-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_script.sh
43 lines (39 loc) · 1.49 KB
/
run_script.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#!/bin/bash
export RANK=0
export LOCAL_RANK=0
export MASTER_PORT=9355
export MASTER_ADDR="localhost"
export WORLD_SIZE=1
# Define the different values for experiment.lora_r, method.swag_start, and experiment.task
lora_r_values=(2 8 16 25) # Example values for experiment.lora_r
swag_start_values=(25 50 75 100) # Example values for method.swag_start
task_values=("cola" "sst2") # Updated task values
seed_values=(0 1 2 3 4) # Seeds
# Loop through each combination of the values
for lora_r in "${lora_r_values[@]}"; do
for swag_start in "${swag_start_values[@]}"; do
for task in "${task_values[@]}"; do
for seed in "${seed_values[@]}"; do
mnli_model_path="./model_checkpoints/RoBERTa-large/MNLI/rank_${lora_r}"
# Run the experiment with the current combination of parameters
accelerate launch launch_exp_hydra.py \
experiment.task=$task \
method.force_save=-1 \
method.swag_anneal_epochs=5 \
method.swag_max_num_models=10 \
method.swag_c_epochs=1 \
method.swag_learning_rate=1e-3 \
experiment.learning_rate=1e-3 \
experiment.cls_learning_rate=5e-3 \
experiment.num_epochs=100 \
experiment.batch_size=32 \
experiment.eval_upon_save=True \
experiment.use_loraxs=True \
experiment.lora_r=$lora_r \
experiment.seed=$seed \
method.swag_start=$swag_start \
experiment.mnli_model_path=$mnli_model_path
done
done
done
done