±0.7 (5.5) | \n",
+ " 82.5±0.6 (2) | \n",
+ " 63.5±1.0 (4.5) | \n",
+ " 88.2±0.6 (11) | \n",
+ " 51.1±1.1 (15) | \n",
+ " 52.2±1.1 (5.5) | \n",
+ "
\n",
+ " \n",
+ " URT-pf | \n",
+ " 8.55 | \n",
+ " 55.5±1.1 (8) | \n",
+ " 90.2±0.6 (11.5) | \n",
+ " 79.8±0.7 (11.5) | \n",
+ " 77.5±0.8 (6) | \n",
+ " 73.5±0.7 (4) | \n",
+ " 75.8±0.7 (11) | \n",
+ " 48.1±0.9 (11.5) | \n",
+ " 91.9±0.5 (4) | \n",
+ " 52.0±1.4 (12.5) | \n",
+ " 52.1±1.0 (5.5) | \n",
+ "
\n",
+ " \n",
+ " FLUTE | \n",
+ " 6.75 | \n",
+ " 51.8±1.1 (11.5) | \n",
+ " 93.2±0.5 (5.5) | \n",
+ " 87.2±0.5 (4) | \n",
+ " 79.2±0.8 (4.5) | \n",
+ " 68.8±0.8 (11.5) | \n",
+ " 79.5±0.7 (5.5) | \n",
+ " 58.1±1.1 (6) | \n",
+ " 91.6±0.6 (4) | \n",
+ " 58.4±1.1 (7) | \n",
+ " 50.0±1.0 (8) | \n",
+ "
\n",
+ " \n",
+ " URL | \n",
+ " 2.95 | \n",
+ " 57.51±1.08 (3.5) | \n",
+ " 94.51±0.41 (1.5) | \n",
+ " 88.59±0.46 (3) | \n",
+ " 80.54±0.69 (2.5) | \n",
+ " 76.17±0.67 (2.5) | \n",
+ " 81.94±0.56 (2) | \n",
+ " 68.75±0.95 (2.5) | \n",
+ " 92.11±0.48 (4) | \n",
+ " 63.34±1.19 (4.5) | \n",
+ " 54.03±0.96 (3.5) | \n",
+ "
\n",
+ " \n",
+ " TSA | \n",
+ " 2.4 | \n",
+ " 57.35±1.05 (3.5) | \n",
+ " 94.96±0.38 (1.5) | \n",
+ " 89.33±0.44 (1.5) | \n",
+ " 81.42±0.74 (2.5) | \n",
+ " 76.74±0.72 (2.5) | \n",
+ " 82.01±0.57 (2) | \n",
+ " 67.4±0.99 (2.5) | \n",
+ " 92.18±0.52 (4) | \n",
+ " 83.55±0.9 (2) | \n",
+ " 55.75±1.06 (2) | \n",
+ "
\n",
+ " \n",
+ " TriM | \n",
+ " 7.55 | \n",
+ " 58.6±1.0 (3.5) | \n",
+ " 92.0±0.6 (8.5) | \n",
+ " 82.8±0.7 (10) | \n",
+ " 75.3±0.8 (8.5) | \n",
+ " 71.2±0.8 (7.5) | \n",
+ " 77.3±0.7 (9.5) | \n",
+ " 48.5±1.0 (11.5) | \n",
+ " 90.5±0.5 (8.5) | \n",
+ " 63.0±1.0 (4.5) | \n",
+ " 52.8±1.1 (3.5) | \n",
+ "
\n",
+ " \n",
+ " PMF-DINOSmall | \n",
+ " 2.25 | \n",
+ " 73.52±0.8 (1) | \n",
+ " 92.17±0.57 (8.5) | \n",
+ " 89.49±0.52 (1.5) | \n",
+ " 91.04±0.37 (1) | \n",
+ " 85.73±0.62 (1) | \n",
+ " 79.43±0.67 (5.5) | \n",
+ " 74.99±0.94 (1) | \n",
+ " 95.3±0.44 (1) | \n",
+ " 89.85±0.76 (1) | \n",
+ " 59.69±1.02 (1) | \n",
"
\n",
" \n",
"
\n"
],
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 72,
+ "execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
@@ -9402,7 +9760,7 @@
},
{
"cell_type": "code",
- "execution_count": 73,
+ "execution_count": 76,
"metadata": {
"id": "ASEngzGKifwU"
},
@@ -9423,7 +9781,7 @@
},
{
"cell_type": "code",
- "execution_count": 74,
+ "execution_count": 77,
"metadata": {
"id": "cB_SuLA4GNQ7"
},
@@ -9444,7 +9802,7 @@
},
{
"cell_type": "code",
- "execution_count": 75,
+ "execution_count": 78,
"metadata": {
"id": "2xe8elpLLFkH"
},
@@ -9495,7 +9853,7 @@
},
{
"cell_type": "code",
- "execution_count": 76,
+ "execution_count": 79,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -9510,21 +9868,22 @@
"text": [
"Method |Avg rank |ILSVRC (test) |Omniglot |Aircraft |Birds |Textures |QuickDraw |Fungi |VGG Flower |Traffic signs |MSCOCO \n",
"---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------\n",
- "k-NN [[1]] |13.6 |41.03±1.01 (14) |37.07±1.15 (15) |46.81±0.89 (14) |50.13±1.00 (14.5) |66.36±0.75 (12) |32.06±1.08 (15) |36.16±1.02 (12) |83.10±0.68 (11) |44.59±1.19 (14) |30.38±0.99 (14.5) \n",
- "Finetune [[1]] |9.45 |45.78±1.10 (12) |60.85±1.58 (10.5) |68.69±1.26 (4) |57.31±1.26 (13) |69.05±0.90 (8.5) |42.60±1.17 (12.5) |38.20±1.02 (10) |85.51±0.68 (8) |66.79±1.31 (4) |34.86±0.97 (12) \n",
- "MatchingNet [[1]] |12.55 |45.00±1.10 (12) |52.27±1.28 (13) |48.97±0.93 (12) |62.21±0.95 (11.5) |64.15±0.85 (14) |42.87±1.09 (12.5) |33.97±1.00 (13) |80.13±0.71 (14) |47.80±1.14 (11.5) |34.99±1.00 (12) \n",
- "ProtoNet [[1]] |9.75 |50.50±1.08 (9.5) |59.98±1.35 (10.5) |53.10±1.00 (9.5) |68.79±1.01 (7.5) |66.56±0.83 (12) |48.96±1.08 (10) |39.71±1.11 (8) |85.27±0.77 (8) |47.12±1.10 (13) |41.00±1.10 (9.5) \n",
- "fo-MAML [[1]] |11.25 |45.51±1.11 (12) |55.55±1.54 (12) |56.24±1.11 (7.5) |63.61±1.06 (11.5) |68.04±0.81 (8.5) |43.96±1.29 (12.5) |32.10±1.10 (14) |81.74±0.83 (13) |50.93±1.51 (9.5) |35.30±1.23 (12) \n",
- "RelationNet [[1]] |14.55 |34.69±1.01 (15) |45.35±1.36 (14) |40.73±0.83 (15) |49.51±1.05 (14.5) |52.97±0.69 (15) |43.30±1.08 (12.5) |30.55±1.04 (15) |68.76±0.83 (15) |33.67±1.05 (15) |29.15±1.01 (14.5) \n",
- "fo-Proto-MAML [[1]] |8.25 |49.53±1.05 (9.5) |63.37±1.33 (7.5) |55.95±0.99 (7.5) |68.66±0.96 (7.5) |66.49±0.83 (12) |51.52±1.00 (8.5) |39.96±1.14 (5.5) |87.15±0.69 (5) |48.83±1.09 (11.5) |43.74±1.12 (8) \n",
- "ALFA+fo-Proto-MAML [[3]] |6.1 |52.80±1.11 (7.5) |61.87±1.51 (7.5) |63.43±1.10 (5) |69.75±1.05 (5.5) |70.78±0.88 (6) |59.17±1.16 (4.5) |41.49±1.17 (5.5) |85.96±0.77 (8) |60.78±1.29 (7) |48.11±1.14 (4.5) \n",
- "ProtoNet (large) [[4]] |6.25 |53.69±1.07 (5) |68.50±1.27 (4.5) |58.04±0.96 (6) |74.07±0.92 (3.5) |68.76±0.77 (8.5) |53.30±1.06 (7) |40.73±1.15 (5.5) |86.96±0.73 (5) |58.11±1.05 (8) |41.70±1.08 (9.5) \n",
- "CTX [[4]] |1.75 |**62.76**±0.99 (1.5) |**82.21**±1.00 (1.5) |**79.49**±0.89 (1.5) |80.63±0.88 (2) |75.57±0.64 (3) |**72.68**±0.82 (1) |**51.58**±1.11 (1.5) |**95.34**±0.37 (1) |**82.65**±0.76 (2) |59.90±1.02 (2.5) \n",
- "BOHB [[5]] |6.85 |51.92±1.05 (7.5) |67.57±1.21 (4.5) |54.12±0.90 (9.5) |70.69±0.90 (5.5) |68.34±0.76 (8.5) |50.33±1.04 (8.5) |41.38±1.12 (5.5) |87.34±0.59 (5) |51.80±1.04 (9.5) |48.03±0.99 (4.5) \n",
- "SimpleCNAPS [[14],[7]] |7.75 |54.80±1.20 (5) |62.00±1.30 (7.5) |49.20±0.90 (12) |66.50±1.00 (9.5) |71.60±0.70 (4.5) |56.60±1.00 (6) |37.50±1.20 (10) |82.10±0.90 (11) |63.10±1.10 (5.5) |45.80±1.00 (6.5) \n",
- "TransductiveCNAPS [[14],[8]]|7.6 |54.10±1.10 (5) |62.90±1.30 (7.5) |48.40±0.90 (12) |67.30±0.90 (9.5) |72.50±0.70 (4.5) |58.00±1.00 (4.5) |37.70±1.10 (10) |82.80±0.80 (11) |61.80±1.10 (5.5) |45.80±1.00 (6.5) \n",
- "TSA_resnet18 [[12]] |2.8 |59.50±1.10 (3) |78.20±1.20 (3) |72.20±1.00 (3) |74.90±0.90 (3.5) |77.30±0.70 (2) |67.60±0.90 (3) |44.70±1.00 (3) |90.90±0.60 (3) |**82.50**±0.80 (2) |59.00±1.00 (2.5) \n",
- "TSA_resnet34 [[12]] |**1.5** |**63.73**±0.99 (1.5) |**82.58**±1.11 (1.5) |**80.13**±1.01 (1.5) |**83.39**±0.80 (1) |**79.61**±0.68 (1) |71.03±0.84 (2) |**51.38**±1.17 (1.5) |94.05±0.45 (2) |**81.71**±0.95 (2) |**61.67**±0.95 (1) \n"
+ "k-NN [[1]] |14.6 |41.03±1.01 (15) |37.07±1.15 (16) |46.81±0.89 (15) |50.13±1.00 (15.5) |66.36±0.75 (13) |32.06±1.08 (16) |36.16±1.02 (13) |83.10±0.68 (12) |44.59±1.19 (15) |30.38±0.99 (15.5) \n",
+ "Finetune [[1]] |10.45 |45.78±1.10 (13) |60.85±1.58 (11.5) |68.69±1.26 (5) |57.31±1.26 (14) |69.05±0.90 (9.5) |42.60±1.17 (13.5) |38.20±1.02 (11) |85.51±0.68 (9) |66.79±1.31 (5) |34.86±0.97 (13) \n",
+ "MatchingNet [[1]] |13.55 |45.00±1.10 (13) |52.27±1.28 (14) |48.97±0.93 (13) |62.21±0.95 (12.5) |64.15±0.85 (15) |42.87±1.09 (13.5) |33.97±1.00 (14) |80.13±0.71 (15) |47.80±1.14 (12.5) |34.99±1.00 (13) \n",
+ "ProtoNet [[1]] |10.75 |50.50±1.08 (10.5) |59.98±1.35 (11.5) |53.10±1.00 (10.5) |68.79±1.01 (8.5) |66.56±0.83 (13) |48.96±1.08 (11) |39.71±1.11 (9) |85.27±0.77 (9) |47.12±1.10 (14) |41.00±1.10 (10.5) \n",
+ "fo-MAML [[1]] |12.25 |45.51±1.11 (13) |55.55±1.54 (13) |56.24±1.11 (8.5) |63.61±1.06 (12.5) |68.04±0.81 (9.5) |43.96±1.29 (13.5) |32.10±1.10 (15) |81.74±0.83 (14) |50.93±1.51 (10.5) |35.30±1.23 (13) \n",
+ "RelationNet [[1]] |15.55 |34.69±1.01 (16) |45.35±1.36 (15) |40.73±0.83 (16) |49.51±1.05 (15.5) |52.97±0.69 (16) |43.30±1.08 (13.5) |30.55±1.04 (16) |68.76±0.83 (16) |33.67±1.05 (16) |29.15±1.01 (15.5) \n",
+ "fo-Proto-MAML [[1]] |9.25 |49.53±1.05 (10.5) |63.37±1.33 (8.5) |55.95±0.99 (8.5) |68.66±0.96 (8.5) |66.49±0.83 (13) |51.52±1.00 (9.5) |39.96±1.14 (6.5) |87.15±0.69 (6) |48.83±1.09 (12.5) |43.74±1.12 (9) \n",
+ "ALFA+fo-Proto-MAML [[3]] |7.1 |52.80±1.11 (8.5) |61.87±1.51 (8.5) |63.43±1.10 (6) |69.75±1.05 (6.5) |70.78±0.88 (7) |59.17±1.16 (5.5) |41.49±1.17 (6.5) |85.96±0.77 (9) |60.78±1.29 (8) |48.11±1.14 (5.5) \n",
+ "ProtoNet (large) [[4]] |7.25 |53.69±1.07 (6) |68.50±1.27 (5.5) |58.04±0.96 (7) |74.07±0.92 (4.5) |68.76±0.77 (9.5) |53.30±1.06 (8) |40.73±1.15 (6.5) |86.96±0.73 (6) |58.11±1.05 (9) |41.70±1.08 (10.5) \n",
+ "CTX [[4]] |2.5 |62.76±0.99 (2.5) |**82.21**±1.00 (2) |**79.49**±0.89 (1.5) |80.63±0.88 (3) |75.57±0.64 (4) |72.68±0.82 (2) |51.58±1.11 (2.5) |**95.34**±0.37 (1) |82.65±0.76 (3) |59.90±1.02 (3.5) \n",
+ "BOHB [[5]] |7.85 |51.92±1.05 (8.5) |67.57±1.21 (5.5) |54.12±0.90 (10.5) |70.69±0.90 (6.5) |68.34±0.76 (9.5) |50.33±1.04 (9.5) |41.38±1.12 (6.5) |87.34±0.59 (6) |51.80±1.04 (10.5) |48.03±0.99 (5.5) \n",
+ "SimpleCNAPS [[14],[7]] |8.75 |54.80±1.20 (6) |62.00±1.30 (8.5) |49.20±0.90 (13) |66.50±1.00 (10.5) |71.60±0.70 (5.5) |56.60±1.00 (7) |37.50±1.20 (11) |82.10±0.90 (12) |63.10±1.10 (6.5) |45.80±1.00 (7.5) \n",
+ "TransductiveCNAPS [[14],[8]]|8.6 |54.10±1.10 (6) |62.90±1.30 (8.5) |48.40±0.90 (13) |67.30±0.90 (10.5) |72.50±0.70 (5.5) |58.00±1.00 (5.5) |37.70±1.10 (11) |82.80±0.80 (12) |61.80±1.10 (6.5) |45.80±1.00 (7.5) \n",
+ "TSA_resnet18 [[12]] |3.8 |59.50±1.10 (4) |78.20±1.20 (4) |72.20±1.00 (4) |74.90±0.90 (4.5) |77.30±0.70 (3) |67.60±0.90 (4) |44.70±1.00 (4) |90.90±0.60 (4) |82.50±0.80 (3) |59.00±1.00 (3.5) \n",
+ "TSA_resnet34 [[12]] |2.25 |63.73±0.99 (2.5) |**82.58**±1.11 (2) |**80.13**±1.01 (1.5) |83.39±0.80 (2) |79.61±0.68 (2) |71.03±0.84 (3) |51.38±1.17 (2.5) |94.05±0.45 (2.5) |81.71±0.95 (3) |**61.67**±0.95 (1.5) \n",
+ "PMF-DINOSmall [[15]] |**1.5** |**75.51**±0.72 (1) |**82.81**±1.10 (2) |78.38±1.09 (3) |**85.18**±0.77 (1) |**86.95**±0.60 (1) |**74.47**±0.83 (1) |**55.16**±1.09 (1) |94.66±0.48 (2.5) |**90.04**±0.81 (1) |**62.60**±0.96 (1.5) \n"
]
}
],
@@ -9534,7 +9893,7 @@
},
{
"cell_type": "code",
- "execution_count": 77,
+ "execution_count": 80,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -9549,24 +9908,25 @@
"text": [
"Method |Avg rank |ILSVRC (test) |Omniglot |Aircraft |Birds |Textures |QuickDraw |Fungi |VGG Flower |Traffic signs |MSCOCO \n",
"---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------\n",
- "k-NN [[1]] |15.85 |38.55±0.94 (15.5) |74.60±1.08 (17) |64.98±0.82 (18) |66.35±0.92 (13.5) |63.58±0.79 (14.5) |44.88±1.05 (18) |37.12±1.06 (14.5) |83.47±0.61 (14.5) |40.11±1.10 (17) |29.55±0.96 (16) \n",
- "Finetune [[1]] |13.1 |43.08±1.08 (13.5) |71.11±1.37 (18) |72.03±1.07 (14.5) |59.82±1.15 (16) |69.14±0.85 (8.5) |47.05±1.16 (17) |38.16±1.04 (14.5) |85.28±0.69 (13) |66.74±1.23 (2) |35.17±1.08 (14) \n",
- "MatchingNet [[1]] |15.4 |36.08±1.00 (17) |78.25±1.01 (15.5) |69.17±0.96 (16.5) |56.40±1.00 (17) |61.80±0.74 (16) |60.81±1.03 (14.5) |33.70±1.04 (17) |81.90±0.72 (16) |55.57±1.08 (8.5) |28.79±0.96 (16) \n",
- "ProtoNet [[1]] |13.5 |44.50±1.05 (13.5) |79.56±1.12 (15.5) |71.14±0.86 (14.5) |67.01±1.02 (13.5) |65.18±0.84 (12.5) |64.88±0.89 (13) |40.26±1.13 (13) |86.85±0.71 (12) |46.48±1.00 (15) |39.87±1.06 (12.5) \n",
- "fo-MAML [[1]] |15.25 |37.83±1.01 (15.5) |83.92±0.95 (13.5) |76.41±0.69 (12) |62.43±1.08 (15) |64.16±0.83 (14.5) |59.73±1.10 (16) |33.54±1.11 (17) |79.94±0.84 (17) |42.91±1.31 (16) |29.37±1.08 (16) \n",
- "RelationNet [[1]] |16.8 |30.89±0.93 (18) |86.57±0.79 (12) |69.71±0.83 (16.5) |54.14±0.99 (18) |56.56±0.73 (18) |61.75±0.97 (14.5) |32.56±1.08 (17) |76.08±0.76 (18) |37.48±0.93 (18) |27.41±0.89 (18) \n",
- "fo-Proto-MAML [[1]] |11.6 |46.52±1.05 (12) |82.69±0.97 (13.5) |75.23±0.76 (13) |69.88±1.02 (11.5) |68.25±0.81 (10.5) |66.84±0.94 (12) |41.99±1.17 (12) |88.72±0.67 (10) |52.42±1.08 (11.5) |41.74±1.13 (10) \n",
- "CNAPs [[2]] |10.25 |50.80±1.10 (10.5) |91.70±0.50 (8) |83.70±0.60 (7.5) |73.60±0.90 (10) |59.50±0.70 (17) |74.70±0.80 (11) |50.20±1.10 (7.5) |88.90±0.50 (10) |56.50±1.10 (8.5) |39.40±1.00 (12.5) \n",
- "SUR [[6]] |7.65 |56.10±1.10 (7) |93.10±0.50 (5.5) |84.60±0.70 (5.5) |70.60±1.00 (11.5) |71.00±0.80 (6.5) |81.30±0.60 (4) |64.20±1.10 (3.5) |82.80±0.80 (14.5) |53.40±1.00 (11.5) |50.10±1.00 (7) \n",
- "SUR-pnf [[6]] |8.2 |56.00±1.10 (7) |90.00±0.60 (10.5) |79.70±0.80 (10.5) |75.90±0.90 (7.5) |72.50±0.70 (4.5) |76.70±0.70 (8.5) |49.80±1.10 (7.5) |90.00±0.60 (7.5) |52.20±0.80 (11.5) |50.20±1.10 (7) \n",
- "SimpleCNAPS [[14],[7]] |7.45 |56.50±1.10 (7) |91.90±0.60 (8) |83.80±0.60 (7.5) |76.10±0.90 (7.5) |70.00±0.80 (8.5) |78.30±0.70 (6.5) |49.10±1.20 (7.5) |91.30±0.60 (6) |59.20±1.00 (6) |42.40±1.10 (10) \n",
- "TransductiveCNAPS [[14],[8]]|6.05 |**57.90**±1.10 (2.5) |94.30±0.40 (3.5) |84.70±0.50 (5.5) |78.80±0.70 (3.5) |66.20±0.80 (12.5) |77.90±0.60 (6.5) |48.90±1.20 (7.5) |**92.30**±0.40 (3) |59.70±1.10 (6) |42.50±1.10 (10) \n",
- "URT [[9]] |6.05 |55.70±1.00 (7) |94.40±0.40 (3.5) |85.80±0.60 (4) |76.30±0.80 (7.5) |71.80±0.70 (4.5) |**82.50**±0.60 (2) |63.50±1.00 (3.5) |88.20±0.60 (10) |51.10±1.10 (14) |52.20±1.10 (4.5) \n",
- "URT-pf [[9]] |7.55 |55.50±1.10 (7) |90.20±0.60 (10.5) |79.80±0.70 (10.5) |77.50±0.80 (5) |73.50±0.70 (3) |75.80±0.70 (10) |48.10±0.90 (10.5) |**91.90**±0.50 (3) |52.00±1.40 (11.5) |52.10±1.00 (4.5) \n",
- "FLUTE [[10]] |5.9 |51.80±1.10 (10.5) |93.20±0.50 (5.5) |87.20±0.50 (3) |79.20±0.80 (3.5) |68.80±0.80 (10.5) |79.50±0.70 (5) |58.10±1.10 (5) |**91.60**±0.60 (3) |58.40±1.10 (6) |50.00±1.00 (7) \n",
- "URL [[11]] |2.15 |**57.51**±1.08 (2.5) |**94.51**±0.41 (1.5) |88.59±0.46 (2) |**80.54**±0.69 (1.5) |**76.17**±0.67 (1.5) |**81.94**±0.56 (2) |**68.75**±0.95 (1.5) |**92.11**±0.48 (3) |63.34±1.19 (3.5) |54.03±0.96 (2.5) \n",
- "TSA [[12]] |**1.65** |**57.35**±1.05 (2.5) |**94.96**±0.38 (1.5) |**89.33**±0.44 (1) |**81.42**±0.74 (1.5) |**76.74**±0.72 (1.5) |**82.01**±0.57 (2) |**67.40**±0.99 (1.5) |**92.18**±0.52 (3) |**83.55**±0.90 (1) |**55.75**±1.06 (1) \n",
- "TriM [[13]] |6.6 |**58.60**±1.00 (2.5) |92.00±0.60 (8) |82.80±0.70 (9) |75.30±0.80 (7.5) |71.20±0.80 (6.5) |77.30±0.70 (8.5) |48.50±1.00 (10.5) |90.50±0.50 (7.5) |63.00±1.00 (3.5) |52.80±1.10 (2.5) \n"
+ "k-NN [[1]] |16.85 |38.55±0.94 (16.5) |74.60±1.08 (18) |64.98±0.82 (19) |66.35±0.92 (14.5) |63.58±0.79 (15.5) |44.88±1.05 (19) |37.12±1.06 (15.5) |83.47±0.61 (15.5) |40.11±1.10 (18) |29.55±0.96 (17) \n",
+ "Finetune [[1]] |14.1 |43.08±1.08 (14.5) |71.11±1.37 (19) |72.03±1.07 (15.5) |59.82±1.15 (17) |69.14±0.85 (9.5) |47.05±1.16 (18) |38.16±1.04 (15.5) |85.28±0.69 (14) |66.74±1.23 (3) |35.17±1.08 (15) \n",
+ "MatchingNet [[1]] |16.4 |36.08±1.00 (18) |78.25±1.01 (16.5) |69.17±0.96 (17.5) |56.40±1.00 (18) |61.80±0.74 (17) |60.81±1.03 (15.5) |33.70±1.04 (18) |81.90±0.72 (17) |55.57±1.08 (9.5) |28.79±0.96 (17) \n",
+ "ProtoNet [[1]] |14.5 |44.50±1.05 (14.5) |79.56±1.12 (16.5) |71.14±0.86 (15.5) |67.01±1.02 (14.5) |65.18±0.84 (13.5) |64.88±0.89 (14) |40.26±1.13 (14) |86.85±0.71 (13) |46.48±1.00 (16) |39.87±1.06 (13.5) \n",
+ "fo-MAML [[1]] |16.25 |37.83±1.01 (16.5) |83.92±0.95 (14.5) |76.41±0.69 (13) |62.43±1.08 (16) |64.16±0.83 (15.5) |59.73±1.10 (17) |33.54±1.11 (18) |79.94±0.84 (18) |42.91±1.31 (17) |29.37±1.08 (17) \n",
+ "RelationNet [[1]] |17.8 |30.89±0.93 (19) |86.57±0.79 (13) |69.71±0.83 (17.5) |54.14±0.99 (19) |56.56±0.73 (19) |61.75±0.97 (15.5) |32.56±1.08 (18) |76.08±0.76 (19) |37.48±0.93 (19) |27.41±0.89 (19) \n",
+ "fo-Proto-MAML [[1]] |12.6 |46.52±1.05 (13) |82.69±0.97 (14.5) |75.23±0.76 (14) |69.88±1.02 (12.5) |68.25±0.81 (11.5) |66.84±0.94 (13) |41.99±1.17 (13) |88.72±0.67 (11) |52.42±1.08 (12.5) |41.74±1.13 (11) \n",
+ "CNAPs [[2]] |11.2 |50.80±1.10 (11.5) |91.70±0.50 (8.5) |83.70±0.60 (8.5) |73.60±0.90 (11) |59.50±0.70 (18) |74.70±0.80 (12) |50.20±1.10 (8.5) |88.90±0.50 (11) |56.50±1.10 (9.5) |39.40±1.00 (13.5) \n",
+ "SUR [[6]] |8.45 |56.10±1.10 (8) |93.10±0.50 (5.5) |84.60±0.70 (6.5) |70.60±1.00 (12.5) |71.00±0.80 (7.5) |81.30±0.60 (4) |64.20±1.10 (4.5) |82.80±0.80 (15.5) |53.40±1.00 (12.5) |50.10±1.00 (8) \n",
+ "SUR-pnf [[6]] |9.2 |56.00±1.10 (8) |90.00±0.60 (11.5) |79.70±0.80 (11.5) |75.90±0.90 (8.5) |72.50±0.70 (5.5) |76.70±0.70 (9.5) |49.80±1.10 (8.5) |90.00±0.60 (8.5) |52.20±0.80 (12.5) |50.20±1.10 (8) \n",
+ "SimpleCNAPS [[14],[7]] |8.4 |56.50±1.10 (8) |91.90±0.60 (8.5) |83.80±0.60 (8.5) |76.10±0.90 (8.5) |70.00±0.80 (9.5) |78.30±0.70 (7.5) |49.10±1.20 (8.5) |91.30±0.60 (7) |59.20±1.00 (7) |42.40±1.10 (11) \n",
+ "TransductiveCNAPS [[14],[8]]|6.95 |57.90±1.10 (3.5) |94.30±0.40 (3.5) |84.70±0.50 (6.5) |78.80±0.70 (4.5) |66.20±0.80 (13.5) |77.90±0.60 (7.5) |48.90±1.20 (8.5) |92.30±0.40 (4) |59.70±1.10 (7) |42.50±1.10 (11) \n",
+ "URT [[9]] |6.85 |55.70±1.00 (8) |94.40±0.40 (3.5) |85.80±0.60 (5) |76.30±0.80 (8.5) |71.80±0.70 (5.5) |**82.50**±0.60 (2) |63.50±1.00 (4.5) |88.20±0.60 (11) |51.10±1.10 (15) |52.20±1.10 (5.5) \n",
+ "URT-pf [[9]] |8.55 |55.50±1.10 (8) |90.20±0.60 (11.5) |79.80±0.70 (11.5) |77.50±0.80 (6) |73.50±0.70 (4) |75.80±0.70 (11) |48.10±0.90 (11.5) |91.90±0.50 (4) |52.00±1.40 (12.5) |52.10±1.00 (5.5) \n",
+ "FLUTE [[10]] |6.75 |51.80±1.10 (11.5) |93.20±0.50 (5.5) |87.20±0.50 (4) |79.20±0.80 (4.5) |68.80±0.80 (11.5) |79.50±0.70 (5.5) |58.10±1.10 (6) |91.60±0.60 (4) |58.40±1.10 (7) |50.00±1.00 (8) \n",
+ "URL [[11]] |2.95 |57.51±1.08 (3.5) |**94.51**±0.41 (1.5) |88.59±0.46 (3) |80.54±0.69 (2.5) |76.17±0.67 (2.5) |**81.94**±0.56 (2) |68.75±0.95 (2.5) |92.11±0.48 (4) |63.34±1.19 (4.5) |54.03±0.96 (3.5) \n",
+ "TSA [[12]] |2.4 |57.35±1.05 (3.5) |**94.96**±0.38 (1.5) |**89.33**±0.44 (1.5) |81.42±0.74 (2.5) |76.74±0.72 (2.5) |**82.01**±0.57 (2) |67.40±0.99 (2.5) |92.18±0.52 (4) |83.55±0.90 (2) |55.75±1.06 (2) \n",
+ "TriM [[13]] |7.55 |58.60±1.00 (3.5) |92.00±0.60 (8.5) |82.80±0.70 (10) |75.30±0.80 (8.5) |71.20±0.80 (7.5) |77.30±0.70 (9.5) |48.50±1.00 (11.5) |90.50±0.50 (8.5) |63.00±1.00 (4.5) |52.80±1.10 (3.5) \n",
+ "PMF-DINOSmall [[15]] |**2.25** |**73.52**±0.80 (1) |92.17±0.57 (8.5) |**89.49**±0.52 (1.5) |**91.04**±0.37 (1) |**85.73**±0.62 (1) |79.43±0.67 (5.5) |**74.99**±0.94 (1) |**95.30**±0.44 (1) |**89.85**±0.76 (1) |**59.69**±1.02 (1) \n"
]
}
],
@@ -9594,7 +9954,7 @@
},
{
"cell_type": "code",
- "execution_count": 78,
+ "execution_count": 81,
"metadata": {
"id": "dc5MOCw1n02N"
},
@@ -9615,7 +9975,7 @@
},
{
"cell_type": "code",
- "execution_count": 79,
+ "execution_count": 82,
"metadata": {
"id": "76-TdhVTZfdZ"
},
@@ -9643,7 +10003,7 @@
},
{
"cell_type": "code",
- "execution_count": 80,
+ "execution_count": 83,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -9670,6 +10030,7 @@
"[12]: #12-li-et-al-2021b\n",
"[13]: #13-liu-et-al-2021b\n",
"[14]: #14-bateni-et-al-2022b\n",
+ "[15]: #15-hu-et-al-2022\n",
"\n",
"###### \\[1\\] Triantafillou et al. (2020)\n",
"\n",
@@ -9739,6 +10100,11 @@
"###### \\[14\\] Bateni et al. (2022b)\n",
"\n",
"Bateni Peyman, Jarred Barber, Raghav Goyal, Vaden Masrani, Jan-Willem van de Meent, Leonid Sigal, and Frank Wood.; [_Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning._](https://arxiv.org/abs/2201.05151); arXiv 2022.\n",
+ "\n",
+ "\n",
+ "###### \\[15\\] Hu et al. (2022)\n",
+ "\n",
+ "Shell Xu Hu, Da Li, Jan Stühmer, Minyoung Kim and Timothy Hospedales.; [_Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference._](https://arxiv.org/abs/2204.07305); CVPR 2022.\n",
"\n"
]
}
@@ -9758,7 +10124,7 @@
},
{
"cell_type": "code",
- "execution_count": 81,
+ "execution_count": 84,
"metadata": {
"id": "aOAZQlucj59E"
},
@@ -9783,14 +10149,13 @@
},
{
"cell_type": "code",
- "execution_count": 82,
+ "execution_count": 85,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "_tAgydyHX_R_",
- "outputId": "d3838676-d1d2-48be-95c2-583667298cf7",
- "scrolled": false
+ "outputId": "d3838676-d1d2-48be-95c2-583667298cf7"
},
"outputs": [
{
@@ -9803,44 +10168,46 @@
"\n",
"Method |Avg rank |ILSVRC (test) |Omniglot |Aircraft |Birds |Textures |QuickDraw |Fungi |VGG Flower |Traffic signs |MSCOCO \n",
"---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------\n",
- "k-NN [[1]] |13.6 |41.03±1.01 (14) |37.07±1.15 (15) |46.81±0.89 (14) |50.13±1.00 (14.5) |66.36±0.75 (12) |32.06±1.08 (15) |36.16±1.02 (12) |83.10±0.68 (11) |44.59±1.19 (14) |30.38±0.99 (14.5) \n",
- "Finetune [[1]] |9.45 |45.78±1.10 (12) |60.85±1.58 (10.5) |68.69±1.26 (4) |57.31±1.26 (13) |69.05±0.90 (8.5) |42.60±1.17 (12.5) |38.20±1.02 (10) |85.51±0.68 (8) |66.79±1.31 (4) |34.86±0.97 (12) \n",
- "MatchingNet [[1]] |12.55 |45.00±1.10 (12) |52.27±1.28 (13) |48.97±0.93 (12) |62.21±0.95 (11.5) |64.15±0.85 (14) |42.87±1.09 (12.5) |33.97±1.00 (13) |80.13±0.71 (14) |47.80±1.14 (11.5) |34.99±1.00 (12) \n",
- "ProtoNet [[1]] |9.75 |50.50±1.08 (9.5) |59.98±1.35 (10.5) |53.10±1.00 (9.5) |68.79±1.01 (7.5) |66.56±0.83 (12) |48.96±1.08 (10) |39.71±1.11 (8) |85.27±0.77 (8) |47.12±1.10 (13) |41.00±1.10 (9.5) \n",
- "fo-MAML [[1]] |11.25 |45.51±1.11 (12) |55.55±1.54 (12) |56.24±1.11 (7.5) |63.61±1.06 (11.5) |68.04±0.81 (8.5) |43.96±1.29 (12.5) |32.10±1.10 (14) |81.74±0.83 (13) |50.93±1.51 (9.5) |35.30±1.23 (12) \n",
- "RelationNet [[1]] |14.55 |34.69±1.01 (15) |45.35±1.36 (14) |40.73±0.83 (15) |49.51±1.05 (14.5) |52.97±0.69 (15) |43.30±1.08 (12.5) |30.55±1.04 (15) |68.76±0.83 (15) |33.67±1.05 (15) |29.15±1.01 (14.5) \n",
- "fo-Proto-MAML [[1]] |8.25 |49.53±1.05 (9.5) |63.37±1.33 (7.5) |55.95±0.99 (7.5) |68.66±0.96 (7.5) |66.49±0.83 (12) |51.52±1.00 (8.5) |39.96±1.14 (5.5) |87.15±0.69 (5) |48.83±1.09 (11.5) |43.74±1.12 (8) \n",
- "ALFA+fo-Proto-MAML [[3]] |6.1 |52.80±1.11 (7.5) |61.87±1.51 (7.5) |63.43±1.10 (5) |69.75±1.05 (5.5) |70.78±0.88 (6) |59.17±1.16 (4.5) |41.49±1.17 (5.5) |85.96±0.77 (8) |60.78±1.29 (7) |48.11±1.14 (4.5) \n",
- "ProtoNet (large) [[4]] |6.25 |53.69±1.07 (5) |68.50±1.27 (4.5) |58.04±0.96 (6) |74.07±0.92 (3.5) |68.76±0.77 (8.5) |53.30±1.06 (7) |40.73±1.15 (5.5) |86.96±0.73 (5) |58.11±1.05 (8) |41.70±1.08 (9.5) \n",
- "CTX [[4]] |1.75 |**62.76**±0.99 (1.5) |**82.21**±1.00 (1.5) |**79.49**±0.89 (1.5) |80.63±0.88 (2) |75.57±0.64 (3) |**72.68**±0.82 (1) |**51.58**±1.11 (1.5) |**95.34**±0.37 (1) |**82.65**±0.76 (2) |59.90±1.02 (2.5) \n",
- "BOHB [[5]] |6.85 |51.92±1.05 (7.5) |67.57±1.21 (4.5) |54.12±0.90 (9.5) |70.69±0.90 (5.5) |68.34±0.76 (8.5) |50.33±1.04 (8.5) |41.38±1.12 (5.5) |87.34±0.59 (5) |51.80±1.04 (9.5) |48.03±0.99 (4.5) \n",
- "SimpleCNAPS [[14],[7]] |7.75 |54.80±1.20 (5) |62.00±1.30 (7.5) |49.20±0.90 (12) |66.50±1.00 (9.5) |71.60±0.70 (4.5) |56.60±1.00 (6) |37.50±1.20 (10) |82.10±0.90 (11) |63.10±1.10 (5.5) |45.80±1.00 (6.5) \n",
- "TransductiveCNAPS [[14],[8]]|7.6 |54.10±1.10 (5) |62.90±1.30 (7.5) |48.40±0.90 (12) |67.30±0.90 (9.5) |72.50±0.70 (4.5) |58.00±1.00 (4.5) |37.70±1.10 (10) |82.80±0.80 (11) |61.80±1.10 (5.5) |45.80±1.00 (6.5) \n",
- "TSA_resnet18 [[12]] |2.8 |59.50±1.10 (3) |78.20±1.20 (3) |72.20±1.00 (3) |74.90±0.90 (3.5) |77.30±0.70 (2) |67.60±0.90 (3) |44.70±1.00 (3) |90.90±0.60 (3) |**82.50**±0.80 (2) |59.00±1.00 (2.5) \n",
- "TSA_resnet34 [[12]] |**1.5** |**63.73**±0.99 (1.5) |**82.58**±1.11 (1.5) |**80.13**±1.01 (1.5) |**83.39**±0.80 (1) |**79.61**±0.68 (1) |71.03±0.84 (2) |**51.38**±1.17 (1.5) |94.05±0.45 (2) |**81.71**±0.95 (2) |**61.67**±0.95 (1) \n",
+ "k-NN [[1]] |14.6 |41.03±1.01 (15) |37.07±1.15 (16) |46.81±0.89 (15) |50.13±1.00 (15.5) |66.36±0.75 (13) |32.06±1.08 (16) |36.16±1.02 (13) |83.10±0.68 (12) |44.59±1.19 (15) |30.38±0.99 (15.5) \n",
+ "Finetune [[1]] |10.45 |45.78±1.10 (13) |60.85±1.58 (11.5) |68.69±1.26 (5) |57.31±1.26 (14) |69.05±0.90 (9.5) |42.60±1.17 (13.5) |38.20±1.02 (11) |85.51±0.68 (9) |66.79±1.31 (5) |34.86±0.97 (13) \n",
+ "MatchingNet [[1]] |13.55 |45.00±1.10 (13) |52.27±1.28 (14) |48.97±0.93 (13) |62.21±0.95 (12.5) |64.15±0.85 (15) |42.87±1.09 (13.5) |33.97±1.00 (14) |80.13±0.71 (15) |47.80±1.14 (12.5) |34.99±1.00 (13) \n",
+ "ProtoNet [[1]] |10.75 |50.50±1.08 (10.5) |59.98±1.35 (11.5) |53.10±1.00 (10.5) |68.79±1.01 (8.5) |66.56±0.83 (13) |48.96±1.08 (11) |39.71±1.11 (9) |85.27±0.77 (9) |47.12±1.10 (14) |41.00±1.10 (10.5) \n",
+ "fo-MAML [[1]] |12.25 |45.51±1.11 (13) |55.55±1.54 (13) |56.24±1.11 (8.5) |63.61±1.06 (12.5) |68.04±0.81 (9.5) |43.96±1.29 (13.5) |32.10±1.10 (15) |81.74±0.83 (14) |50.93±1.51 (10.5) |35.30±1.23 (13) \n",
+ "RelationNet [[1]] |15.55 |34.69±1.01 (16) |45.35±1.36 (15) |40.73±0.83 (16) |49.51±1.05 (15.5) |52.97±0.69 (16) |43.30±1.08 (13.5) |30.55±1.04 (16) |68.76±0.83 (16) |33.67±1.05 (16) |29.15±1.01 (15.5) \n",
+ "fo-Proto-MAML [[1]] |9.25 |49.53±1.05 (10.5) |63.37±1.33 (8.5) |55.95±0.99 (8.5) |68.66±0.96 (8.5) |66.49±0.83 (13) |51.52±1.00 (9.5) |39.96±1.14 (6.5) |87.15±0.69 (6) |48.83±1.09 (12.5) |43.74±1.12 (9) \n",
+ "ALFA+fo-Proto-MAML [[3]] |7.1 |52.80±1.11 (8.5) |61.87±1.51 (8.5) |63.43±1.10 (6) |69.75±1.05 (6.5) |70.78±0.88 (7) |59.17±1.16 (5.5) |41.49±1.17 (6.5) |85.96±0.77 (9) |60.78±1.29 (8) |48.11±1.14 (5.5) \n",
+ "ProtoNet (large) [[4]] |7.25 |53.69±1.07 (6) |68.50±1.27 (5.5) |58.04±0.96 (7) |74.07±0.92 (4.5) |68.76±0.77 (9.5) |53.30±1.06 (8) |40.73±1.15 (6.5) |86.96±0.73 (6) |58.11±1.05 (9) |41.70±1.08 (10.5) \n",
+ "CTX [[4]] |2.5 |62.76±0.99 (2.5) |**82.21**±1.00 (2) |**79.49**±0.89 (1.5) |80.63±0.88 (3) |75.57±0.64 (4) |72.68±0.82 (2) |51.58±1.11 (2.5) |**95.34**±0.37 (1) |82.65±0.76 (3) |59.90±1.02 (3.5) \n",
+ "BOHB [[5]] |7.85 |51.92±1.05 (8.5) |67.57±1.21 (5.5) |54.12±0.90 (10.5) |70.69±0.90 (6.5) |68.34±0.76 (9.5) |50.33±1.04 (9.5) |41.38±1.12 (6.5) |87.34±0.59 (6) |51.80±1.04 (10.5) |48.03±0.99 (5.5) \n",
+ "SimpleCNAPS [[14],[7]] |8.75 |54.80±1.20 (6) |62.00±1.30 (8.5) |49.20±0.90 (13) |66.50±1.00 (10.5) |71.60±0.70 (5.5) |56.60±1.00 (7) |37.50±1.20 (11) |82.10±0.90 (12) |63.10±1.10 (6.5) |45.80±1.00 (7.5) \n",
+ "TransductiveCNAPS [[14],[8]]|8.6 |54.10±1.10 (6) |62.90±1.30 (8.5) |48.40±0.90 (13) |67.30±0.90 (10.5) |72.50±0.70 (5.5) |58.00±1.00 (5.5) |37.70±1.10 (11) |82.80±0.80 (12) |61.80±1.10 (6.5) |45.80±1.00 (7.5) \n",
+ "TSA_resnet18 [[12]] |3.8 |59.50±1.10 (4) |78.20±1.20 (4) |72.20±1.00 (4) |74.90±0.90 (4.5) |77.30±0.70 (3) |67.60±0.90 (4) |44.70±1.00 (4) |90.90±0.60 (4) |82.50±0.80 (3) |59.00±1.00 (3.5) \n",
+ "TSA_resnet34 [[12]] |2.25 |63.73±0.99 (2.5) |**82.58**±1.11 (2) |**80.13**±1.01 (1.5) |83.39±0.80 (2) |79.61±0.68 (2) |71.03±0.84 (3) |51.38±1.17 (2.5) |94.05±0.45 (2.5) |81.71±0.95 (3) |**61.67**±0.95 (1.5) \n",
+ "PMF-DINOSmall [[15]] |**1.5** |**75.51**±0.72 (1) |**82.81**±1.10 (2) |78.38±1.09 (3) |**85.18**±0.77 (1) |**86.95**±0.60 (1) |**74.47**±0.83 (1) |**55.16**±1.09 (1) |94.66±0.48 (2.5) |**90.04**±0.81 (1) |**62.60**±0.96 (1.5) \n",
"\n",
"## Training on all datasets\n",
"\n",
"Method |Avg rank |ILSVRC (test) |Omniglot |Aircraft |Birds |Textures |QuickDraw |Fungi |VGG Flower |Traffic signs |MSCOCO \n",
"---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------\n",
- "k-NN [[1]] |15.85 |38.55±0.94 (15.5) |74.60±1.08 (17) |64.98±0.82 (18) |66.35±0.92 (13.5) |63.58±0.79 (14.5) |44.88±1.05 (18) |37.12±1.06 (14.5) |83.47±0.61 (14.5) |40.11±1.10 (17) |29.55±0.96 (16) \n",
- "Finetune [[1]] |13.1 |43.08±1.08 (13.5) |71.11±1.37 (18) |72.03±1.07 (14.5) |59.82±1.15 (16) |69.14±0.85 (8.5) |47.05±1.16 (17) |38.16±1.04 (14.5) |85.28±0.69 (13) |66.74±1.23 (2) |35.17±1.08 (14) \n",
- "MatchingNet [[1]] |15.4 |36.08±1.00 (17) |78.25±1.01 (15.5) |69.17±0.96 (16.5) |56.40±1.00 (17) |61.80±0.74 (16) |60.81±1.03 (14.5) |33.70±1.04 (17) |81.90±0.72 (16) |55.57±1.08 (8.5) |28.79±0.96 (16) \n",
- "ProtoNet [[1]] |13.5 |44.50±1.05 (13.5) |79.56±1.12 (15.5) |71.14±0.86 (14.5) |67.01±1.02 (13.5) |65.18±0.84 (12.5) |64.88±0.89 (13) |40.26±1.13 (13) |86.85±0.71 (12) |46.48±1.00 (15) |39.87±1.06 (12.5) \n",
- "fo-MAML [[1]] |15.25 |37.83±1.01 (15.5) |83.92±0.95 (13.5) |76.41±0.69 (12) |62.43±1.08 (15) |64.16±0.83 (14.5) |59.73±1.10 (16) |33.54±1.11 (17) |79.94±0.84 (17) |42.91±1.31 (16) |29.37±1.08 (16) \n",
- "RelationNet [[1]] |16.8 |30.89±0.93 (18) |86.57±0.79 (12) |69.71±0.83 (16.5) |54.14±0.99 (18) |56.56±0.73 (18) |61.75±0.97 (14.5) |32.56±1.08 (17) |76.08±0.76 (18) |37.48±0.93 (18) |27.41±0.89 (18) \n",
- "fo-Proto-MAML [[1]] |11.6 |46.52±1.05 (12) |82.69±0.97 (13.5) |75.23±0.76 (13) |69.88±1.02 (11.5) |68.25±0.81 (10.5) |66.84±0.94 (12) |41.99±1.17 (12) |88.72±0.67 (10) |52.42±1.08 (11.5) |41.74±1.13 (10) \n",
- "CNAPs [[2]] |10.25 |50.80±1.10 (10.5) |91.70±0.50 (8) |83.70±0.60 (7.5) |73.60±0.90 (10) |59.50±0.70 (17) |74.70±0.80 (11) |50.20±1.10 (7.5) |88.90±0.50 (10) |56.50±1.10 (8.5) |39.40±1.00 (12.5) \n",
- "SUR [[6]] |7.65 |56.10±1.10 (7) |93.10±0.50 (5.5) |84.60±0.70 (5.5) |70.60±1.00 (11.5) |71.00±0.80 (6.5) |81.30±0.60 (4) |64.20±1.10 (3.5) |82.80±0.80 (14.5) |53.40±1.00 (11.5) |50.10±1.00 (7) \n",
- "SUR-pnf [[6]] |8.2 |56.00±1.10 (7) |90.00±0.60 (10.5) |79.70±0.80 (10.5) |75.90±0.90 (7.5) |72.50±0.70 (4.5) |76.70±0.70 (8.5) |49.80±1.10 (7.5) |90.00±0.60 (7.5) |52.20±0.80 (11.5) |50.20±1.10 (7) \n",
- "SimpleCNAPS [[14],[7]] |7.45 |56.50±1.10 (7) |91.90±0.60 (8) |83.80±0.60 (7.5) |76.10±0.90 (7.5) |70.00±0.80 (8.5) |78.30±0.70 (6.5) |49.10±1.20 (7.5) |91.30±0.60 (6) |59.20±1.00 (6) |42.40±1.10 (10) \n",
- "TransductiveCNAPS [[14],[8]]|6.05 |**57.90**±1.10 (2.5) |94.30±0.40 (3.5) |84.70±0.50 (5.5) |78.80±0.70 (3.5) |66.20±0.80 (12.5) |77.90±0.60 (6.5) |48.90±1.20 (7.5) |**92.30**±0.40 (3) |59.70±1.10 (6) |42.50±1.10 (10) \n",
- "URT [[9]] |6.05 |55.70±1.00 (7) |94.40±0.40 (3.5) |85.80±0.60 (4) |76.30±0.80 (7.5) |71.80±0.70 (4.5) |**82.50**±0.60 (2) |63.50±1.00 (3.5) |88.20±0.60 (10) |51.10±1.10 (14) |52.20±1.10 (4.5) \n",
- "URT-pf [[9]] |7.55 |55.50±1.10 (7) |90.20±0.60 (10.5) |79.80±0.70 (10.5) |77.50±0.80 (5) |73.50±0.70 (3) |75.80±0.70 (10) |48.10±0.90 (10.5) |**91.90**±0.50 (3) |52.00±1.40 (11.5) |52.10±1.00 (4.5) \n",
- "FLUTE [[10]] |5.9 |51.80±1.10 (10.5) |93.20±0.50 (5.5) |87.20±0.50 (3) |79.20±0.80 (3.5) |68.80±0.80 (10.5) |79.50±0.70 (5) |58.10±1.10 (5) |**91.60**±0.60 (3) |58.40±1.10 (6) |50.00±1.00 (7) \n",
- "URL [[11]] |2.15 |**57.51**±1.08 (2.5) |**94.51**±0.41 (1.5) |88.59±0.46 (2) |**80.54**±0.69 (1.5) |**76.17**±0.67 (1.5) |**81.94**±0.56 (2) |**68.75**±0.95 (1.5) |**92.11**±0.48 (3) |63.34±1.19 (3.5) |54.03±0.96 (2.5) \n",
- "TSA [[12]] |**1.65** |**57.35**±1.05 (2.5) |**94.96**±0.38 (1.5) |**89.33**±0.44 (1) |**81.42**±0.74 (1.5) |**76.74**±0.72 (1.5) |**82.01**±0.57 (2) |**67.40**±0.99 (1.5) |**92.18**±0.52 (3) |**83.55**±0.90 (1) |**55.75**±1.06 (1) \n",
- "TriM [[13]] |6.6 |**58.60**±1.00 (2.5) |92.00±0.60 (8) |82.80±0.70 (9) |75.30±0.80 (7.5) |71.20±0.80 (6.5) |77.30±0.70 (8.5) |48.50±1.00 (10.5) |90.50±0.50 (7.5) |63.00±1.00 (3.5) |52.80±1.10 (2.5) \n",
+ "k-NN [[1]] |16.85 |38.55±0.94 (16.5) |74.60±1.08 (18) |64.98±0.82 (19) |66.35±0.92 (14.5) |63.58±0.79 (15.5) |44.88±1.05 (19) |37.12±1.06 (15.5) |83.47±0.61 (15.5) |40.11±1.10 (18) |29.55±0.96 (17) \n",
+ "Finetune [[1]] |14.1 |43.08±1.08 (14.5) |71.11±1.37 (19) |72.03±1.07 (15.5) |59.82±1.15 (17) |69.14±0.85 (9.5) |47.05±1.16 (18) |38.16±1.04 (15.5) |85.28±0.69 (14) |66.74±1.23 (3) |35.17±1.08 (15) \n",
+ "MatchingNet [[1]] |16.4 |36.08±1.00 (18) |78.25±1.01 (16.5) |69.17±0.96 (17.5) |56.40±1.00 (18) |61.80±0.74 (17) |60.81±1.03 (15.5) |33.70±1.04 (18) |81.90±0.72 (17) |55.57±1.08 (9.5) |28.79±0.96 (17) \n",
+ "ProtoNet [[1]] |14.5 |44.50±1.05 (14.5) |79.56±1.12 (16.5) |71.14±0.86 (15.5) |67.01±1.02 (14.5) |65.18±0.84 (13.5) |64.88±0.89 (14) |40.26±1.13 (14) |86.85±0.71 (13) |46.48±1.00 (16) |39.87±1.06 (13.5) \n",
+ "fo-MAML [[1]] |16.25 |37.83±1.01 (16.5) |83.92±0.95 (14.5) |76.41±0.69 (13) |62.43±1.08 (16) |64.16±0.83 (15.5) |59.73±1.10 (17) |33.54±1.11 (18) |79.94±0.84 (18) |42.91±1.31 (17) |29.37±1.08 (17) \n",
+ "RelationNet [[1]] |17.8 |30.89±0.93 (19) |86.57±0.79 (13) |69.71±0.83 (17.5) |54.14±0.99 (19) |56.56±0.73 (19) |61.75±0.97 (15.5) |32.56±1.08 (18) |76.08±0.76 (19) |37.48±0.93 (19) |27.41±0.89 (19) \n",
+ "fo-Proto-MAML [[1]] |12.6 |46.52±1.05 (13) |82.69±0.97 (14.5) |75.23±0.76 (14) |69.88±1.02 (12.5) |68.25±0.81 (11.5) |66.84±0.94 (13) |41.99±1.17 (13) |88.72±0.67 (11) |52.42±1.08 (12.5) |41.74±1.13 (11) \n",
+ "CNAPs [[2]] |11.2 |50.80±1.10 (11.5) |91.70±0.50 (8.5) |83.70±0.60 (8.5) |73.60±0.90 (11) |59.50±0.70 (18) |74.70±0.80 (12) |50.20±1.10 (8.5) |88.90±0.50 (11) |56.50±1.10 (9.5) |39.40±1.00 (13.5) \n",
+ "SUR [[6]] |8.45 |56.10±1.10 (8) |93.10±0.50 (5.5) |84.60±0.70 (6.5) |70.60±1.00 (12.5) |71.00±0.80 (7.5) |81.30±0.60 (4) |64.20±1.10 (4.5) |82.80±0.80 (15.5) |53.40±1.00 (12.5) |50.10±1.00 (8) \n",
+ "SUR-pnf [[6]] |9.2 |56.00±1.10 (8) |90.00±0.60 (11.5) |79.70±0.80 (11.5) |75.90±0.90 (8.5) |72.50±0.70 (5.5) |76.70±0.70 (9.5) |49.80±1.10 (8.5) |90.00±0.60 (8.5) |52.20±0.80 (12.5) |50.20±1.10 (8) \n",
+ "SimpleCNAPS [[14],[7]] |8.4 |56.50±1.10 (8) |91.90±0.60 (8.5) |83.80±0.60 (8.5) |76.10±0.90 (8.5) |70.00±0.80 (9.5) |78.30±0.70 (7.5) |49.10±1.20 (8.5) |91.30±0.60 (7) |59.20±1.00 (7) |42.40±1.10 (11) \n",
+ "TransductiveCNAPS [[14],[8]]|6.95 |57.90±1.10 (3.5) |94.30±0.40 (3.5) |84.70±0.50 (6.5) |78.80±0.70 (4.5) |66.20±0.80 (13.5) |77.90±0.60 (7.5) |48.90±1.20 (8.5) |92.30±0.40 (4) |59.70±1.10 (7) |42.50±1.10 (11) \n",
+ "URT [[9]] |6.85 |55.70±1.00 (8) |94.40±0.40 (3.5) |85.80±0.60 (5) |76.30±0.80 (8.5) |71.80±0.70 (5.5) |**82.50**±0.60 (2) |63.50±1.00 (4.5) |88.20±0.60 (11) |51.10±1.10 (15) |52.20±1.10 (5.5) \n",
+ "URT-pf [[9]] |8.55 |55.50±1.10 (8) |90.20±0.60 (11.5) |79.80±0.70 (11.5) |77.50±0.80 (6) |73.50±0.70 (4) |75.80±0.70 (11) |48.10±0.90 (11.5) |91.90±0.50 (4) |52.00±1.40 (12.5) |52.10±1.00 (5.5) \n",
+ "FLUTE [[10]] |6.75 |51.80±1.10 (11.5) |93.20±0.50 (5.5) |87.20±0.50 (4) |79.20±0.80 (4.5) |68.80±0.80 (11.5) |79.50±0.70 (5.5) |58.10±1.10 (6) |91.60±0.60 (4) |58.40±1.10 (7) |50.00±1.00 (8) \n",
+ "URL [[11]] |2.95 |57.51±1.08 (3.5) |**94.51**±0.41 (1.5) |88.59±0.46 (3) |80.54±0.69 (2.5) |76.17±0.67 (2.5) |**81.94**±0.56 (2) |68.75±0.95 (2.5) |92.11±0.48 (4) |63.34±1.19 (4.5) |54.03±0.96 (3.5) \n",
+ "TSA [[12]] |2.4 |57.35±1.05 (3.5) |**94.96**±0.38 (1.5) |**89.33**±0.44 (1.5) |81.42±0.74 (2.5) |76.74±0.72 (2.5) |**82.01**±0.57 (2) |67.40±0.99 (2.5) |92.18±0.52 (4) |83.55±0.90 (2) |55.75±1.06 (2) \n",
+ "TriM [[13]] |7.55 |58.60±1.00 (3.5) |92.00±0.60 (8.5) |82.80±0.70 (10) |75.30±0.80 (8.5) |71.20±0.80 (7.5) |77.30±0.70 (9.5) |48.50±1.00 (11.5) |90.50±0.50 (8.5) |63.00±1.00 (4.5) |52.80±1.10 (3.5) \n",
+ "PMF-DINOSmall [[15]] |**2.25** |**73.52**±0.80 (1) |92.17±0.57 (8.5) |**89.49**±0.52 (1.5) |**91.04**±0.37 (1) |**85.73**±0.62 (1) |79.43±0.67 (5.5) |**74.99**±0.94 (1) |**95.30**±0.44 (1) |**89.85**±0.76 (1) |**59.69**±1.02 (1) \n",
"\n",
"## References\n",
"\n",
@@ -9858,6 +10225,7 @@
"[12]: #12-li-et-al-2021b\n",
"[13]: #13-liu-et-al-2021b\n",
"[14]: #14-bateni-et-al-2022b\n",
+ "[15]: #15-hu-et-al-2022\n",
"\n",
"###### \\[1\\] Triantafillou et al. (2020)\n",
"\n",
@@ -9929,6 +10297,11 @@
"Bateni Peyman, Jarred Barber, Raghav Goyal, Vaden Masrani, Jan-Willem van de Meent, Leonid Sigal, and Frank Wood.; [_Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning._](https://arxiv.org/abs/2201.05151); arXiv 2022.\n",
"\n",
"\n",
+ "###### \\[15\\] Hu et al. (2022)\n",
+ "\n",
+ "Shell Xu Hu, Da Li, Jan Stühmer, Minyoung Kim and Timothy Hospedales.; [_Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference._](https://arxiv.org/abs/2204.07305); CVPR 2022.\n",
+ "\n",
+ "\n",
"\n"
]
}
@@ -9936,6 +10309,13 @@
"source": [
"print(export_md())"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {
@@ -9961,9 +10341,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.7"
+ "version": "3.8.15"
}
},
"nbformat": 4,
- "nbformat_minor": 1
+ "nbformat_minor": 4
}
diff --git a/README.md b/README.md
index 5598d8c..d73292c 100644
--- a/README.md
+++ b/README.md
@@ -137,44 +137,46 @@ The tables below were generated by
Method |Avg rank |ILSVRC (test) |Omniglot |Aircraft |Birds |Textures |QuickDraw |Fungi |VGG Flower |Traffic signs |MSCOCO
---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------
-k-NN [[1]] |13.6 |41.03±1.01 (14) |37.07±1.15 (15) |46.81±0.89 (14) |50.13±1.00 (14.5) |66.36±0.75 (12) |32.06±1.08 (15) |36.16±1.02 (12) |83.10±0.68 (11) |44.59±1.19 (14) |30.38±0.99 (14.5)
-Finetune [[1]] |9.45 |45.78±1.10 (12) |60.85±1.58 (10.5) |68.69±1.26 (4) |57.31±1.26 (13) |69.05±0.90 (8.5) |42.60±1.17 (12.5) |38.20±1.02 (10) |85.51±0.68 (8) |66.79±1.31 (4) |34.86±0.97 (12)
-MatchingNet [[1]] |12.55 |45.00±1.10 (12) |52.27±1.28 (13) |48.97±0.93 (12) |62.21±0.95 (11.5) |64.15±0.85 (14) |42.87±1.09 (12.5) |33.97±1.00 (13) |80.13±0.71 (14) |47.80±1.14 (11.5) |34.99±1.00 (12)
-ProtoNet [[1]] |9.75 |50.50±1.08 (9.5) |59.98±1.35 (10.5) |53.10±1.00 (9.5) |68.79±1.01 (7.5) |66.56±0.83 (12) |48.96±1.08 (10) |39.71±1.11 (8) |85.27±0.77 (8) |47.12±1.10 (13) |41.00±1.10 (9.5)
-fo-MAML [[1]] |11.25 |45.51±1.11 (12) |55.55±1.54 (12) |56.24±1.11 (7.5) |63.61±1.06 (11.5) |68.04±0.81 (8.5) |43.96±1.29 (12.5) |32.10±1.10 (14) |81.74±0.83 (13) |50.93±1.51 (9.5) |35.30±1.23 (12)
-RelationNet [[1]] |14.55 |34.69±1.01 (15) |45.35±1.36 (14) |40.73±0.83 (15) |49.51±1.05 (14.5) |52.97±0.69 (15) |43.30±1.08 (12.5) |30.55±1.04 (15) |68.76±0.83 (15) |33.67±1.05 (15) |29.15±1.01 (14.5)
-fo-Proto-MAML [[1]] |8.25 |49.53±1.05 (9.5) |63.37±1.33 (7.5) |55.95±0.99 (7.5) |68.66±0.96 (7.5) |66.49±0.83 (12) |51.52±1.00 (8.5) |39.96±1.14 (5.5) |87.15±0.69 (5) |48.83±1.09 (11.5) |43.74±1.12 (8)
-ALFA+fo-Proto-MAML [[3]] |6.1 |52.80±1.11 (7.5) |61.87±1.51 (7.5) |63.43±1.10 (5) |69.75±1.05 (5.5) |70.78±0.88 (6) |59.17±1.16 (4.5) |41.49±1.17 (5.5) |85.96±0.77 (8) |60.78±1.29 (7) |48.11±1.14 (4.5)
-ProtoNet (large) [[4]] |6.25 |53.69±1.07 (5) |68.50±1.27 (4.5) |58.04±0.96 (6) |74.07±0.92 (3.5) |68.76±0.77 (8.5) |53.30±1.06 (7) |40.73±1.15 (5.5) |86.96±0.73 (5) |58.11±1.05 (8) |41.70±1.08 (9.5)
-CTX [[4]] |1.75 |**62.76**±0.99 (1.5) |**82.21**±1.00 (1.5) |**79.49**±0.89 (1.5) |80.63±0.88 (2) |75.57±0.64 (3) |**72.68**±0.82 (1) |**51.58**±1.11 (1.5) |**95.34**±0.37 (1) |**82.65**±0.76 (2) |59.90±1.02 (2.5)
-BOHB [[5]] |6.85 |51.92±1.05 (7.5) |67.57±1.21 (4.5) |54.12±0.90 (9.5) |70.69±0.90 (5.5) |68.34±0.76 (8.5) |50.33±1.04 (8.5) |41.38±1.12 (5.5) |87.34±0.59 (5) |51.80±1.04 (9.5) |48.03±0.99 (4.5)
-Simple CNAPS [[14],[7]] |7.75 |54.80±1.20 (5) |62.00±1.30 (7.5) |49.20±0.90 (12) |66.50±1.00 (9.5) |71.60±0.70 (4.5) |56.60±1.00 (6) |37.50±1.20 (10) |82.10±0.90 (11) |63.10±1.10 (5.5) |45.80±1.00 (6.5)
-Transductive CNAPS [[14],[8]] |7.6 |54.10±1.10 (5) |62.90±1.30 (7.5) |48.40±0.90 (12) |67.30±0.90 (9.5) |72.50±0.70 (4.5) |58.00±1.00 (4.5) |37.70±1.10 (10) |82.80±0.80 (11) |61.80±1.10 (5.5) |45.80±1.00 (6.5)
-TSA_resnet18 [[12]] |2.8 |59.50±1.10 (3) |78.20±1.20 (3) |72.20±1.00 (3) |74.90±0.90 (3.5) |77.30±0.70 (2) |67.60±0.90 (3) |44.70±1.00 (3) |90.90±0.60 (3) |**82.50**±0.80 (2) |59.00±1.00 (2.5)
-TSA_resnet34 [[12]] |**1.5** |**63.73**±0.99 (1.5) |**82.58**±1.11 (1.5) |**80.13**±1.01 (1.5) |**83.39**±0.80 (1) |**79.61**±0.68 (1) |71.03±0.84 (2) |**51.38**±1.17 (1.5) |94.05±0.45 (2) |**81.71**±0.95 (2) |**61.67**±0.95 (1)
+k-NN [[1]] |14.6 |41.03±1.01 (15) |37.07±1.15 (16) |46.81±0.89 (15) |50.13±1.00 (15.5) |66.36±0.75 (13) |32.06±1.08 (16) |36.16±1.02 (13) |83.10±0.68 (12) |44.59±1.19 (15) |30.38±0.99 (15.5)
+Finetune [[1]] |10.45 |45.78±1.10 (13) |60.85±1.58 (11.5) |68.69±1.26 (5) |57.31±1.26 (14) |69.05±0.90 (9.5) |42.60±1.17 (13.5) |38.20±1.02 (11) |85.51±0.68 (9) |66.79±1.31 (5) |34.86±0.97 (13)
+MatchingNet [[1]] |13.55 |45.00±1.10 (13) |52.27±1.28 (14) |48.97±0.93 (13) |62.21±0.95 (12.5) |64.15±0.85 (15) |42.87±1.09 (13.5) |33.97±1.00 (14) |80.13±0.71 (15) |47.80±1.14 (12.5) |34.99±1.00 (13)
+ProtoNet [[1]] |10.75 |50.50±1.08 (10.5) |59.98±1.35 (11.5) |53.10±1.00 (10.5) |68.79±1.01 (8.5) |66.56±0.83 (13) |48.96±1.08 (11) |39.71±1.11 (9) |85.27±0.77 (9) |47.12±1.10 (14) |41.00±1.10 (10.5)
+fo-MAML [[1]] |12.25 |45.51±1.11 (13) |55.55±1.54 (13) |56.24±1.11 (8.5) |63.61±1.06 (12.5) |68.04±0.81 (9.5) |43.96±1.29 (13.5) |32.10±1.10 (15) |81.74±0.83 (14) |50.93±1.51 (10.5) |35.30±1.23 (13)
+RelationNet [[1]] |15.55 |34.69±1.01 (16) |45.35±1.36 (15) |40.73±0.83 (16) |49.51±1.05 (15.5) |52.97±0.69 (16) |43.30±1.08 (13.5) |30.55±1.04 (16) |68.76±0.83 (16) |33.67±1.05 (16) |29.15±1.01 (15.5)
+fo-Proto-MAML [[1]] |9.25 |49.53±1.05 (10.5) |63.37±1.33 (8.5) |55.95±0.99 (8.5) |68.66±0.96 (8.5) |66.49±0.83 (13) |51.52±1.00 (9.5) |39.96±1.14 (6.5) |87.15±0.69 (6) |48.83±1.09 (12.5) |43.74±1.12 (9)
+ALFA+fo-Proto-MAML [[3]] |7.1 |52.80±1.11 (8.5) |61.87±1.51 (8.5) |63.43±1.10 (6) |69.75±1.05 (6.5) |70.78±0.88 (7) |59.17±1.16 (5.5) |41.49±1.17 (6.5) |85.96±0.77 (9) |60.78±1.29 (8) |48.11±1.14 (5.5)
+ProtoNet (large) [[4]] |7.25 |53.69±1.07 (6) |68.50±1.27 (5.5) |58.04±0.96 (7) |74.07±0.92 (4.5) |68.76±0.77 (9.5) |53.30±1.06 (8) |40.73±1.15 (6.5) |86.96±0.73 (6) |58.11±1.05 (9) |41.70±1.08 (10.5)
+CTX [[4]] |2.5 |62.76±0.99 (2.5) |**82.21**±1.00 (2) |**79.49**±0.89 (1.5) |80.63±0.88 (3) |75.57±0.64 (4) |72.68±0.82 (2) |51.58±1.11 (2.5) |**95.34**±0.37 (1) |82.65±0.76 (3) |59.90±1.02 (3.5)
+BOHB [[5]] |7.85 |51.92±1.05 (8.5) |67.57±1.21 (5.5) |54.12±0.90 (10.5) |70.69±0.90 (6.5) |68.34±0.76 (9.5) |50.33±1.04 (9.5) |41.38±1.12 (6.5) |87.34±0.59 (6) |51.80±1.04 (10.5) |48.03±0.99 (5.5)
+SimpleCNAPS [[14],[7]] |8.75 |54.80±1.20 (6) |62.00±1.30 (8.5) |49.20±0.90 (13) |66.50±1.00 (10.5) |71.60±0.70 (5.5) |56.60±1.00 (7) |37.50±1.20 (11) |82.10±0.90 (12) |63.10±1.10 (6.5) |45.80±1.00 (7.5)
+TransductiveCNAPS [[14],[8]]|8.6 |54.10±1.10 (6) |62.90±1.30 (8.5) |48.40±0.90 (13) |67.30±0.90 (10.5) |72.50±0.70 (5.5) |58.00±1.00 (5.5) |37.70±1.10 (11) |82.80±0.80 (12) |61.80±1.10 (6.5) |45.80±1.00 (7.5)
+TSA_resnet18 [[12]] |3.8 |59.50±1.10 (4) |78.20±1.20 (4) |72.20±1.00 (4) |74.90±0.90 (4.5) |77.30±0.70 (3) |67.60±0.90 (4) |44.70±1.00 (4) |90.90±0.60 (4) |82.50±0.80 (3) |59.00±1.00 (3.5)
+TSA_resnet34 [[12]] |2.25 |63.73±0.99 (2.5) |**82.58**±1.11 (2) |**80.13**±1.01 (1.5) |83.39±0.80 (2) |79.61±0.68 (2) |71.03±0.84 (3) |51.38±1.17 (2.5) |94.05±0.45 (2.5) |81.71±0.95 (3) |**61.67**±0.95 (1.5)
+PMF-DINOSmall [[15]] |**1.5** |**75.51**±0.72 (1) |**82.81**±1.10 (2) |78.38±1.09 (3) |**85.18**±0.77 (1) |**86.95**±0.60 (1) |**74.47**±0.83 (1) |**55.16**±1.09 (1) |94.66±0.48 (2.5) |**90.04**±0.81 (1) |**62.60**±0.96 (1.5)
## Training on all datasets
Method |Avg rank |ILSVRC (test) |Omniglot |Aircraft |Birds |Textures |QuickDraw |Fungi |VGG Flower |Traffic signs |MSCOCO
---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------
-k-NN [[1]] |15.85 |38.55±0.94 (15.5) |74.60±1.08 (17) |64.98±0.82 (18) |66.35±0.92 (13.5) |63.58±0.79 (14.5) |44.88±1.05 (18) |37.12±1.06 (14.5) |83.47±0.61 (14.5) |40.11±1.10 (17) |29.55±0.96 (16)
-Finetune [[1]] |13.1 |43.08±1.08 (13.5) |71.11±1.37 (18) |72.03±1.07 (14.5) |59.82±1.15 (16) |69.14±0.85 (8.5) |47.05±1.16 (17) |38.16±1.04 (14.5) |85.28±0.69 (13) |66.74±1.23 (2) |35.17±1.08 (14)
-MatchingNet [[1]] |15.4 |36.08±1.00 (17) |78.25±1.01 (15.5) |69.17±0.96 (16.5) |56.40±1.00 (17) |61.80±0.74 (16) |60.81±1.03 (14.5) |33.70±1.04 (17) |81.90±0.72 (16) |55.57±1.08 (8.5) |28.79±0.96 (16)
-ProtoNet [[1]] |13.5 |44.50±1.05 (13.5) |79.56±1.12 (15.5) |71.14±0.86 (14.5) |67.01±1.02 (13.5) |65.18±0.84 (12.5) |64.88±0.89 (13) |40.26±1.13 (13) |86.85±0.71 (12) |46.48±1.00 (15) |39.87±1.06 (12.5)
-fo-MAML [[1]] |15.25 |37.83±1.01 (15.5) |83.92±0.95 (13.5) |76.41±0.69 (12) |62.43±1.08 (15) |64.16±0.83 (14.5) |59.73±1.10 (16) |33.54±1.11 (17) |79.94±0.84 (17) |42.91±1.31 (16) |29.37±1.08 (16)
-RelationNet [[1]] |16.8 |30.89±0.93 (18) |86.57±0.79 (12) |69.71±0.83 (16.5) |54.14±0.99 (18) |56.56±0.73 (18) |61.75±0.97 (14.5) |32.56±1.08 (17) |76.08±0.76 (18) |37.48±0.93 (18) |27.41±0.89 (18)
-fo-Proto-MAML [[1]] |11.6 |46.52±1.05 (12) |82.69±0.97 (13.5) |75.23±0.76 (13) |69.88±1.02 (11.5) |68.25±0.81 (10.5) |66.84±0.94 (12) |41.99±1.17 (12) |88.72±0.67 (10) |52.42±1.08 (11.5) |41.74±1.13 (10)
-CNAPs [[2]] |10.25 |50.80±1.10 (10.5) |91.70±0.50 (8) |83.70±0.60 (7.5) |73.60±0.90 (10) |59.50±0.70 (17) |74.70±0.80 (11) |50.20±1.10 (7.5) |88.90±0.50 (10) |56.50±1.10 (8.5) |39.40±1.00 (12.5)
-SUR [[6]] |7.65 |56.10±1.10 (7) |93.10±0.50 (5.5) |84.60±0.70 (5.5) |70.60±1.00 (11.5) |71.00±0.80 (6.5) |81.30±0.60 (4) |64.20±1.10 (3.5) |82.80±0.80 (14.5) |53.40±1.00 (11.5) |50.10±1.00 (7)
-SUR-pnf [[6]] |8.2 |56.00±1.10 (7) |90.00±0.60 (10.5) |79.70±0.80 (10.5) |75.90±0.90 (7.5) |72.50±0.70 (4.5) |76.70±0.70 (8.5) |49.80±1.10 (7.5) |90.00±0.60 (7.5) |52.20±0.80 (11.5) |50.20±1.10 (7)
-Simple CNAPS [[14],[7]] |7.45 |56.50±1.10 (7) |91.90±0.60 (8) |83.80±0.60 (7.5) |76.10±0.90 (7.5) |70.00±0.80 (8.5) |78.30±0.70 (6.5) |49.10±1.20 (7.5) |91.30±0.60 (6) |59.20±1.00 (6) |42.40±1.10 (10)
-Transductive CNAPS [[14],[8]] |6.05 |**57.90**±1.10 (2.5) |94.30±0.40 (3.5) |84.70±0.50 (5.5) |78.80±0.70 (3.5) |66.20±0.80 (12.5) |77.90±0.60 (6.5) |48.90±1.20 (7.5) |**92.30**±0.40 (3) |59.70±1.10 (6) |42.50±1.10 (10)
-URT [[9]] |6.05 |55.70±1.00 (7) |94.40±0.40 (3.5) |85.80±0.60 (4) |76.30±0.80 (7.5) |71.80±0.70 (4.5) |**82.50**±0.60 (2) |63.50±1.00 (3.5) |88.20±0.60 (10) |51.10±1.10 (14) |52.20±1.10 (4.5)
-URT-pf [[9]] |7.55 |55.50±1.10 (7) |90.20±0.60 (10.5) |79.80±0.70 (10.5) |77.50±0.80 (5) |73.50±0.70 (3) |75.80±0.70 (10) |48.10±0.90 (10.5) |**91.90**±0.50 (3) |52.00±1.40 (11.5) |52.10±1.00 (4.5)
-FLUTE [[10]] |5.9 |51.80±1.10 (10.5) |93.20±0.50 (5.5) |87.20±0.50 (3) |79.20±0.80 (3.5) |68.80±0.80 (10.5) |79.50±0.70 (5) |58.10±1.10 (5) |**91.60**±0.60 (3) |58.40±1.10 (6) |50.00±1.00 (7)
-URL [[11]] |2.15 |**57.51**±1.08 (2.5) |**94.51**±0.41 (1.5) |88.59±0.46 (2) |**80.54**±0.69 (1.5) |**76.17**±0.67 (1.5) |**81.94**±0.56 (2) |**68.75**±0.95 (1.5) |**92.11**±0.48 (3) |63.34±1.19 (3.5) |54.03±0.96 (2.5)
-TSA [[12]] |**1.65** |**57.35**±1.05 (2.5) |**94.96**±0.38 (1.5) |**89.33**±0.44 (1) |**81.42**±0.74 (1.5) |**76.74**±0.72 (1.5) |**82.01**±0.57 (2) |**67.40**±0.99 (1.5) |**92.18**±0.52 (3) |**83.55**±0.90 (1) |**55.75**±1.06 (1)
-TriM [[13]] |6.6 |**58.60**±1.00 (2.5) |92.00±0.60 (8) |82.80±0.70 (9) |75.30±0.80 (7.5) |71.20±0.80 (6.5) |77.30±0.70 (8.5) |48.50±1.00 (10.5) |90.50±0.50 (7.5) |63.00±1.00 (3.5) |52.80±1.10 (2.5)
+k-NN [[1]] |16.85 |38.55±0.94 (16.5) |74.60±1.08 (18) |64.98±0.82 (19) |66.35±0.92 (14.5) |63.58±0.79 (15.5) |44.88±1.05 (19) |37.12±1.06 (15.5) |83.47±0.61 (15.5) |40.11±1.10 (18) |29.55±0.96 (17)
+Finetune [[1]] |14.1 |43.08±1.08 (14.5) |71.11±1.37 (19) |72.03±1.07 (15.5) |59.82±1.15 (17) |69.14±0.85 (9.5) |47.05±1.16 (18) |38.16±1.04 (15.5) |85.28±0.69 (14) |66.74±1.23 (3) |35.17±1.08 (15)
+MatchingNet [[1]] |16.4 |36.08±1.00 (18) |78.25±1.01 (16.5) |69.17±0.96 (17.5) |56.40±1.00 (18) |61.80±0.74 (17) |60.81±1.03 (15.5) |33.70±1.04 (18) |81.90±0.72 (17) |55.57±1.08 (9.5) |28.79±0.96 (17)
+ProtoNet [[1]] |14.5 |44.50±1.05 (14.5) |79.56±1.12 (16.5) |71.14±0.86 (15.5) |67.01±1.02 (14.5) |65.18±0.84 (13.5) |64.88±0.89 (14) |40.26±1.13 (14) |86.85±0.71 (13) |46.48±1.00 (16) |39.87±1.06 (13.5)
+fo-MAML [[1]] |16.25 |37.83±1.01 (16.5) |83.92±0.95 (14.5) |76.41±0.69 (13) |62.43±1.08 (16) |64.16±0.83 (15.5) |59.73±1.10 (17) |33.54±1.11 (18) |79.94±0.84 (18) |42.91±1.31 (17) |29.37±1.08 (17)
+RelationNet [[1]] |17.8 |30.89±0.93 (19) |86.57±0.79 (13) |69.71±0.83 (17.5) |54.14±0.99 (19) |56.56±0.73 (19) |61.75±0.97 (15.5) |32.56±1.08 (18) |76.08±0.76 (19) |37.48±0.93 (19) |27.41±0.89 (19)
+fo-Proto-MAML [[1]] |12.6 |46.52±1.05 (13) |82.69±0.97 (14.5) |75.23±0.76 (14) |69.88±1.02 (12.5) |68.25±0.81 (11.5) |66.84±0.94 (13) |41.99±1.17 (13) |88.72±0.67 (11) |52.42±1.08 (12.5) |41.74±1.13 (11)
+CNAPs [[2]] |11.2 |50.80±1.10 (11.5) |91.70±0.50 (8.5) |83.70±0.60 (8.5) |73.60±0.90 (11) |59.50±0.70 (18) |74.70±0.80 (12) |50.20±1.10 (8.5) |88.90±0.50 (11) |56.50±1.10 (9.5) |39.40±1.00 (13.5)
+SUR [[6]] |8.45 |56.10±1.10 (8) |93.10±0.50 (5.5) |84.60±0.70 (6.5) |70.60±1.00 (12.5) |71.00±0.80 (7.5) |81.30±0.60 (4) |64.20±1.10 (4.5) |82.80±0.80 (15.5) |53.40±1.00 (12.5) |50.10±1.00 (8)
+SUR-pnf [[6]] |9.2 |56.00±1.10 (8) |90.00±0.60 (11.5) |79.70±0.80 (11.5) |75.90±0.90 (8.5) |72.50±0.70 (5.5) |76.70±0.70 (9.5) |49.80±1.10 (8.5) |90.00±0.60 (8.5) |52.20±0.80 (12.5) |50.20±1.10 (8)
+SimpleCNAPS [[14],[7]] |8.4 |56.50±1.10 (8) |91.90±0.60 (8.5) |83.80±0.60 (8.5) |76.10±0.90 (8.5) |70.00±0.80 (9.5) |78.30±0.70 (7.5) |49.10±1.20 (8.5) |91.30±0.60 (7) |59.20±1.00 (7) |42.40±1.10 (11)
+TransductiveCNAPS [[14],[8]]|6.95 |57.90±1.10 (3.5) |94.30±0.40 (3.5) |84.70±0.50 (6.5) |78.80±0.70 (4.5) |66.20±0.80 (13.5) |77.90±0.60 (7.5) |48.90±1.20 (8.5) |92.30±0.40 (4) |59.70±1.10 (7) |42.50±1.10 (11)
+URT [[9]] |6.85 |55.70±1.00 (8) |94.40±0.40 (3.5) |85.80±0.60 (5) |76.30±0.80 (8.5) |71.80±0.70 (5.5) |**82.50**±0.60 (2) |63.50±1.00 (4.5) |88.20±0.60 (11) |51.10±1.10 (15) |52.20±1.10 (5.5)
+URT-pf [[9]] |8.55 |55.50±1.10 (8) |90.20±0.60 (11.5) |79.80±0.70 (11.5) |77.50±0.80 (6) |73.50±0.70 (4) |75.80±0.70 (11) |48.10±0.90 (11.5) |91.90±0.50 (4) |52.00±1.40 (12.5) |52.10±1.00 (5.5)
+FLUTE [[10]] |6.75 |51.80±1.10 (11.5) |93.20±0.50 (5.5) |87.20±0.50 (4) |79.20±0.80 (4.5) |68.80±0.80 (11.5) |79.50±0.70 (5.5) |58.10±1.10 (6) |91.60±0.60 (4) |58.40±1.10 (7) |50.00±1.00 (8)
+URL [[11]] |2.95 |57.51±1.08 (3.5) |**94.51**±0.41 (1.5) |88.59±0.46 (3) |80.54±0.69 (2.5) |76.17±0.67 (2.5) |**81.94**±0.56 (2) |68.75±0.95 (2.5) |92.11±0.48 (4) |63.34±1.19 (4.5) |54.03±0.96 (3.5)
+TSA [[12]] |2.4 |57.35±1.05 (3.5) |**94.96**±0.38 (1.5) |**89.33**±0.44 (1.5) |81.42±0.74 (2.5) |76.74±0.72 (2.5) |**82.01**±0.57 (2) |67.40±0.99 (2.5) |92.18±0.52 (4) |83.55±0.90 (2) |55.75±1.06 (2)
+TriM [[13]] |7.55 |58.60±1.00 (3.5) |92.00±0.60 (8.5) |82.80±0.70 (10) |75.30±0.80 (8.5) |71.20±0.80 (7.5) |77.30±0.70 (9.5) |48.50±1.00 (11.5) |90.50±0.50 (8.5) |63.00±1.00 (4.5) |52.80±1.10 (3.5)
+PMF-DINOSmall [[15]] |**2.25** |**73.52**±0.80 (1) |92.17±0.57 (8.5) |**89.49**±0.52 (1.5) |**91.04**±0.37 (1) |**85.73**±0.62 (1) |79.43±0.67 (5.5) |**74.99**±0.94 (1) |**95.30**±0.44 (1) |**89.85**±0.76 (1) |**59.69**±1.02 (1)
## References
@@ -192,6 +194,7 @@ TriM [[13]] |6.6 |**58.60**±1.00 (2.
[12]: #12-li-et-al-2021b
[13]: #13-liu-et-al-2021b
[14]: #14-bateni-et-al-2022b
+[15]: #15-hu-et-al-2022
###### \[1\] Triantafillou et al. (2020)
@@ -263,6 +266,11 @@ Yanbin Liu, Juho Lee, Linchao Zhu, Ling Chen, Humphrey Shi, Yi Yang; [_A Multi-M
Bateni Peyman, Jarred Barber, Raghav Goyal, Vaden Masrani, Jan-Willem van de Meent, Leonid Sigal, and Frank Wood.; [_Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning._](https://arxiv.org/abs/2201.05151); arXiv 2022.
+###### \[15\] Hu et al. (2022)
+
+Shell Xu Hu, Da Li, Jan Stühmer, Minyoung Kim and Timothy Hospedales.; [_Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference._](https://arxiv.org/abs/2204.07305); CVPR 2022.
+
+
# User instructions