Skip to content

Latest commit

 

History

History
138 lines (126 loc) · 9.08 KB

README.md

File metadata and controls

138 lines (126 loc) · 9.08 KB

Hitman-Hashes

Resources Badge Completion Badge Formats Badge Alpha Badge H1 Badge H2 Badge H3 Badge Beta Badge Sa Badge Unknown Badge

Statistics

Show table
File Type Total Resources Correct Paths Correct Percentage Hints Hint Percentage
AIBB 1 1 100.00% 0 0.00%
AIBX 1 1 100.00% 0 0.00%
AIBZ 5 5 100.00% 0 0.00%
AIRG 50 50 100.00% 0 0.00%
ALOC 26262 16534 62.96% 0 0.00%
ASEB 5819 1703 29.27% 0 0.00%
ASET 13493 6163 45.68% 0 0.00%
ASVA 277 267 96.39% 9 3.25%
ATMD 16911 6458 38.19% 0 0.00%
BMSK 59 38 64.41% 0 0.00%
BORG 6968 2621 37.61% 0 0.00%
BOXC 41 40 97.56% 0 0.00%
CBLU 2646 2646 100.00% 0 0.00%
CLNG 4 0 0.00% 0 0.00%
CPPT 2646 2646 100.00% 0 0.00%
CRMD 55 49 89.09% 1 1.82%
DITL 4 0 0.00% 0 0.00%
DLGE 48637 46016 94.61% 2371 4.87%
DSWB 5 0 0.00% 5 100.00%
ECPB 2835 0 0.00% 0 0.00%
ECPT 2835 0 0.00% 0 0.00%
ENUM 2 1 50.00% 1 50.00%
ERES 270 266 98.52% 3 1.11%
FXAC 4 4 100.00% 0 0.00%
FXAS 349991 349282 99.80% 0 0.00%
GFXF 41 41 100.00% 0 0.00%
GFXI 11862 9179 77.38% 1438 12.12%
GFXV 318 119 37.42% 196 61.64%
GIDX 1 1 100.00% 0 0.00%
HIKC 2 2 100.00% 0 0.00%
JSON 3138 1475 47.00% 1406 44.81%
LINE 32132 25894 80.59% 1479 4.60%
LOCM 16 14 87.50% 0 0.00%
LOCR 9631 6531 67.81% 510 5.30%
MATB 5454 4801 88.03% 644 11.81%
MATE 1102 833 75.59% 0 0.00%
MATI 18663 17377 93.11% 1274 6.83%
MATT 5453 4800 88.02% 644 11.81%
MJBA 19585 7363 37.60% 0 0.00%
MRTN 2248 1073 47.73% 0 0.00%
MRTR 853 85 9.96% 0 0.00%
NAVP 78 76 97.44% 1 1.28%
ORES 9 7 77.78% 0 0.00%
PREL 142 142 100.00% 0 0.00%
PRIM 42747 21860 51.14% 241 0.56%
REPO 2 2 100.00% 0 0.00%
RTLV 142 0 0.00% 137 96.48%
SCDA 877 818 93.27% 0 0.00%
SDEF 501 501 100.00% 0 0.00%
TBLU 56006 39462 70.46% 16322 29.14%
TELI 65278 34674 53.12% 0 0.00%
TEMP 85564 58475 68.34% 26764 31.28%
TEXD 43348 32257 74.41% 9766 22.53%
TEXT 44127 32604 73.89% 10453 23.69%
UICB 393 393 100.00% 0 0.00%
UICT 393 393 100.00% 0 0.00%
VIDB 95 0 0.00% 94 98.95%
VTXD 11307 8695 76.90% 0 0.00%
WBNK 845 815 96.45% 0 0.00%
WMDA 9 9 100.00% 0 0.00%
WSGB 142 131 92.25% 11 7.75%
WSGT 142 131 92.25% 11 7.75%
WSWB 61 46 75.41% 15 24.59%
WSWT 66 46 69.70% 20 30.30%
WWEM 381513 271538 71.17% 85030 22.29%
WWES 185980 185980 100.00% 0 0.00%
WWEV 26075 19818 76.00% 6257 24.00%
WWFX 17082 16189 94.77% 0 0.00%
YSHP 4 3 75.00% 1 25.00%

Game flags

Game Bit Representation (Binary)
Alpha 0b000001
H1 0b000010
H2 0b000100
H3 0b001000
Beta 0b010000
SA 0b100000
Unknown 0b1000000

Scripts

This repository contains four main scripts merge.py, add_paths.py, add_new_hashes.py and extract_hashes.py. They must be ran from the repository's root directory like python ./scripts/add_paths.py.

merge.py

Generates hash_list.txt. Takes a version number as an argument and optionally --game (separate games by spaces if you wish to include multiple). Example: python ./scripts/merge.py 0 or python ./scripts/merge.py 0 --game h1 h2.

add_paths.py

Adds paths to their assoicated hashes within the path folder's JSON files.

Defaults to reading a file called new_paths.txt in the repository's root directory which needs to contain data structured like this (resource type is optional, although it will make adding paths slightly slower if omitted):

000A4FB9B5FDAB19.WSGT,[assembly:/sound/wwise/exportedwwisedata/states/levelspecific_states/paris/fashionshowmusic_level_state.wwisestategroup].pc_entitytype
004B66043E12A8E3.WSGB,[assembly:/sound/wwise/exportedwwisedata/states/levelspecific_states/paris/fashionshowmusic_level_state.wwisestategroup].pc_entityblueprint
005EA1E72FC62DEC.WSGT,[assembly:/sound/wwise/exportedwwisedata/states/levelspecific_states/paris/paris_rain_puddle_state.wwisestategroup].pc_entitytype
0054C5081030A3D0.WSGB,[assembly:/sound/wwise/exportedwwisedata/states/levelspecific_states/paris/paris_rain_puddle_state.wwisestategroup].pc_entityblueprint

add_new_hashes.py

Adds new hashes into the JSON files.

Requires a new_hashes.txt file in the repository's root directory which contains data structured like:

000A4FB9B5FDAB19.WSGT:h3
004B66043E12A8E3.WSGB:h3
005EA1E72FC62DEC.WSGT:h3
0054C5081030A3D0.WSGB:h3
003B993A25498AE6.AIBB:h2,h3

Possible games are: alpha, h1, h2, h3, beta and sa.

extract_hashes.py

Extracts a list of hashes from RPKG files into a text file. This is for use with the add_new_hashes.py script. Example: python .\scripts\extract_hashes.py --input C:\Epic\HITMAN3\Runtime --game h3.