-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.go
122 lines (106 loc) · 2.84 KB
/
model.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
package xgb
import (
"encoding/json"
"go4ml.xyz/base/fu"
"go4ml.xyz/base/model"
"go4ml.xyz/iokit"
"go4ml.xyz/zorros"
"io"
"reflect"
)
/*
Model is a XGBoost model definition
*/
type Model struct {
Algorithm booster
Function objective
Seed int // random generator seed
Predicted string // name of predicted value column
MinChildWeight float64 //the minimum sum of weights of all observations required in a child.
Gamma float64 // Specifies the minimum loss reduction required to make a split.
// Denotes the fraction of observations to be randomly samples for each tree.
// Typical values: 0.5-1
Subsample float64
Lambda float64 // L2 regularization
Alpha float64 // L1 regularization
// Makes the model more robust by shrinking the weights on each step
// Typical values: 0.01-0.2
LearningRate float64
// The maximum depth of a tree.
// Used to control over-fitting as higher depth will allow model
// to learn relations very specific to a particular sample.
// Typical values: 3-10
MaxDepth int
Extra Params
}
// Params - xgboost model extra parameters
type Params map[string]interface{}
/*
Feed model with data
*/
func (e Model) Feed(ds model.Dataset) model.FatModel {
return func(w model.Workout) (*model.Report, error) {
return train(e, ds, w)
}
}
/*
ModelFunc updates xgboost model with parameters for hyper-optimization
*/
func (m Model) ModelFunc(p model.Params) model.HungryModel {
return m.Apply(p)
}
/*
Apply parameters to define model specific
*/
func (m Model) Apply(p model.Params) Model {
x := reflect.ValueOf(&m).Elem()
for k, v := range p {
z := x.FieldByName(k)
if !z.IsValid() {
panic(zorros.Panic(zorros.Errorf("model does not have field `%v`", k)))
}
z.Set(fu.Convert(reflect.ValueOf(v), false, z.Type()))
}
return m
}
/*
ObjectifyModel creates xgboost predictor from the model collection
*/
func ObjectifyModel(c map[string]iokit.Input) (pm model.PredictionModel, err error) {
var rd io.ReadCloser
if rd, err = c["info.json"].Open(); err != nil {
return
}
defer rd.Close()
cf := map[string]interface{}{}
if err = json.NewDecoder(rd).Decode(&cf); err != nil {
return
}
m := predictionModel{
source: c["model.bin.xz"],
features: fu.Strings(cf["features"]),
predicts: cf["predicts"].(string),
}
return m, nil
}
/*
Objectify creates xgboost prediction object from an input
*/
func Objectify(source iokit.InputOutput, collection ...string) (fm model.PredictionModel, err error) {
x := fu.Fnzs(fu.Fnzs(collection...), "model")
m, err := model.Objectify(source, model.ObjectifyMap{x: ObjectifyModel})
if err != nil {
return
}
return m[x], nil
}
/*
LuckyObjectify is the errorless version of Objectify
*/
func LuckyObjectify(source iokit.InputOutput, collection ...string) model.PredictionModel {
fm, err := Objectify(source, collection...)
if err != nil {
panic(err)
}
return fm
}