-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsnowflake_database.py
250 lines (197 loc) · 9.73 KB
/
snowflake_database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import pandas as pd
from airflow.providers.snowflake.hooks.snowflake import SnowflakeHook
from snowflake.connector.pandas_tools import pd_writer
from general.config import get_logger
from airflow.exceptions import AirflowException
AIRFLOW_SNOWFLAKE_CONN_ID = 'SNOWFLAKE'
logger = get_logger(__name__)
class SnowflakeDatabase:
def __init__(self,
snowflake_conn_id=AIRFLOW_SNOWFLAKE_CONN_ID,
database=None,
schema=None,
session_parameters=None
) -> None:
"""Initilisation of class variable which used across this and sub-class of it
Parameters
----------
snowflake_conn_id : str
Snowflake connection ID in Airflow
Database & Schema: str
If your DAG only work with single database and schema at a time, you could init it here and don't need to fully_qualified_table all the time
Otherwise, use fully_qualified_table at all time
"""
self.snowflake_conn_id = snowflake_conn_id
self.snowflake_hook = None
self.engine = None
self.connection = None
self.database = database
self.schema = schema
self.session_parameters = session_parameters
if not self.database and self.schema:
raise AirflowException("Schema was provided but database was not provided")
def get_hook(self, custom_database: str = None, custom_schema: str = None) -> SnowflakeHook:
"""
Get SnowflakeHook (Airflow built-in) which has pre-config the connection to Platform.
This is the base foundation for every Platform's connection.
"""
if not custom_database and custom_schema:
raise AirflowException("Schema was provided but database was not provided")
if custom_database and not custom_schema:
return SnowflakeHook(snowflake_conn_id=self.snowflake_conn_id, database=custom_database, session_parameters=self.session_parameters)
if custom_database and custom_schema:
return SnowflakeHook(snowflake_conn_id=self.snowflake_conn_id, database=custom_database, schema=custom_schema, session_parameters=self.session_parameters)
if not self.snowflake_hook:
if self.database and not self.schema:
self.snowflake_hook = SnowflakeHook(snowflake_conn_id=self.snowflake_conn_id, database=self.database, session_parameters=self.session_parameters)
elif self.database and self.schema:
self.snowflake_hook = SnowflakeHook(snowflake_conn_id=self.snowflake_conn_id, database=self.database, schema=self.schema, session_parameters=self.session_parameters)
return self.snowflake_hook
def get_engine(self, snowflake_hook: SnowflakeHook = None):
"""
Get SQL Alchemy engine usually used for pure Python library to work with Snowflake
"""
if not self.engine:
if not snowflake_hook:
self.engine = self.get_hook().get_sqlalchemy_engine()
else:
self.engine = snowflake_hook.get_sqlalchemy_engine()
return self.engine
def get_connection(self):
"""
Get Snowflake Connection that help to execute raw SQL only
"""
if not self.connection:
connection = self.get_engine().connect()
return connection
def execute_query(self, query: str):
"""
Execute raw SQL query
"""
result = self.get_hook().run(query)
logger.info(f"Query {query} result: {result}")
def get_type_of_table_name(self, table_name: str) -> str:
"""
Receive table name and return True if table name included database and schema prefix
"""
split_name = table_name.split(".")
if len(split_name) == 3:
return "fully_qualified"
elif len(split_name) == 2:
return "half_qualified"
else:
return "not_qualified"
def check_provided_config_versus_table_name(self, table_name: str, database=None, schema=None, required_type:str = None):
"""
Given table name and configuration, check whether it is enough information to submit to Snowflake or not
"""
table_name_type = self.get_type_of_table_name(table_name)
if required_type and table_name_type != required_type:
raise AirflowException(f"Table name {table_name} is {table_name_type} and not {required_type} to use this function")
if table_name_type == "fully_qualified":
return
if not database:
database = self.database
if not schema:
schema = self.schema
if table_name_type == "half_qualified" and database:
return
if table_name_type == "not_qualified" and database and schema:
return
raise AirflowException(f"Table name {table_name} is not qualified since database/schema was not provided")
def get_data(self, query: str) -> list:
"""
Retrieve data from Platform into pure Python data structure
:param query: Require fully qualified table if you're referring to another database/schema zone
"""
try:
result = self.get_connection().execute(query)
logger.info(f"Result of {query} : {str(result)}")
return result
finally:
self.get_connection().close()
self.get_engine().dispose()
def get_data_dataframe(self, query: str, chunksize=1000) -> pd.DataFrame:
"""
Retrieve data from Platform into Pandas Dataframe
"""
rows = []
try:
for chunk in pd.read_sql_query(query, self.get_engine(), chunksize=chunksize):
rows.append(chunk)
return pd.concat(rows, axis=0)
finally:
self.get_engine().dispose()
def insert_data_from_dataframe(self, df: pd.DataFrame, table_name: str, mode='append', delete_id=None, update_schema=False):
"""
Insert data to Platform from Pandas Dataframe
:param table_name: if fully qualified table name is provided, it will be used instead settings from object's intialisation.
:param mode: append|truncate|replace
"""
if df.empty:
logger.warning(f"DF is empty so function insert_data_from_dataframe inserting data to {table_name} return None")
return None
self.check_provided_config_versus_table_name(table_name)
if delete_id:
id_text = "', '".join(df[delete_id].astype(str).drop_duplicates().values)
delete_query = f"""
delete from {table_name}
where {delete_id} in ('{id_text}')
"""
self.execute_query(delete_query)
if update_schema:
self.update_schema(df.columns.to_list(), table_name)
if mode == 'truncate':
self.truncate_data(table_name)
mode = 'append'
split_name = table_name.split(".")
if self.get_type_of_table_name(table_name) == "fully_qualified":
database, schema, table = table_name.split(".")
engine = self.get_engine(snowflake_hook=self.get_hook(custom_database=database, custom_schema=schema))
elif self.get_type_of_table_name(table_name) == "half_qualified":
database = self.database
schema = split_name[0]
table = split_name[1]
engine = self.get_engine(snowflake_hook=self.get_hook(custom_database=database, custom_schema=schema))
else:
database = self.database
schema = self.schema
table = table_name
engine = self.get_engine()
df.columns = df.columns.str.upper()
result = df.to_sql(table.lower(), con=engine, index=False, if_exists=mode, method=pd_writer)
logger.info("Result of insert_data_from_dataframe: {}", str(result))
def truncate_data(self, table_name: str):
self.check_provided_config_versus_table_name(table_name)
self.execute_query(f"truncate table if exists {table_name}")
def get_table_schema(self, table_name: str) -> pd.DataFrame:
self.check_provided_config_versus_table_name(table_name)
df = self.get_data_dataframe(f"desc table {table_name}")
df['name'] = df['name'].str.lower()
df['type'] = df['type'].str.lower()
return df
def update_schema(self, updating_schema: list, table_name: str):
current_schema = self.get_table_schema(table_name)['name'].tolist()
new_cols = [f"{col} TEXT" for col in updating_schema if not col.lower() in current_schema]
if new_cols:
update_ddl = f"ALTER TABLE {table_name} ADD {','.join(new_cols)}"
self.execute_query(update_ddl)
logger.info(f"Columns {','.join(new_cols)} are added to table {table_name}")
return
logger.info(f"No new columns were added")
def grant_ownership(self, table_name: str, role_name: str, grant_object="table"):
self.check_provided_config_versus_table_name(table_name)
self.execute_query(f"grant ownership on {grant_object} {table_name} to role {role_name}")
def export_data_to_s3(self, external_stage: str, file_path: str, data_query: str):
"""
Require external stage to be set up before hand with provided bucket and key path
Parameters
----------
storage_integration : str
External stage with configed file format and data format option
file_path: str
S3 path for data to export
data_query: str
The query return the data to export
"""
self.execute_query(f"copy into @{external_stage}/{file_path} from ({data_query})")