-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathexperiment.py
469 lines (416 loc) · 18 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# Copyright 2019 DeepMind Technologies Limited and Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training script for ScratchGAN."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
from absl import app
from absl import flags
from absl import logging
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.compat.v1.io import gfile
from scratchgan import discriminator_nets
from scratchgan import eval_metrics
from scratchgan import generators
from scratchgan import losses
from scratchgan import reader
from scratchgan import utils
flags.DEFINE_string("dataset", "emnlp2017", "Dataset.")
flags.DEFINE_integer("batch_size", 512, "Batch size")
flags.DEFINE_string("gen_type", "lstm", "Generator type.")
flags.DEFINE_string("disc_type", "lstm", "Discriminator type.")
flags.DEFINE_string("disc_loss_type", "ce", "Loss type.")
flags.DEFINE_integer("gen_feature_size", 512, "Generator feature size.")
flags.DEFINE_integer("disc_feature_size", 512, "Discriminator feature size.")
flags.DEFINE_integer("num_layers_gen", 2, "Number of generator layers.")
flags.DEFINE_integer("num_layers_disc", 1, "Number of discriminator layers.")
flags.DEFINE_bool("layer_norm_gen", False, "Layer norm generator.")
flags.DEFINE_bool("layer_norm_disc", True, "Layer norm discriminator.")
flags.DEFINE_float("gen_input_dropout", 0.0, "Input dropout generator.")
flags.DEFINE_float("gen_output_dropout", 0.0, "Input dropout discriminator.")
flags.DEFINE_float("l2_gen", 0.0, "L2 regularization generator.")
flags.DEFINE_float("l2_disc", 1e-6, "L2 regularization discriminator.")
flags.DEFINE_float("disc_dropout", 0.1, "Dropout discriminator")
flags.DEFINE_integer("trainable_embedding_size", 64,
"Size of trainable embedding.")
flags.DEFINE_bool("use_pretrained_embedding", True, "Use pretrained embedding.")
flags.DEFINE_integer("num_steps", int(200 * 1000), "Number of training steps.")
flags.DEFINE_integer("num_disc_updates", 1, "Number of discriminator updates.")
flags.DEFINE_integer("num_gen_updates", 1, "Number of generator updates.")
flags.DEFINE_string("data_dir", "/tmp/emnlp2017", "Directory where data is.")
flags.DEFINE_float("gen_lr", 9.59e-5, "Learning rate generator.")
flags.DEFINE_float("disc_lr", 9.38e-3, "Learning rate discriminator.")
flags.DEFINE_float("gen_beta1", 0.5, "Beta1 for generator.")
flags.DEFINE_float("disc_beta1", 0.5, "Beta1 for discriminator.")
flags.DEFINE_float("gamma", 0.23, "Discount factor.")
flags.DEFINE_float("baseline_decay", 0.08, "Baseline decay rate.")
flags.DEFINE_string("mode", "train", "train or evaluate_pair.")
flags.DEFINE_string("checkpoint_dir", "/tmp/emnlp2017/checkpoints/",
"Directory for checkpoints.")
flags.DEFINE_integer("export_every", 1000, "Frequency of checkpoint exports.")
flags.DEFINE_integer("num_examples_for_eval", int(1e4),
"Number of examples for evaluation")
EVALUATOR_SLEEP_PERIOD = 60 # Seconds evaluator sleeps if nothing to do.
def main(_):
config = flags.FLAGS
gfile.makedirs(config.checkpoint_dir)
if config.mode == "train":
train(config)
elif config.mode == "evaluate_pair":
while True:
checkpoint_path = utils.maybe_pick_models_to_evaluate(
checkpoint_dir=config.checkpoint_dir)
if checkpoint_path:
evaluate_pair(
config=config,
batch_size=config.batch_size,
checkpoint_path=checkpoint_path,
data_dir=config.data_dir,
dataset=config.dataset,
num_examples_for_eval=config.num_examples_for_eval)
else:
logging.info("No models to evaluate found, sleeping for %d seconds",
EVALUATOR_SLEEP_PERIOD)
time.sleep(EVALUATOR_SLEEP_PERIOD)
else:
raise Exception(
"Unexpected mode %s, supported modes are \"train\" or \"evaluate_pair\""
% (config.mode))
def train(config):
"""Train."""
logging.info("Training.")
tf.reset_default_graph()
np.set_printoptions(precision=4)
# Get data.
raw_data = reader.get_raw_data(
data_path=config.data_dir, dataset=config.dataset)
train_data, valid_data, word_to_id = raw_data
id_to_word = {v: k for k, v in word_to_id.items()}
vocab_size = len(word_to_id)
max_length = reader.MAX_TOKENS_SEQUENCE[config.dataset]
logging.info("Vocabulary size: %d", vocab_size)
iterator = reader.iterator(raw_data=train_data, batch_size=config.batch_size)
iterator_valid = reader.iterator(
raw_data=valid_data, batch_size=config.batch_size)
real_sequence = tf.placeholder(
dtype=tf.int32,
shape=[config.batch_size, max_length],
name="real_sequence")
real_sequence_length = tf.placeholder(
dtype=tf.int32, shape=[config.batch_size], name="real_sequence_length")
first_batch_np = next(iterator)
valid_batch_np = next(iterator_valid)
test_real_batch = {k: tf.constant(v) for k, v in first_batch_np.items()}
test_fake_batch = {
"sequence":
tf.constant(
np.random.choice(
vocab_size, size=[config.batch_size,
max_length]).astype(np.int32)),
"sequence_length":
tf.constant(
np.random.choice(max_length,
size=[config.batch_size]).astype(np.int32)),
}
valid_batch = {k: tf.constant(v) for k, v in valid_batch_np.items()}
# Create generator.
if config.use_pretrained_embedding:
embedding_source = utils.get_embedding_path(config.data_dir, config.dataset)
vocab_file = "/tmp/vocab.txt"
with gfile.GFile(vocab_file, "w") as f:
for i in range(len(id_to_word)):
f.write(id_to_word[i] + "\n")
logging.info("Temporary vocab file: %s", vocab_file)
else:
embedding_source = None
vocab_file = None
gen = generators.LSTMGen(
vocab_size=vocab_size,
feature_sizes=[config.gen_feature_size] * config.num_layers_gen,
max_sequence_length=reader.MAX_TOKENS_SEQUENCE[config.dataset],
batch_size=config.batch_size,
use_layer_norm=config.layer_norm_gen,
trainable_embedding_size=config.trainable_embedding_size,
input_dropout=config.gen_input_dropout,
output_dropout=config.gen_output_dropout,
pad_token=reader.PAD_INT,
embedding_source=embedding_source,
vocab_file=vocab_file,
)
gen_outputs = gen()
# Create discriminator.
disc = discriminator_nets.LSTMEmbedDiscNet(
vocab_size=vocab_size,
feature_sizes=[config.disc_feature_size] * config.num_layers_disc,
trainable_embedding_size=config.trainable_embedding_size,
embedding_source=embedding_source,
use_layer_norm=config.layer_norm_disc,
pad_token=reader.PAD_INT,
vocab_file=vocab_file,
dropout=config.disc_dropout,
)
disc_logits_real = disc(
sequence=real_sequence, sequence_length=real_sequence_length)
disc_logits_fake = disc(
sequence=gen_outputs["sequence"],
sequence_length=gen_outputs["sequence_length"])
# Loss of the discriminator.
if config.disc_loss_type == "ce":
targets_real = tf.ones(
[config.batch_size, reader.MAX_TOKENS_SEQUENCE[config.dataset]])
targets_fake = tf.zeros(
[config.batch_size, reader.MAX_TOKENS_SEQUENCE[config.dataset]])
loss_real = losses.sequential_cross_entropy_loss(disc_logits_real,
targets_real)
loss_fake = losses.sequential_cross_entropy_loss(disc_logits_fake,
targets_fake)
disc_loss = 0.5 * loss_real + 0.5 * loss_fake
# Loss of the generator.
gen_loss, cumulative_rewards, baseline = losses.reinforce_loss(
disc_logits=disc_logits_fake,
gen_logprobs=gen_outputs["logprobs"],
gamma=config.gamma,
decay=config.baseline_decay)
# Optimizers
disc_optimizer = tf.train.AdamOptimizer(
learning_rate=config.disc_lr, beta1=config.disc_beta1)
gen_optimizer = tf.train.AdamOptimizer(
learning_rate=config.gen_lr, beta1=config.gen_beta1)
# Get losses and variables.
disc_vars = disc.get_all_variables()
gen_vars = gen.get_all_variables()
l2_disc = tf.reduce_sum(tf.add_n([tf.nn.l2_loss(v) for v in disc_vars]))
l2_gen = tf.reduce_sum(tf.add_n([tf.nn.l2_loss(v) for v in gen_vars]))
scalar_disc_loss = tf.reduce_mean(disc_loss) + config.l2_disc * l2_disc
scalar_gen_loss = tf.reduce_mean(gen_loss) + config.l2_gen * l2_gen
# Update ops.
global_step = tf.train.get_or_create_global_step()
disc_update = disc_optimizer.minimize(
scalar_disc_loss, var_list=disc_vars, global_step=global_step)
gen_update = gen_optimizer.minimize(
scalar_gen_loss, var_list=gen_vars, global_step=global_step)
# Saver.
saver = tf.train.Saver()
# Metrics
test_disc_logits_real = disc(**test_real_batch)
test_disc_logits_fake = disc(**test_fake_batch)
valid_disc_logits = disc(**valid_batch)
disc_predictions_real = tf.nn.sigmoid(disc_logits_real)
disc_predictions_fake = tf.nn.sigmoid(disc_logits_fake)
valid_disc_predictions = tf.reduce_mean(
tf.nn.sigmoid(valid_disc_logits), axis=0)
test_disc_predictions_real = tf.reduce_mean(
tf.nn.sigmoid(test_disc_logits_real), axis=0)
test_disc_predictions_fake = tf.reduce_mean(
tf.nn.sigmoid(test_disc_logits_fake), axis=0)
# Only log results for the first element of the batch.
metrics = {
"scalar_gen_loss": scalar_gen_loss,
"scalar_disc_loss": scalar_disc_loss,
"disc_predictions_real": tf.reduce_mean(disc_predictions_real),
"disc_predictions_fake": tf.reduce_mean(disc_predictions_fake),
"test_disc_predictions_real": tf.reduce_mean(test_disc_predictions_real),
"test_disc_predictions_fake": tf.reduce_mean(test_disc_predictions_fake),
"valid_disc_predictions": tf.reduce_mean(valid_disc_predictions),
"cumulative_rewards": tf.reduce_mean(cumulative_rewards),
"baseline": tf.reduce_mean(baseline),
}
# Training.
logging.info("Starting training")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
latest_ckpt = tf.train.latest_checkpoint(config.checkpoint_dir)
if latest_ckpt:
saver.restore(sess, latest_ckpt)
for step in range(config.num_steps):
real_data_np = next(iterator)
train_feed = {
real_sequence: real_data_np["sequence"],
real_sequence_length: real_data_np["sequence_length"],
}
# Update generator and discriminator.
for _ in range(config.num_disc_updates):
sess.run(disc_update, feed_dict=train_feed)
for _ in range(config.num_gen_updates):
sess.run(gen_update, feed_dict=train_feed)
# Reporting
if step % config.export_every == 0:
gen_sequence_np, metrics_np = sess.run(
[gen_outputs["sequence"], metrics], feed_dict=train_feed)
metrics_np["gen_sentence"] = utils.sequence_to_sentence(
gen_sequence_np[0, :], id_to_word)
saver.save(
sess,
save_path=config.checkpoint_dir + "scratchgan",
global_step=global_step)
metrics_np["model_path"] = tf.train.latest_checkpoint(
config.checkpoint_dir)
logging.info(metrics_np)
# After training, export models.
saver.save(
sess,
save_path=config.checkpoint_dir + "scratchgan",
global_step=global_step)
logging.info("Saved final model at %s.",
tf.train.latest_checkpoint(config.checkpoint_dir))
def evaluate_pair(config, batch_size, checkpoint_path, data_dir, dataset,
num_examples_for_eval):
"""Evaluates a pair generator discriminator.
This function loads a discriminator from disk, a generator, and evaluates the
discriminator against the generator.
It returns the mean probability of the discriminator against several batches,
and the FID of the generator against the validation data.
It also writes evaluation samples to disk.
Args:
config: dict, the config file.
batch_size: int, size of the batch.
checkpoint_path: string, full path to the TF checkpoint on disk.
data_dir: string, path to a directory containing the dataset.
dataset: string, "emnlp2017", to select the right dataset.
num_examples_for_eval: int, number of examples for evaluation.
"""
tf.reset_default_graph()
logging.info("Evaluating checkpoint %s.", checkpoint_path)
# Build graph.
train_data, valid_data, word_to_id = reader.get_raw_data(
data_dir, dataset=dataset)
id_to_word = {v: k for k, v in word_to_id.items()}
vocab_size = len(word_to_id)
train_iterator = reader.iterator(raw_data=train_data, batch_size=batch_size)
valid_iterator = reader.iterator(raw_data=valid_data, batch_size=batch_size)
train_sequence = tf.placeholder(
dtype=tf.int32,
shape=[batch_size, reader.MAX_TOKENS_SEQUENCE[dataset]],
name="train_sequence")
train_sequence_length = tf.placeholder(
dtype=tf.int32, shape=[batch_size], name="train_sequence_length")
valid_sequence = tf.placeholder(
dtype=tf.int32,
shape=[batch_size, reader.MAX_TOKENS_SEQUENCE[dataset]],
name="valid_sequence")
valid_sequence_length = tf.placeholder(
dtype=tf.int32, shape=[batch_size], name="valid_sequence_length")
disc_inputs_train = {
"sequence": train_sequence,
"sequence_length": train_sequence_length,
}
disc_inputs_valid = {
"sequence": valid_sequence,
"sequence_length": valid_sequence_length,
}
if config.use_pretrained_embedding:
embedding_source = utils.get_embedding_path(config.data_dir, config.dataset)
vocab_file = "/tmp/vocab.txt"
with gfile.GFile(vocab_file, "w") as f:
for i in range(len(id_to_word)):
f.write(id_to_word[i] + "\n")
logging.info("Temporary vocab file: %s", vocab_file)
else:
embedding_source = None
vocab_file = None
gen = generators.LSTMGen(
vocab_size=vocab_size,
feature_sizes=[config.gen_feature_size] * config.num_layers_gen,
max_sequence_length=reader.MAX_TOKENS_SEQUENCE[config.dataset],
batch_size=config.batch_size,
use_layer_norm=config.layer_norm_gen,
trainable_embedding_size=config.trainable_embedding_size,
input_dropout=config.gen_input_dropout,
output_dropout=config.gen_output_dropout,
pad_token=reader.PAD_INT,
embedding_source=embedding_source,
vocab_file=vocab_file,
)
gen_outputs = gen()
disc = discriminator_nets.LSTMEmbedDiscNet(
vocab_size=vocab_size,
feature_sizes=[config.disc_feature_size] * config.num_layers_disc,
trainable_embedding_size=config.trainable_embedding_size,
embedding_source=embedding_source,
use_layer_norm=config.layer_norm_disc,
pad_token=reader.PAD_INT,
vocab_file=vocab_file,
dropout=config.disc_dropout,
)
disc_inputs = {
"sequence": gen_outputs["sequence"],
"sequence_length": gen_outputs["sequence_length"],
}
gen_logits = disc(**disc_inputs)
train_logits = disc(**disc_inputs_train)
valid_logits = disc(**disc_inputs_valid)
# Saver.
saver = tf.train.Saver()
# Reduce over time and batch.
train_probs = tf.reduce_mean(tf.nn.sigmoid(train_logits))
valid_probs = tf.reduce_mean(tf.nn.sigmoid(valid_logits))
gen_probs = tf.reduce_mean(tf.nn.sigmoid(gen_logits))
outputs = {
"train_probs": train_probs,
"valid_probs": valid_probs,
"gen_probs": gen_probs,
"gen_sequences": gen_outputs["sequence"],
"valid_sequences": valid_sequence
}
# Get average discriminator score and store generated sequences.
all_valid_sentences = []
all_gen_sentences = []
all_gen_sequences = []
mean_train_prob = 0.0
mean_valid_prob = 0.0
mean_gen_prob = 0.0
logging.info("Graph constructed, generating batches.")
num_batches = num_examples_for_eval // batch_size + 1
# Restrict the thread pool size to prevent excessive GCU usage on Borg.
tf_config = tf.ConfigProto()
tf_config.intra_op_parallelism_threads = 16
tf_config.inter_op_parallelism_threads = 16
with tf.Session(config=tf_config) as sess:
# Restore variables from checkpoints.
logging.info("Restoring variables.")
saver.restore(sess, checkpoint_path)
for i in range(num_batches):
logging.info("Batch %d / %d", i, num_batches)
train_data_np = next(train_iterator)
valid_data_np = next(valid_iterator)
feed_dict = {
train_sequence: train_data_np["sequence"],
train_sequence_length: train_data_np["sequence_length"],
valid_sequence: valid_data_np["sequence"],
valid_sequence_length: valid_data_np["sequence_length"],
}
outputs_np = sess.run(outputs, feed_dict=feed_dict)
all_gen_sequences.extend(outputs_np["gen_sequences"])
gen_sentences = utils.batch_sequences_to_sentences(
outputs_np["gen_sequences"], id_to_word)
valid_sentences = utils.batch_sequences_to_sentences(
outputs_np["valid_sequences"], id_to_word)
all_valid_sentences.extend(valid_sentences)
all_gen_sentences.extend(gen_sentences)
mean_train_prob += outputs_np["train_probs"] / batch_size
mean_valid_prob += outputs_np["valid_probs"] / batch_size
mean_gen_prob += outputs_np["gen_probs"] / batch_size
logging.info("Evaluating FID.")
# Compute FID
fid = eval_metrics.fid(
generated_sentences=all_gen_sentences[:num_examples_for_eval],
real_sentences=all_valid_sentences[:num_examples_for_eval])
utils.write_eval_results(config.checkpoint_dir, all_gen_sentences,
os.path.basename(checkpoint_path), mean_train_prob,
mean_valid_prob, mean_gen_prob, fid)
if __name__ == "__main__":
app.run(main)