-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
78 lines (52 loc) · 1.41 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# sinar
<!-- badges: start -->
<!-- badges: end -->
The goal of sinar is to implement the Conditional Least Square method for the Spatial non-negative Integer-valued Autoregressive $SINAR(1,1)$.
## Installation
You can install the development version from [GitHub](https://github.com/gilberto-sassi/) with:
``` r
# install.packages("devtools")
devtools::install_github("gilberto-sassi/sinar")
```
## Example: simulated case
```{r example}
library(sinar)
## Simulated data matrix from SINAR(1,1) with Poison(5) innovation
matrix_simulated <- sinar_pois(15, 15, 0.2, 0.2, 0.4, 5)
## Conditional Least Square (CLS) estimates
cls(matrix_simulated)
## Covariance matrix of CLS estimates
emp_cov(matrix_simulated)
```
## Example: real dataset (nematodoes)
```{r}
library(sinar)
## Nematodes counting datasets
data("nematodes")
## Conditional Least Square (CLS) estimates
cls(nematodes)
## Covariance matrix of CLS estimates
emp_cov(nematodes)
```
## Example: real dataset (carabidae)
```{r}
library(sinar)
## Carabidae counting dataset
data("carabidae")
## Conditional Least Square (CLS) estimates
cls(carabidae)
## Covariance matrix of CLS estimates
emp_cov(carabidae)
```