-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProbabilisticModelElement.cpp
173 lines (147 loc) · 4.34 KB
/
ProbabilisticModelElement.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#ifndef PROB_MODEL_ELEM
#define PROB_MODEL_ELEM
#include "ProbabilisticModelElement.hpp"
#include "DataCollector.hpp"
#include "Rand.hpp"
#include <cmath>
#include <iostream>
ProbabilisticModelElement::ProbabilisticModelElement()
{
probabilities = NULL;
number_of_probabilities = 0;
}
ProbabilisticModelElement::ProbabilisticModelElement( int num )
{
init( num );
}
ProbabilisticModelElement::~ProbabilisticModelElement()
{
delete_probabilities();
}
int ProbabilisticModelElement::get_length()
{
return number_of_probabilities;
}
void ProbabilisticModelElement::init( int num )
{
double val = 1.0 / num;
delete_probabilities();
number_of_probabilities = num;
probabilities = new double[num];
for( int i = 0; i < num; i++ )
probabilities[i] = val;
}
void ProbabilisticModelElement::delete_probabilities()
{
if( probabilities )
{
delete [] probabilities;
probabilities = NULL;
}
}
void ProbabilisticModelElement::print( ostream& fout )
{
fout.width( 7 );
fout.precision( 4 );
for( int i = 0; i < number_of_probabilities; i++ )
fout << probabilities[i] << " ";
fout << endline;
}
// LEARNING
int ProbabilisticModelElement::get_value( RandomNumberGenerator& rng )
{
double sum = 0., p = rng.getRandom();
for( int i = 0; i < number_of_probabilities; i++ )
{
sum += probabilities[i];
if( sum >= p )
return i;
}
if( number_of_probabilities != 1 )
{
DataCollector::debug << "Warning, returning last value from PME::get_value.\nsum(probs)="
<< sum << ", p=" << p << " expname=" << config->experiment_name << endline;
normalize_fix();
}
return number_of_probabilities - 1;
}
void ProbabilisticModelElement::normalize_fix()
{
double sum = 0.;
for( int i = 0; i < number_of_probabilities; i++)
sum += probabilities[i];
for( int i = 0; i < number_of_probabilities; i++ )
probabilities[i] /= sum;
}
// Taken from PIPE
void ProbabilisticModelElement::normalize( int index )
{
double sum = 0., old_probability, gamma;
if( number_of_probabilities == 1 )
{
probabilities[0] = 1.;
return;
}
else if( number_of_probabilities == 2 )
{
probabilities[( index + 1 ) % 2] = 1.0 - probabilities[index];
return;
}
if( index >= number_of_probabilities || index < 0 )
DataCollector::debug << endline << "index=" << index << ", #prob=" << number_of_probabilities << endline;
for( int i = 0; i < number_of_probabilities; i++ )
sum += probabilities[i];
old_probability = probabilities[index] - (sum - 1.0);
if( old_probability == 1.0 )
gamma = 0.0;
else
gamma = ( probabilities[index] - old_probability )
/ (1.0 - old_probability);
for( int i = 0; i < number_of_probabilities; i++ )
if( i != index )
probabilities[i] *= (1.0 - gamma);
}
void ProbabilisticModelElement::pipe_mutate( int size, RandomNumberGenerator& rng )
{
double prob_mutate = config->pipe_prob_mutation
/ ( number_of_probabilities * sqrt( (double)size ) );
for( int i = 0; i < number_of_probabilities; i++ )
if( rng.getRandom() < prob_mutate )
{
probabilities[i] += config->pipe_mutation_rate * ( 1 - probabilities[i] );
this->normalize( i );
}
}
double ProbabilisticModelElement::get_probability( int index )
{
if( index < number_of_probabilities && index >= 0 )
return probabilities[index];
else
return -1.;
}
void ProbabilisticModelElement::pipe_increment( int index )
{
//std::cout << "index = " << index << "lr=" << config->pipe_learning_rate << std::endl;
probabilities[index] += 0.1 * config->pipe_learning_rate * ( 1 - probabilities[index] );
}
CfgFile* ProbabilisticModelElement::config = NULL;
void ProbabilisticModelElement::set_config( CfgFile& cfg )
{
config = &cfg;
}
void ProbabilisticModelElement::pbil_increment( int index )
{
probabilities[index] *= ( 1. - config->pbil_learning_rate );
probabilities[index] += config->pbil_learning_rate;
}
void ProbabilisticModelElement::pbil_mutate( RandomNumberGenerator& rng )
{
for( int i = 0; i < number_of_probabilities; i++ )
if( rng.getRandom() < config->pbil_mutation_probability )
{
probabilities[i] *= ( 1. - config->pbil_mutation_shift );
probabilities[i] += ( rng.getRandom() > .5 ) * config->pbil_mutation_shift;
this->normalize( i );
}
}
#endif