-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpso.py
114 lines (95 loc) · 4.33 KB
/
pso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import numpy as np
from mountain_scooter import MountainScooter
from Particle import Particle
np.random.seed(71)
class PSO:
"""
Class for the Particle Swarm Optimization algorithm.
https://en.wikipedia.org/wiki/Particle_swarm_optimization
"""
def __init__(self, n, num_particles, fitness_function, max_iterations=50, w=0.4, c1=2.0, c2=2.0, verbose=False):
"""
Initialize the Particle Swarm Optimization algorithm.
:param n: Number of dimensions. It represent the size of a single particle.
:param num_particles: Number of particles in the swarm.
:param fitness_function: Fitness function to evaluate the particles.
:param max_iterations: Maximum number of iterations. Default: 50.
:param w: Inertia weight. Default: 0.4.
:param c1: Cognitive weight. Default: 2.0.
:param c2: Social weight. Default: 2.0.
:param verbose: If True, print the progress of the algorithm. Default value is False.
"""
self.n = n
self.num_particles = num_particles
self.fitness_function = fitness_function
self.max_iterations = max_iterations
self.w = w
self.c1 = c1
self.c2 = c2
self.verbose = verbose
self.population = self.initialize_population()
self.best_particle_population = self.compute_best_particle_population()
def initialize_population(self):
"""
Initialize the population of particles
:return: A list of particles representing the population
"""
population = []
for i in range(self.num_particles):
random_value = np.random.random(size=self.n)
population.append(Particle(i, random_value))
population[i].evaluate(self.fitness_function)
return population
def compute_best_particle_population(self):
"""
Compute the best particle in the population according to the fitness value.
:return: Particle object representing the best particle in the population.
"""
return self.population[np.argmax([particle.fitness for particle in self.population])]
def optimize(self):
for i in range(self.max_iterations):
# print statistics
if self.verbose:
print(
f"🚀 Performing iteration {i+1}:\n\t📊 "
f"Avg={round(np.average([p.fitness for p in self.population]), 2)}\t"
f"Best value={self.best_particle_population.fitness}")
for particle in self.population:
# Update the particle velocity and according to that update the particle value
particle.update_velocity(self.w, self.c1, self.c2, self.best_particle_population.value)
particle.update_value()
# Repair the particle if it is infeasible and evaluate its fitness
particle.evaluate(self.fitness_function)
self.best_particle_population = self.compute_best_particle_population()
def main():
print(f"🛵 Starting the MOUNTAIN SCOOTER optimization with PSO algorithm...")
# initialize environment
env = MountainScooter(mass=0.4, friction=0.3, max_speed=1.8)
# The biases have to be the same amount of the nodes without considering the first layer
# The weights are the connections between the nodes of input and hidden layer + hidden and output layer
layer_nodes = [2, 8, 7, env.num_actions]
n_bias = np.sum(layer_nodes) - layer_nodes[0]
n_weights = 0
for i in range(0, len(layer_nodes) - 1):
n_weights += layer_nodes[i] * layer_nodes[i + 1]
# The dimension of a single particle is the number of biases and weights of the neural network
n = n_bias + n_weights
num_particles = 200
# initialize PSO
pso = PSO(
n=n
, num_particles=num_particles
, fitness_function=lambda weights_and_biases: env.environment_execution(weights_and_biases, layer_nodes)
, max_iterations=25
, w=0.4
, c1=2.0
, c2=2.0
, verbose=True
)
pso.optimize()
env.environment_execution(pso.best_particle_population.value, layer_nodes)
print(f"\n🏆 Optimal particle: {pso.best_particle_population}")
env.render(show_plot=True)
print("✅ Complete!")
if __name__ == "__main__":
main()