-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdcgan_flowers.py
286 lines (209 loc) · 12 KB
/
dcgan_flowers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import os
import time
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from os import listdir
tf.reset_default_graph()
# ----------------------Defining the models hyper-parameters--------------------------------------
learning_rate = 0.0002
momentum_beta1 = 0.5
batch_size = 209
epochs = 2000
# =================================== Configurations ===================================================================
model_save_flag = False
model_restore_flag = False
show_images = False
output_path_dir = "generated_files/flowers/"
if not os.path.exists(output_path_dir):
os.makedirs(output_path_dir)
ckpt_path = output_path_dir + "checkpoints/model.ckpt"
# ------------------------------------ Models Definition ----------------------------------------
def generator(z, _training=True):
with tf.variable_scope('Generator', reuse=tf.AUTO_REUSE):
# First layer - reshape to 4x4x1024 batch-normalized and relu activated
dense_layer1 = tf.layers.dense(z, 1024 * 4 * 4)
gen_layer1 = tf.reshape(dense_layer1, [-1, 4, 4, 1024])
batch_norm1 = tf.layers.batch_normalization(gen_layer1, training=_training)
activation_layer1 = tf.nn.relu(batch_norm1)
# second layer - a de-conv to 8x8x512 with stride of 2 and same padding, batch-normalized and relu activated
gen_conv2 = tf.layers.conv2d_transpose(activation_layer1, 512, [5, 5], strides=(2, 2), padding='SAME')
batch_norm2 = tf.layers.batch_normalization(gen_conv2, training=_training)
activation_layer2 = tf.nn.relu(batch_norm2)
# third layer - a de-conv to 16x16x256 with stride of 2 and same padding, batch-normalized and relu activated
gen_conv3 = tf.layers.conv2d_transpose(activation_layer2, 256, [5, 5], strides=(2, 2), padding='SAME')
batch_norm3 = tf.layers.batch_normalization(gen_conv3, training=_training)
activation_layer3 = tf.nn.relu(batch_norm3)
# forth layer - a de-conv to 32x32x128 with stride of 2 and same padding, batch-normalized and relu activated
gen_conv4 = tf.layers.conv2d_transpose(activation_layer3, 128, [5, 5], strides=(2, 2), padding='SAME')
batch_norm4 = tf.layers.batch_normalization(gen_conv4, training=_training)
activation_layer4 = tf.nn.relu(batch_norm4)
# fifth layer- output - a de-conv to 64x64x1 with stride of 2 and same padding and tanh activated
gen_conv5 = tf.layers.conv2d_transpose(activation_layer4, 3, [5, 5], strides=(2, 2), padding='SAME')
activation_layer5 = tf.tanh(gen_conv5)
return activation_layer5
def discriminator(x, _training=True):
with tf.variable_scope('Discriminator', reuse=tf.AUTO_REUSE):
# First layer - conv to 32x32x128, stride of 2, same padding, batch-normalization and leaky-relu activated
disc_conv1 = tf.layers.conv2d(x, 128, [5, 5], strides=(2, 2), padding='SAME')
batch_norm_disc = tf.layers.batch_normalization(disc_conv1, training=_training)
disc_activation1 = tf.nn.leaky_relu(batch_norm_disc)
# Second layer - conv to 16x16x256 with stride of 2 and same padding, batch-normalized leaky-relu activated
disc_conv2 = tf.layers.conv2d(disc_activation1, 256, [5, 5], strides=(2, 2), padding='SAME')
batch_norm_disc = tf.layers.batch_normalization(disc_conv2, training=_training)
disc_activation2 = tf.nn.leaky_relu(batch_norm_disc)
# Third layer - conv to 8x8x512 with stride of 2 and same padding, batch-normalized leaky-relu activated
disc_conv3 = tf.layers.conv2d(inputs=disc_activation2, filters=512, kernel_size=[5, 5], strides=(2, 2),
padding='SAME')
batch_norm_disc = tf.layers.batch_normalization(disc_conv3, training=_training)
disc_activation3 = tf.nn.leaky_relu(batch_norm_disc)
# Forth layer - conv to 4x4x1024 with stride of 2 and same padding, batch-normalized leaky-relu activated
disc_conv4 = tf.layers.conv2d(disc_activation3, 1024, [5, 5], strides=(2, 2), padding='SAME')
batch_norm_disc = tf.layers.batch_normalization(disc_conv4, training=_training)
disc_activation4 = tf.nn.leaky_relu(batch_norm_disc)
# Output layer - conv to 1x1x1
disc_conv5 = tf.layers.conv2d(disc_activation4, 1, [4, 4])
return disc_conv5
# ---------------------------------------------------------------------------------------------
def save_train_results(epoch_num):
path = output_path_dir + '/epoch' + str(epoch_num + 1) + '.png'
dims = 4
z_ = np.random.normal(0, 1, (16, 1, 1, 100))
generated_images = sess.run(generated, feed_dict={z: z_, training: False})
img_label = 'Generated images after {} training epoch'.format(epoch_num + 1)
plot_and_save_images(dims, img_label, generated_images, path)
def plot_and_save_images(dims, img_label, generated_images, path, show=show_images):
figure, subplots = plt.subplots(dims, dims, figsize=(dims, dims))
figure.text(0.5, 0.05, img_label, ha='center')
generated_images = 0.5 * generated_images + 0.5
for iterator in range(dims * dims):
i = iterator // dims
j = iterator % dims
subplots[i, j].get_xaxis().set_visible(False)
subplots[i, j].get_yaxis().set_visible(False)
subplots[i, j].cla()
subplots[i, j].imshow(np.reshape(generated_images[iterator], (64, 64, 3)))
if show:
plt.show()
plt.savefig(path)
plt.close()
def save_model_to_checkpoint(flag=model_save_flag):
if flag:
try:
save_path = saver.save(sess, ckpt_path)
print("Model saved in path: %s" % save_path)
except Exception as e:
print("\nERROR : Could not save the model due to - " + str(e))
def restore_model_from_ckpt(restore=model_restore_flag):
if restore:
try:
saver.restore(sess, ckpt_path)
print("\nModel restored from latest checkpoint")
except:
print("could not restore model, starting from scratch...")
# -------------------------------------- Model Train and Test -----------------------------------------------
def load_images(path):
# return array of images
images_list = listdir(path)
loaded_images = []
for image in images_list:
try:
image1 = tf.keras.preprocessing.image.load_img(path + image)
x = tf.keras.preprocessing.image.img_to_array(image1)
loaded_images.append(np.asarray(x))
except OSError:
print("error uploading image")
return loaded_images
def model_training():
# Training of the model
train_time = time.time()
df = pd.DataFrame(columns=['epoch_num', 'g_loss', 'd_loss', 'd_loss_fake', 'd_loss_real', 'epoch_runtime'])
print('\nStarting training of the DCGAN model...')
path = '../data-sets/flower_images/'
# your images in an array
imgs = load_images(path)
imgs = np.asarray(imgs)
imgs = tf.image.resize_images(imgs, [64, 64]).eval() # Resize images from 28x28 to 64x64
# processed_images = (imgs - 0.5) / 0.5 # normalize the data to the range of tanH [-1,1]
processed_images = imgs / 255.0 # normalize the data to the range of tanH [-1,1]
for epoch in range(epochs):
epoch_start_time = time.time()
discriminator_losses = []
discriminator_loss_real = []
discriminator_loss_fake = []
generator_losses = []
np.random.shuffle(processed_images) # shuffle the dataset to get random samples
z_ = np.random.normal(0, 1, (batch_size, 1, 1, 100)) # Create random noise z for Generator
d_loss1, g_loss1, disc_optimizer1, gen_optimizer1d, d_loss_real_data1, d_loss_generated_data1 = sess.run(
[d_loss, g_loss, disc_optimizer, gen_optimizer, d_loss_real_data, d_loss_generated_data],
{x: processed_images, z: z_, training: True})
if epoch % 100 == 0:
print('Training stats: epoch %d/%d\n'
'Discriminator loss: %.3f\nGenerator loss: %.3f' %
(epoch + 1, epochs,d_loss1, g_loss1))
save_train_results(epoch)
discriminator_losses.append(d_loss1)
discriminator_loss_real.append(d_loss_real_data1)
discriminator_loss_fake.append(d_loss_generated_data1)
generator_losses.append(g_loss1)
epoch_runtime = time.time() - epoch_start_time
print('Training epoch %d/%d - Time for epoch: %d discriminator loss: %.3f, Generator loss: %.3f' % (
(epoch + 1), epochs, epoch_runtime, np.mean(discriminator_losses), np.mean(generator_losses)))
df = df.append(pd.Series([epoch + 1, np.mean(generator_losses), np.mean(discriminator_losses),
np.mean(discriminator_loss_fake), np.mean(discriminator_loss_real), epoch_runtime],
index=df.columns), ignore_index=True)
save_model_to_checkpoint()
print('Total Training time was: %d' % (time.time() - train_time))
df.to_csv(output_path_dir + 'dataFrame.csv', index=False)
def model_test():
z_test = np.random.normal(0, 1, (1000, 1, 1, 100)) # Create random noise z for Generator
disc, gen = sess.run([disc_logits_fake, generated], feed_dict={z: z_test, training: False})
good_imgs = np.size(np.where(tf.sigmoid(disc).eval() > 0.5)[0])
print("Testing the model with 1000 generated images from the trained generator...\n"
"Our trained discriminator classified %d out of 1000 as real images." % good_imgs)
plot_and_save_images(8, "Generated images", gen, output_path_dir + "model_test_img.png", False)
# ----------------------------------------------------------------------------
# Create place holders for variable x,z,training
z = tf.placeholder(dtype=tf.float32, shape=[None, 1, 1, 100], name='Z')
x = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 3], name='X')
training = tf.placeholder(dtype=tf.bool)
# Define the Generator model
generated = generator(z, _training=training)
# Define the Discriminator model
disc_logits_real = discriminator(x)
disc_logits_fake = discriminator(generated)
# Define labels for the discriminator training
d_labels_real = tf.ones_like(disc_logits_real)
d_labels_fake = tf.zeros_like(disc_logits_fake)
# Define loss for generator - generator goal is to get the discriminator to classify each generated image as real
g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(disc_logits_fake), logits=disc_logits_fake))
# Define loss functions for the Discriminator
d_loss_real_data = tf.nn.sigmoid_cross_entropy_with_logits(labels=d_labels_real, logits=disc_logits_real)
d_loss_generated_data = tf.nn.sigmoid_cross_entropy_with_logits(labels=d_labels_fake, logits=disc_logits_fake)
d_loss = tf.reduce_mean(d_loss_real_data + d_loss_generated_data)
# Define the different variables for the Generator and Discriminator separately
all_vars = tf.trainable_variables()
disc_vars = [var for var in all_vars if var.name.startswith('Discriminator')]
generator_vars = [var for var in all_vars if var.name.startswith('Generator')]
# Define optimizer for Generator and Discriminator
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
disc_optimizer = tf.train.AdamOptimizer(learning_rate, beta1=momentum_beta1).minimize(d_loss, var_list=disc_vars)
gen_optimizer = tf.train.AdamOptimizer(learning_rate, beta1=momentum_beta1).minimize(g_loss,
var_list=generator_vars)
# ----------------TF Session and CheckPoint---------------------------------------------------------------
# Create tf session and initialize all the variable
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# Create a tf saver to enable training check-points and try to restore from previous ckpt if exist
saver = tf.train.Saver()
restore_model_from_ckpt()
# -------------------------------------------------------------------------------
# Train the model
model_training()
save_model_to_checkpoint(True)
# Test model performance
model_test()
# End the tf session
sess.close()