forked from modern-fortran/neural-fortran
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsine.f90
43 lines (33 loc) · 943 Bytes
/
sine.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
program sine
use nf, only: dense, input, network
implicit none
type(network) :: net
real :: x(1), y(1)
real, parameter :: pi = 4 * atan(1.)
integer, parameter :: num_iterations = 100000
integer, parameter :: test_size = 30
real :: xtest(test_size), ytest(test_size), ypred(test_size)
integer :: i, n
print '("Sine training")'
print '(60("="))'
net = network([ &
input(1), &
dense(5), &
dense(1) &
])
call net % print_info()
xtest = [((i - 1) * 2 * pi / test_size, i = 1, test_size)]
ytest = (sin(xtest) + 1) / 2
do n = 0, num_iterations
call random_number(x)
x = x * 2 * pi
y = (sin(x) + 1) / 2
call net % forward(x)
call net % backward(y)
call net % update(1.)
if (mod(n, 10000) == 0) then
ypred = [(net % predict([xtest(i)]), i = 1, test_size)]
print '(i0,1x,f9.6)', n, sum((ypred - ytest)**2) / size(ypred)
end if
end do
end program sine