forked from oryair/InformedGeometry-CoupledPendulum
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSetQuestParamsPen.m
64 lines (49 loc) · 2.25 KB
/
SetQuestParamsPen.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
function params = SetQuestParamsPen(dims, isTopDown)
VERBOSE_NO_OUTPUT = 0; %#ok
VERBOSE_PROPMT_OUTPUT = 1; %#ok
VERBOSE_FIGURES_OUTPUT = 2; %#ok
AFF_EUCLID_METRIC = 'euc'; %#ok
AFF_COSINE_SIMILARITY = 'cosine_similarity'; %#ok
AFF_COSINE_SIMILARITY_ON_TRAILS = 'cosine_similarityOnTrials'; %#ok
params.n_iters = 1;
params.verbose = VERBOSE_PROPMT_OUTPUT; % 2 - for printing
params.data.to_normalize = false;
for dim_i = 1:dims
params.tree{dim_i}.runOnEmbdding = true; % build tree based on distances between embeddings (true) or on the given matrix (false)
params.tree{dim_i}.eigs_num = 10;
params.tree{dim_i}.verbose = VERBOSE_FIGURES_OUTPUT;
params.init_aff{dim_i}.metric = AFF_COSINE_SIMILARITY;
params.init_aff{dim_i}.knn = 5;
params.init_aff{dim_i}.eps = 1;
params.init_aff{dim_i}.thresh = 0;
switch dims
case 2
params.init_aff{dim_i}.initAffineFun = @CalcInitAff;
params.tree{dim_i}.CalcAffFun = @CalcEmdAff;
case 3
params.init_aff{dim_i}.initAffineFun = @CalcInitAff3D;
params.tree{dim_i}.CalcAffFun = @CalcEmdAff3D;
otherwise
error(['No implementation for calc init affin. for dims = ' num2str(dims)]);
end
params.emd{dim_i}.beta = 1;
params.emd{dim_i}.alpha = 0;
params.emd{dim_i}.eps = 1;
if isTopDown
% relevant only for TD trees:
params.tree{dim_i}.treeDepth = 4; % limiting the tree's groth
params.tree{dim_i}.clusteringAlgo = @svdClassWrapper;
params.tree{dim_i}.splitsNum = 9; % how many splits we want at each node
params.tree{dim_i}.min_cluster = 12;
params.tree{dim_i}.buildTreeFun = @BuildGenericTdTreesViaClustering;
else
params.tree{dim_i}.buildTreeFun = @BuildFlexTree;
params.tree{dim_i}.embedded = false;
params.tree{dim_i}.threshold = 0;
params.tree{dim_i}.k = 2;
params.tree{dim_i}.min_cluster = 12;
params.tree{dim_i}.constant = .5;
params.tree{dim_i}.min_joins_percentage = 0.1;
end
end
end