-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrainer.py
108 lines (85 loc) · 3.35 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import time, abc
import torch
import util
class TrainerBase(metaclass=abc.ABCMeta):
def __init__(self, train_loader, test_loader, network, optim, loss, precond, sched):
self.train_loader = train_loader
self.test_loader = test_loader
self.network = network
self.optim = optim
self.loss = loss
self.precond = precond
self.sched = sched
self.f_nfe_meter = util.ExponentialRunningAverageMeter()
self.b_nfe_meter = util.ExponentialRunningAverageMeter()
def time_start(self):
self.time_start = time.time()
@property
def clock(self):
return time.time() - self.time_start
@abc.abstractmethod
def prepare_var(self, opt, batch):
raise NotImplementedError
def get_ode_t1(self):
return self.network.ode.t1.item()
def get_last_lr(self, opt):
if self.sched:
lr = self.sched.get_last_lr()
return opt.lr if lr is None else lr[0]
else:
return opt.lr
def set_optimizer(self, opt, train_it):
if self.precond: self.precond.train_itr_setup()
if opt.use_adaptive_t1:
self.network.ode.t1_train_itr_setup(train_it)
self.optim.zero_grad()
def forward_graph(self, opt, var, training=False):
if training: self.network.train()
self.network.ode.nfe = 0
var.pred = self.network.forward(var.data)
self.f_nfe_meter.update(self.network.ode.nfe)
return var
def run_optimizer(self, opt, train_it, var, loss):
self.network.ode.nfe = 0
loss.backward()
self.b_nfe_meter.update(self.network.ode.nfe)
if self.precond: self.precond.step()
self.optim.step()
if opt.use_adaptive_t1:
self.network.ode.update_t1()
def train_step(self, opt, train_it, batch):
var = self.prepare_var(opt, batch)
self.set_optimizer(opt, train_it)
var = self.forward_graph(opt, var, training=True)
loss = self.loss(var.pred, var.target)
self.run_optimizer(opt, train_it, var, loss)
return loss
def evaluate(self, opt, ep, train_it, compute_accu=True):
self.network.eval()
loss_eval = 0.
count = correct = total = 0
with torch.no_grad():
for it, batch in enumerate(self.test_loader):
# compute var
var = self.prepare_var(opt, batch)
var = self.forward_graph(opt, var, training=False)
# compute loss
loss = self.loss(var.pred, var.target)
batch_size = len(var.data)
loss_eval += loss*batch_size
count += batch_size
# compute accuracy if needed
if compute_accu:
_, predicted = torch.max(var.pred,1)
correct += (predicted==var.target).sum().item()
total += var.target.size(0)
loss_eval /= count
accuracy = correct/total if compute_accu else None
return loss_eval, accuracy
def save_checkpoint(self, opt, train_it, keys):
util.save_checkpoint(opt, self, keys, train_it+1)
def restore_checkpoint(self, opt, keys):
if opt.load is not None:
util.restore_checkpoint(opt, self, opt.load, keys)
else:
print(util.magenta("training from scratch..."))