forked from google/active-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstants.py
127 lines (116 loc) · 4.23 KB
/
constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Controls imports to fill up dictionary of different sampling methods.
"""
from functools import partial
AL_MAPPING = {}
def get_base_AL_mapping():
from sampling_methods.margin_AL import MarginAL
from sampling_methods.informative_diverse import InformativeClusterDiverseSampler
from sampling_methods.hierarchical_clustering_AL import HierarchicalClusterAL
from sampling_methods.uniform_sampling import UniformSampling
from sampling_methods.represent_cluster_centers import RepresentativeClusterMeanSampling
from sampling_methods.graph_density import GraphDensitySampler
from sampling_methods.kcenter_greedy import kCenterGreedy
AL_MAPPING['margin'] = MarginAL
AL_MAPPING['informative_diverse'] = InformativeClusterDiverseSampler
AL_MAPPING['hierarchical'] = HierarchicalClusterAL
AL_MAPPING['uniform'] = UniformSampling
AL_MAPPING['margin_cluster_mean'] = RepresentativeClusterMeanSampling
AL_MAPPING['graph_density'] = GraphDensitySampler
AL_MAPPING['kcenter'] = kCenterGreedy
def get_all_possible_arms():
from sampling_methods.mixture_of_samplers import MixtureOfSamplers
AL_MAPPING['mixture_of_samplers'] = MixtureOfSamplers
def get_wrapper_AL_mapping():
from sampling_methods.bandit_discrete import BanditDiscreteSampler
from sampling_methods.simulate_batch import SimulateBatchSampler
AL_MAPPING['bandit_mixture'] = partial(
BanditDiscreteSampler,
samplers=[{
'methods': ['margin', 'uniform'],
'weights': [0, 1]
}, {
'methods': ['margin', 'uniform'],
'weights': [0.25, 0.75]
}, {
'methods': ['margin', 'uniform'],
'weights': [0.5, 0.5]
}, {
'methods': ['margin', 'uniform'],
'weights': [0.75, 0.25]
}, {
'methods': ['margin', 'uniform'],
'weights': [1, 0]
}])
AL_MAPPING['bandit_discrete'] = partial(
BanditDiscreteSampler,
samplers=[{
'methods': ['margin', 'uniform'],
'weights': [0, 1]
}, {
'methods': ['margin', 'uniform'],
'weights': [1, 0]
}])
AL_MAPPING['simulate_batch_mixture'] = partial(
SimulateBatchSampler,
samplers=({
'methods': ['margin', 'uniform'],
'weights': [1, 0]
}, {
'methods': ['margin', 'uniform'],
'weights': [0.5, 0.5]
}, {
'methods': ['margin', 'uniform'],
'weights': [0, 1]
}),
n_sims=5,
train_per_sim=10,
return_best_sim=False)
AL_MAPPING['simulate_batch_best_sim'] = partial(
SimulateBatchSampler,
samplers=[{
'methods': ['margin', 'uniform'],
'weights': [1, 0]
}],
n_sims=10,
train_per_sim=10,
return_type='best_sim')
AL_MAPPING['simulate_batch_frequency'] = partial(
SimulateBatchSampler,
samplers=[{
'methods': ['margin', 'uniform'],
'weights': [1, 0]
}],
n_sims=10,
train_per_sim=10,
return_type='frequency')
def get_mixture_of_samplers(name):
assert 'mixture_of_samplers' in name
if 'mixture_of_samplers' not in AL_MAPPING:
raise KeyError('Mixture of Samplers not yet loaded.')
args = name.split('-')[1:]
samplers = args[0::2]
weights = args[1::2]
weights = [float(w) for w in weights]
assert sum(weights) == 1
mixture = {'methods': samplers, 'weights': weights}
print(mixture)
return partial(AL_MAPPING['mixture_of_samplers'], mixture=mixture)
def get_AL_sampler(name):
if name in AL_MAPPING and name != 'mixture_of_samplers':
return AL_MAPPING[name]
if 'mixture_of_samplers' in name:
return get_mixture_of_samplers(name)
raise NotImplementedError('The specified sampler is not available.')