-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifier_logistic.py
46 lines (41 loc) · 1.43 KB
/
classifier_logistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
import os
import csv
from sklearn import svm
from sklearn import cross_validation
from sklearn import linear_model
from sklearn.neighbors import KNeighborsClassifier
import cPickle
def prec(num):
return "%0.5f"%num
images=[]
labels=[]
with open("20x20_temp.csv",'r') as file:
reader = csv.reader(file,delimiter=',')
for line in file:
labels.append(line[0])
line=line[2:] # Remove the label
image=[int(pixel) for pixel in line.split(',')]
images.append(np.array(image))
clf = linear_model.LogisticRegression()
print clf
kf = cross_validation.KFold(len(images),n_folds=10,indices=True, shuffle=True, random_state=4)
print "\nDividing dataset using `Kfold()` -:\n\nThe training dataset has been divided into " + str(len(kf)) + " parts\n"
for train, test in kf:
training_images=[]
training_labels=[]
for i in train:
training_images.append(images[i])
training_labels.append(labels[i])
testing_images=[]
testing_labels=[]
for i in test:
testing_images.append(images[i])
testing_labels.append(labels[i])
clf.fit(training_images,training_labels)
print prec(clf.score(testing_images, testing_labels))
print "\nDividing dataset using `train_test_split()` -:\n"
training_images, testing_images, training_labels, testing_labels = cross_validation.train_test_split(images,labels, test_size=0.2, random_state=0)
clf = clf.fit(training_images,training_labels)
score = clf.score(testing_images,testing_labels)
print prec(score)