-
Notifications
You must be signed in to change notification settings - Fork 0
/
Ford_Fulkerson.cpp
170 lines (139 loc) · 3.18 KB
/
Ford_Fulkerson.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// C++ program for implementation of Ford Fulkerson algorithm
#include <iostream>
#include <limits.h>
#include <string.h>
#include <queue>
using namespace std;
#define V 6
//bfs returns shortest path
bool bfs(int rGraph[V][V], int s, int t, int parent[])
{
bool visited[V];
memset(visited, 0, sizeof(visited));
queue <int> q;
q.push(s);
visited[s] = true;
parent[s] = -1;
while (!q.empty())
{
int u = q.front();
q.pop();
for (int v=0; v<V; v++)
{
if (visited[v]==false && rGraph[u][v] > 0)
{
q.push(v);
parent[v] = u;
visited[v] = true;
}
}
}
return (visited[t] == true);
}
// To find max flow
int fordFulkerson(int graph[V][V], int s, int t)
{
int u, v;
//Residual graph
int rGraph[V][V];
for (u = 0; u < V; u++)
{
for (v = 0; v < V; v++)
{
rGraph[u][v] = graph[u][v];
}
}
//To store path
int parent[V];
int max_flow = 0;
//Loop will run until path is available
while (bfs(rGraph, s, t, parent))
{
int path_flow = rGraph[parent[t]][t];
for (v=t; v!=s; v=parent[v])
{
u = parent[v];
path_flow = path_flow < rGraph[u][v] ? path_flow : rGraph[u][v];
}
for (v=t; v != s; v=parent[v])
{
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}
max_flow += path_flow;
//To print matrix after every iteration.
/*int z,w;
printf("[");
for(z=0;z<V;z++)
{
for(w=0;w<V;w++)
{
printf("%d,",rGraph[z][w]);
}
printf("\n");
}
printf("]\n");*/
}
int z,w;
printf("First graph\n");
for(z=0;z<V;z++)
{
for(w=0;w<V;w++)
{
printf("%d\t",graph[z][w]);
}
printf("\n");
}
printf("\n");
printf("After max flow with reverse\n");
for(z=0;z<V;z++)
{
for(w=0;w<V;w++)
{
printf("%d\t",rGraph[z][w]);
}
printf("\n");
}
printf("\n");
int d;
printf("After max flow\n");
for(z=0;z<V;z++)
{
for(w=0;w<V;w++)
{
if(graph[z][w]>0)
{
printf("%d\t",rGraph[w][z]);
}
else
{
printf("0\t");
}
}
printf("\n");
}
printf("\n");
cout << "The maximum possible flow is " << max_flow;
int x,opt;
do
{
cout<<"Enter x:";
cin>>x;
cout<<"Enter 0 to exit:";
cin>>opt;
}while(opt != 0);
return max_flow;
}
int main()
{
int graph[V][V] = { {0, 9, 9, 0, 0, 0},
{0, 0, 4, 8, 0, 0},
{0, 0, 0, 1, 3, 0},
{0, 0, 0, 0, 8, 10},
{0, 0, 0, 0, 0, 7},
{0, 0, 0, 0, 0, 0}
};
cout << "The maximum possible flow is " << fordFulkerson(graph, 0, 5);
return 0;
}