forked from google/active-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiment.py
344 lines (304 loc) · 13 KB
/
run_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run active learner on classification tasks.
Supported datasets include mnist, letter, cifar10, newsgroup20, rcv1,
wikipedia attack, and select classification datasets from mldata.
See utils/create_data.py for all available datasets.
For binary classification, mnist_4_9 indicates mnist filtered down to just 4 and
9.
By default uses logistic regression but can also train using kernel SVM.
2 fold cv is used to tune regularization parameter over a exponential grid.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import pickle
import sys
from time import gmtime
from time import strftime
import numpy as np
from sklearn.preprocessing import normalize
from sklearn.preprocessing import StandardScaler
from absl import app
from absl import flags
from tensorflow import gfile
from sampling_methods.constants import AL_MAPPING
from sampling_methods.constants import get_AL_sampler
from sampling_methods.constants import get_wrapper_AL_mapping
from utils import utils
flags.DEFINE_string("dataset", "letter", "Dataset name")
flags.DEFINE_string("sampling_method", "margin",
("Name of sampling method to use, can be any defined in "
"AL_MAPPING in sampling_methods.constants"))
flags.DEFINE_float(
"warmstart_size", 0.02,
("Can be float or integer. Float indicates percentage of training data "
"to use in the initial warmstart model")
)
flags.DEFINE_float(
"batch_size", 0.02,
("Can be float or integer. Float indicates batch size as a percentage "
"of training data size.")
)
flags.DEFINE_integer("trials", 1,
"Number of curves to create using different seeds")
flags.DEFINE_integer("seed", 1, "Seed to use for rng and random state")
# TODO(lisha): add feature noise to simulate data outliers
flags.DEFINE_string("confusions", "0.", "Percentage of labels to randomize")
flags.DEFINE_string("active_sampling_percentage", "1.0",
"Mixture weights on active sampling.")
flags.DEFINE_string(
"score_method", "logistic",
"Method to use to calculate accuracy.")
flags.DEFINE_string(
"select_method", "None",
"Method to use for selecting points.")
flags.DEFINE_string("normalize_data", "False", "Whether to normalize the data.")
flags.DEFINE_string("standardize_data", "True",
"Whether to standardize the data.")
flags.DEFINE_string("save_dir", "/tmp/toy_experiments",
"Where to save outputs")
flags.DEFINE_string("data_dir", "/tmp/data",
"Directory with predownloaded and saved datasets.")
flags.DEFINE_string("max_dataset_size", "15000",
("maximum number of datapoints to include in data "
"zero indicates no limit"))
flags.DEFINE_float("train_horizon", "1.0",
"how far to extend learning curve as a percent of train")
flags.DEFINE_string("do_save", "True",
"whether to save log and results")
FLAGS = flags.FLAGS
get_wrapper_AL_mapping()
def generate_one_curve(X,
y,
sampler,
score_model,
seed,
warmstart_size,
batch_size,
select_model=None,
confusion=0.,
active_p=1.0,
max_points=None,
standardize_data=False,
norm_data=False,
train_horizon=0.5):
"""Creates one learning curve for both active and passive learning.
Will calculate accuracy on validation set as the number of training data
points increases for both PL and AL.
Caveats: training method used is sensitive to sorting of the data so we
resort all intermediate datasets
Args:
X: training data
y: training labels
sampler: sampling class from sampling_methods, assumes reference
passed in and sampler not yet instantiated.
score_model: model used to score the samplers. Expects fit and predict
methods to be implemented.
seed: seed used for data shuffle and other sources of randomness in sampler
or model training
warmstart_size: float or int. float indicates percentage of train data
to use for initial model
batch_size: float or int. float indicates batch size as a percent of
training data
select_model: defaults to None, in which case the score model will be
used to select new datapoints to label. Model must implement fit, predict
and depending on AL method may also need decision_function.
confusion: percentage of labels of one class to flip to the other
active_p: percent of batch to allocate to active learning
max_points: limit dataset size for preliminary
standardize_data: wheter to standardize the data to 0 mean unit variance
norm_data: whether to normalize the data. Default is False for logistic
regression.
train_horizon: how long to draw the curve for. Percent of training data.
Returns:
results: dictionary of results for all samplers
sampler_states: dictionary of sampler objects for debugging
"""
# TODO(lishal): add option to find best hyperparameter setting first on
# full dataset and fix the hyperparameter for the rest of the routine
# This will save computation and also lead to more stable behavior for the
# test accuracy
# TODO(lishal): remove mixture parameter and have the mixture be specified as
# a mixture of samplers strategy
def select_batch(sampler, uniform_sampler, mixture, N, already_selected,
**kwargs):
n_active = int(mixture * N)
n_passive = N - n_active
kwargs["N"] = n_active
kwargs["already_selected"] = already_selected
batch_AL = sampler.select_batch(**kwargs)
already_selected = already_selected + batch_AL
kwargs["N"] = n_passive
kwargs["already_selected"] = already_selected
batch_PL = uniform_sampler.select_batch(**kwargs)
return batch_AL + batch_PL
np.random.seed(seed)
data_splits = [2./3, 1./6, 1./6]
# 2/3 of data for training
if max_points is None:
max_points = len(y)
train_size = int(min(max_points, len(y)) * data_splits[0])
if batch_size < 1:
batch_size = int(batch_size * train_size)
else:
batch_size = int(batch_size)
if warmstart_size < 1:
# Set seed batch to provide enough samples to get at least 4 per class
# TODO(lishal): switch to sklearn stratified sampler
seed_batch = int(warmstart_size * train_size)
else:
seed_batch = int(warmstart_size)
seed_batch = max(seed_batch, 6 * len(np.unique(y)))
indices, X_train, y_train, X_val, y_val, X_test, y_test, y_noise = (
utils.get_train_val_test_splits(X,y,max_points,seed,confusion,
seed_batch, split=data_splits))
# Preprocess data
if norm_data:
print("Normalizing data")
X_train = normalize(X_train)
X_val = normalize(X_val)
X_test = normalize(X_test)
if standardize_data:
print("Standardizing data")
scaler = StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_val = scaler.transform(X_val)
X_test = scaler.transform(X_test)
print("active percentage: " + str(active_p) + " warmstart batch: " +
str(seed_batch) + " batch size: " + str(batch_size) + " confusion: " +
str(confusion) + " seed: " + str(seed))
# Initialize samplers
uniform_sampler = AL_MAPPING["uniform"](X_train, y_train, seed)
sampler = sampler(X_train, y_train, seed)
results = {}
data_sizes = []
accuracy = []
selected_inds = range(seed_batch)
# If select model is None, use score_model
same_score_select = False
if select_model is None:
select_model = score_model
same_score_select = True
n_batches = int(np.ceil((train_horizon * train_size - seed_batch) *
1.0 / batch_size)) + 1
for b in range(n_batches):
n_train = seed_batch + min(train_size - seed_batch, b * batch_size)
print("Training model on " + str(n_train) + " datapoints")
assert n_train == len(selected_inds)
data_sizes.append(n_train)
# Sort active_ind so that the end results matches that of uniform sampling
partial_X = X_train[sorted(selected_inds)]
partial_y = y_train[sorted(selected_inds)]
score_model.fit(partial_X, partial_y)
if not same_score_select:
select_model.fit(partial_X, partial_y)
acc = score_model.score(X_test, y_test)
accuracy.append(acc)
print("Sampler: %s, Accuracy: %.2f%%" % (sampler.name, accuracy[-1]*100))
n_sample = min(batch_size, train_size - len(selected_inds))
select_batch_inputs = {
"model": select_model,
"labeled": dict(zip(selected_inds, y_train[selected_inds])),
"eval_acc": accuracy[-1],
"X_test": X_val,
"y_test": y_val,
"y": y_train
}
new_batch = select_batch(sampler, uniform_sampler, active_p, n_sample,
selected_inds, **select_batch_inputs)
selected_inds.extend(new_batch)
print('Requested: %d, Selected: %d' % (n_sample, len(new_batch)))
assert len(new_batch) == n_sample
assert len(list(set(selected_inds))) == len(selected_inds)
# Check that the returned indice are correct and will allow mapping to
# training set from original data
assert all(y_noise[indices[selected_inds]] == y_train[selected_inds])
results["accuracy"] = accuracy
results["selected_inds"] = selected_inds
results["data_sizes"] = data_sizes
results["indices"] = indices
results["noisy_targets"] = y_noise
return results, sampler
def main(argv):
del argv
if not gfile.Exists(FLAGS.save_dir):
try:
gfile.MkDir(FLAGS.save_dir)
except:
print(('WARNING: error creating save directory, '
'directory most likely already created.'))
save_dir = os.path.join(
FLAGS.save_dir,
FLAGS.dataset + "_" + FLAGS.sampling_method)
do_save = FLAGS.do_save == "True"
if do_save:
if not gfile.Exists(save_dir):
try:
gfile.MkDir(save_dir)
except:
print(('WARNING: error creating save directory, '
'directory most likely already created.'))
# Set up logging
filename = os.path.join(
save_dir, "log-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) + ".txt")
sys.stdout = utils.Logger(filename)
confusions = [float(t) for t in FLAGS.confusions.split(" ")]
mixtures = [float(t) for t in FLAGS.active_sampling_percentage.split(" ")]
all_results = {}
max_dataset_size = None if FLAGS.max_dataset_size == "0" else int(
FLAGS.max_dataset_size)
normalize_data = FLAGS.normalize_data == "True"
standardize_data = FLAGS.standardize_data == "True"
X, y = utils.get_mldata(FLAGS.data_dir, FLAGS.dataset)
starting_seed = FLAGS.seed
for c in confusions:
for m in mixtures:
for seed in range(starting_seed, starting_seed + FLAGS.trials):
sampler = get_AL_sampler(FLAGS.sampling_method)
score_model = utils.get_model(FLAGS.score_method, seed)
if (FLAGS.select_method == "None" or
FLAGS.select_method == FLAGS.score_method):
select_model = None
else:
select_model = utils.get_model(FLAGS.select_method, seed)
results, sampler_state = generate_one_curve(
X, y, sampler, score_model, seed, FLAGS.warmstart_size,
FLAGS.batch_size, select_model, c, m, max_dataset_size,
standardize_data, normalize_data, FLAGS.train_horizon)
key = (FLAGS.dataset, FLAGS.sampling_method, FLAGS.score_method,
FLAGS.select_method, m, FLAGS.warmstart_size, FLAGS.batch_size,
c, standardize_data, normalize_data, seed)
sampler_output = sampler_state.to_dict()
results["sampler_output"] = sampler_output
all_results[key] = results
fields = [
"dataset", "sampler", "score_method", "select_method",
"active percentage", "warmstart size", "batch size", "confusion",
"standardize", "normalize", "seed"
]
all_results["tuple_keys"] = fields
if do_save:
filename = ("results_score_" + FLAGS.score_method +
"_select_" + FLAGS.select_method +
"_norm_" + str(normalize_data) +
"_stand_" + str(standardize_data))
existing_files = gfile.Glob(os.path.join(save_dir, filename + "*.pkl"))
filename = os.path.join(save_dir,
filename + "_" + str(1000+len(existing_files))[1:] + ".pkl")
pickle.dump(all_results, gfile.GFile(filename, "w"))
sys.stdout.flush_file()
if __name__ == "__main__":
app.run(main)