From b6bf90673024ae79d2da923b5ce891df91bc4a10 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 2 Oct 2022 17:55:45 +0300 Subject: [PATCH] ref #10 : quick-and-dirty attempt for real-time audio transciption - Processes input in chunks of 3 seconds. - Padding audio with silence - Uses 1 second audio from previous pass - No text context --- .gitignore | 1 + Makefile | 5 + stream.cpp | 2511 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 2517 insertions(+) create mode 100644 stream.cpp diff --git a/.gitignore b/.gitignore index b23f03ef595..841237a10ea 100644 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,4 @@ sync.sh main +stream *.o diff --git a/Makefile b/Makefile index 35cfe781c55..14a75288983 100644 --- a/Makefile +++ b/Makefile @@ -1,3 +1,5 @@ +CC_SDL=`sdl2-config --cflags --libs` + main: ggml.o main.o g++ -pthread -o main ggml.o main.o ./main -h @@ -8,6 +10,9 @@ ggml.o: ggml.c ggml.h main.o: main.cpp ggml.h g++ -pthread -O3 -std=c++11 -c main.cpp +stream: stream.cpp + g++ -pthread -O3 -std=c++11 -o stream stream.cpp ggml.o $(CC_SDL) + # clean up the directory clean: rm -f *.o main diff --git a/stream.cpp b/stream.cpp new file mode 100644 index 00000000000..918c5acc043 --- /dev/null +++ b/stream.cpp @@ -0,0 +1,2511 @@ +// Real-time speech recognition of input from a microphone +// +// A very quick-n-dirty implementation serving mainly as a proof of concept. + +#include "ggml.h" + +#define USE_FLASH_ATTN +#define USE_FLASH_FF + +// third-party utilities +// use your favorite implementations +#define DR_WAV_IMPLEMENTATION +#include "dr_wav.h" + +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +// available whisper models +enum e_model { + MODEL_UNKNOWN, + MODEL_TINY, + MODEL_BASE, + MODEL_SMALL, + MODEL_MEDIUM, + MODEL_LARGE, +}; + +const std::map> g_lang = { + { "en", { 0, "english", } }, + { "zh", { 1, "chinese", } }, + { "de", { 2, "german", } }, + { "es", { 3, "spanish", } }, + { "ru", { 4, "russian", } }, + { "ko", { 5, "korean", } }, + { "fr", { 6, "french", } }, + { "ja", { 7, "japanese", } }, + { "pt", { 8, "portuguese", } }, + { "tr", { 9, "turkish", } }, + { "pl", { 10, "polish", } }, + { "ca", { 11, "catalan", } }, + { "nl", { 12, "dutch", } }, + { "ar", { 13, "arabic", } }, + { "sv", { 14, "swedish", } }, + { "it", { 15, "italian", } }, + { "id", { 16, "indonesian", } }, + { "hi", { 17, "hindi", } }, + { "fi", { 18, "finnish", } }, + { "vi", { 19, "vietnamese", } }, + { "iw", { 20, "hebrew", } }, + { "uk", { 21, "ukrainian", } }, + { "el", { 22, "greek", } }, + { "ms", { 23, "malay", } }, + { "cs", { 24, "czech", } }, + { "ro", { 25, "romanian", } }, + { "da", { 26, "danish", } }, + { "hu", { 27, "hungarian", } }, + { "ta", { 28, "tamil", } }, + { "no", { 29, "norwegian", } }, + { "th", { 30, "thai", } }, + { "ur", { 31, "urdu", } }, + { "hr", { 32, "croatian", } }, + { "bg", { 33, "bulgarian", } }, + { "lt", { 34, "lithuanian", } }, + { "la", { 35, "latin", } }, + { "mi", { 36, "maori", } }, + { "ml", { 37, "malayalam", } }, + { "cy", { 38, "welsh", } }, + { "sk", { 39, "slovak", } }, + { "te", { 40, "telugu", } }, + { "fa", { 41, "persian", } }, + { "lv", { 42, "latvian", } }, + { "bn", { 43, "bengali", } }, + { "sr", { 44, "serbian", } }, + { "az", { 45, "azerbaijani", } }, + { "sl", { 46, "slovenian", } }, + { "kn", { 47, "kannada", } }, + { "et", { 48, "estonian", } }, + { "mk", { 49, "macedonian", } }, + { "br", { 50, "breton", } }, + { "eu", { 51, "basque", } }, + { "is", { 52, "icelandic", } }, + { "hy", { 53, "armenian", } }, + { "ne", { 54, "nepali", } }, + { "mn", { 55, "mongolian", } }, + { "bs", { 56, "bosnian", } }, + { "kk", { 57, "kazakh", } }, + { "sq", { 58, "albanian", } }, + { "sw", { 59, "swahili", } }, + { "gl", { 60, "galician", } }, + { "mr", { 61, "marathi", } }, + { "pa", { 62, "punjabi", } }, + { "si", { 63, "sinhala", } }, + { "km", { 64, "khmer", } }, + { "sn", { 65, "shona", } }, + { "yo", { 66, "yoruba", } }, + { "so", { 67, "somali", } }, + { "af", { 68, "afrikaans", } }, + { "oc", { 69, "occitan", } }, + { "ka", { 70, "georgian", } }, + { "be", { 71, "belarusian", } }, + { "tg", { 72, "tajik", } }, + { "sd", { 73, "sindhi", } }, + { "gu", { 74, "gujarati", } }, + { "am", { 75, "amharic", } }, + { "yi", { 76, "yiddish", } }, + { "lo", { 77, "lao", } }, + { "uz", { 78, "uzbek", } }, + { "fo", { 79, "faroese", } }, + { "ht", { 80, "haitian creole", } }, + { "ps", { 81, "pashto", } }, + { "tk", { 82, "turkmen", } }, + { "nn", { 83, "nynorsk", } }, + { "mt", { 84, "maltese", } }, + { "sa", { 85, "sanskrit", } }, + { "lb", { 86, "luxembourgish", } }, + { "my", { 87, "myanmar", } }, + { "bo", { 88, "tibetan", } }, + { "tl", { 89, "tagalog", } }, + { "mg", { 90, "malagasy", } }, + { "as", { 91, "assamese", } }, + { "tt", { 92, "tatar", } }, + { "haw", { 93, "hawaiian", } }, + { "ln", { 94, "lingala", } }, + { "ha", { 95, "hausa", } }, + { "ba", { 96, "bashkir", } }, + { "jw", { 97, "javanese", } }, + { "su", { 98, "sundanese", } }, +}; + +const size_t MB = 1024*1024; + +const std::map MEM_REQ_MODEL = { + { MODEL_TINY, 86ull*MB }, + { MODEL_BASE, 165ull*MB }, + { MODEL_SMALL, 540ull*MB }, + { MODEL_MEDIUM, 1650ull*MB }, + { MODEL_LARGE, 3260ull*MB }, +}; + +const std::map MEM_REQ_ENCODE = { + { MODEL_TINY, 80ull*MB }, + { MODEL_BASE, 128ull*MB }, + { MODEL_SMALL, 300ull*MB }, + { MODEL_MEDIUM, 680ull*MB }, + { MODEL_LARGE, 1100ull*MB }, +}; + +const std::map MEM_REQ_ENCODE_LAYER = { + { MODEL_TINY, 64ull*MB }, + { MODEL_BASE, 84ull*MB }, + { MODEL_SMALL, 128ull*MB }, + { MODEL_MEDIUM, 172ull*MB }, + { MODEL_LARGE, 216ull*MB }, +}; + +const std::map MEM_REQ_DECODE = { + { MODEL_TINY, 94ull*MB }, + { MODEL_BASE, 96ull*MB }, + { MODEL_SMALL, 98ull*MB }, + { MODEL_MEDIUM, 100ull*MB }, + { MODEL_LARGE, 102ull*MB }, +}; + +const std::map MEM_REQ_DECODE_LAYER = { + { MODEL_TINY, 32ull*MB }, + { MODEL_BASE, 44ull*MB }, + { MODEL_SMALL, 64ull*MB }, + { MODEL_MEDIUM, 84ull*MB }, + { MODEL_LARGE, 110ull*MB }, +}; + +// the memory buffers used to store the model in memory and perform the inference computations +std::vector g_buf_model; +std::vector g_buf_compute; +std::vector g_buf_compute_layer; + +const int SAMPLE_RATE = 16000; +const int N_FFT = 400; +const int N_MEL = 80; +const int HOP_LENGTH = 160; +const int CHUNK_SIZE = 30; // seconds + +struct whisper_mel { + int n_len; + int n_mel; + + std::vector data; +}; + +struct whisper_filters { + int32_t n_mel; + int32_t n_fft; + + std::vector data; +}; + +struct whisper_vocab { + using id = int32_t; + using token = std::string; + + int n_vocab = 51864; + + std::map token_to_id; + std::map id_to_token; + + id token_eot = 50256; + id token_sot = 50257; + id token_prev = 50360; + id token_solm = 50361; // ?? + id token_not = 50362; // no timestamps + id token_beg = 50363; + + // available tasks + const id token_translate = 50358; + const id token_transcribe = 50359; + + bool is_multilingual() const { + return n_vocab == 51865; + } +}; + +struct whisper_result { + whisper_vocab::id id; + int64_t t; +}; + +// command-line parameters +struct whisper_params { + int32_t seed = -1; // RNG seed, not used currently + int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); + + bool verbose = false; + bool translate = false; + bool print_special_tokens = false; + bool no_timestamps = true; + + std::string language = "en"; + std::string model = "models/ggml-base.en.bin"; + std::string fname_inp = "samples/jfk.wav"; +}; + +void whisper_print_usage(int argc, char ** argv, const whisper_params & params); + +bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { + for (int i = 1; i < argc; i++) { + std::string arg = argv[i]; + + if (arg == "-s" || arg == "--seed") { + params.seed = std::stoi(argv[++i]); + } else if (arg == "-t" || arg == "--threads") { + params.n_threads = std::stoi(argv[++i]); + } else if (arg == "-v" || arg == "--verbose") { + params.verbose = true; + } else if (arg == "--translate") { + params.translate = true; + } else if (arg == "-l" || arg == "--language") { + params.language = argv[++i]; + if (g_lang.find(params.language) == g_lang.end()) { + fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); + whisper_print_usage(argc, argv, params); + exit(0); + } + } else if (arg == "-ps" || arg == "--print_special") { + params.print_special_tokens = true; + } else if (arg == "-nt" || arg == "--no_timestamps") { + params.no_timestamps = true; + } else if (arg == "-m" || arg == "--model") { + params.model = argv[++i]; + } else if (arg == "-f" || arg == "--file") { + params.fname_inp = argv[++i]; + } else if (arg == "-h" || arg == "--help") { + whisper_print_usage(argc, argv, params); + exit(0); + } else { + fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); + whisper_print_usage(argc, argv, params); + exit(0); + } + } + + return true; +} + +void whisper_print_usage(int argc, char ** argv, const whisper_params & params) { + fprintf(stderr, "\n"); + fprintf(stderr, "usage: %s [options]\n", argv[0]); + fprintf(stderr, "\n"); + fprintf(stderr, "options:\n"); + fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); + fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); + fprintf(stderr, " -v, --verbose verbose output\n"); + fprintf(stderr, " --translate translate from source language to english\n"); + fprintf(stderr, " -ps, --print_special print special tokens\n"); + fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n"); + fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str()); + fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str()); + fprintf(stderr, " -f FNAME, --file FNAME input WAV file path (default: %s)\n", params.fname_inp.c_str()); + fprintf(stderr, "\n"); +} + + +// medium +// hparams: { +// 'n_mels': 80, +// 'n_vocab': 51864, +// 'n_audio_ctx': 1500, +// 'n_audio_state': 1024, +// 'n_audio_head': 16, +// 'n_audio_layer': 24, +// 'n_text_ctx': 448, +// 'n_text_state': 1024, +// 'n_text_head': 16, +// 'n_text_layer': 24 +// } +// +// default hparams (Whisper tiny) +struct whisper_hparams { + int32_t n_vocab = 51864; + int32_t n_audio_ctx = 1500; + int32_t n_audio_state = 384; + int32_t n_audio_head = 6; + int32_t n_audio_layer = 4; + int32_t n_text_ctx = 448; + int32_t n_text_state = 384; + int32_t n_text_head = 6; + int32_t n_text_layer = 4; + int32_t n_mels = 80; + int32_t f16 = 1; +}; + +// audio encoding layer +struct whisper_layer_encoder { + // encoder.blocks.*.attn_ln + struct ggml_tensor * attn_ln_0_w; + struct ggml_tensor * attn_ln_0_b; + + // encoder.blocks.*.attn.out + struct ggml_tensor * attn_ln_1_w; + struct ggml_tensor * attn_ln_1_b; + + // encoder.blocks.*.attn.query + struct ggml_tensor * attn_q_w; + struct ggml_tensor * attn_q_b; + + // encoder.blocks.*.attn.key + struct ggml_tensor * attn_k_w; + + // encoder.blocks.*.attn.value + struct ggml_tensor * attn_v_w; + struct ggml_tensor * attn_v_b; + + // encoder.blocks.*.mlp_ln + struct ggml_tensor * mlp_ln_w; + struct ggml_tensor * mlp_ln_b; + + // encoder.blocks.*.mlp.0 + struct ggml_tensor * mlp_0_w; + struct ggml_tensor * mlp_0_b; + + // encoder.blocks.*.mlp.2 + struct ggml_tensor * mlp_1_w; + struct ggml_tensor * mlp_1_b; +}; + +// token decoding layer +struct whisper_layer_decoder { + // decoder.blocks.*.attn_ln + struct ggml_tensor * attn_ln_0_w; + struct ggml_tensor * attn_ln_0_b; + + // decoder.blocks.*.attn.out + struct ggml_tensor * attn_ln_1_w; + struct ggml_tensor * attn_ln_1_b; + + // decoder.blocks.*.attn.query + struct ggml_tensor * attn_q_w; + struct ggml_tensor * attn_q_b; + + // decoder.blocks.*.attn.key + struct ggml_tensor * attn_k_w; + + // decoder.blocks.*.attn.value + struct ggml_tensor * attn_v_w; + struct ggml_tensor * attn_v_b; + + // decoder.blocks.*.cross_attn_ln + struct ggml_tensor * cross_attn_ln_0_w; + struct ggml_tensor * cross_attn_ln_0_b; + + // decoder.blocks.*.cross_attn.out + struct ggml_tensor * cross_attn_ln_1_w; + struct ggml_tensor * cross_attn_ln_1_b; + + // decoder.blocks.*.cross_attn.query + struct ggml_tensor * cross_attn_q_w; + struct ggml_tensor * cross_attn_q_b; + + // decoder.blocks.*.cross_attn.key + struct ggml_tensor * cross_attn_k_w; + + // decoder.blocks.*.cross_attn.value + struct ggml_tensor * cross_attn_v_w; + struct ggml_tensor * cross_attn_v_b; + + // decoder.blocks.*.mlp_ln + struct ggml_tensor * mlp_ln_w; + struct ggml_tensor * mlp_ln_b; + + // decoder.blocks.*.mlp.0 + struct ggml_tensor * mlp_0_w; + struct ggml_tensor * mlp_0_b; + + // decoder.blocks.*.mlp.2 + struct ggml_tensor * mlp_1_w; + struct ggml_tensor * mlp_1_b; +}; + +struct whisper_model { + e_model type = MODEL_UNKNOWN; + + whisper_hparams hparams; + whisper_filters filters; + + // encoder.positional_embedding + struct ggml_tensor * e_pe; + + // encoder.conv1 + struct ggml_tensor * e_conv_1_w; + struct ggml_tensor * e_conv_1_b; + + // encoder.conv2 + struct ggml_tensor * e_conv_2_w; + struct ggml_tensor * e_conv_2_b; + + // encoder.ln_post + struct ggml_tensor * e_ln_w; + struct ggml_tensor * e_ln_b; + + // decoder.positional_embedding + struct ggml_tensor * d_pe; // DD + + // decoder.token_embedding + struct ggml_tensor * d_te; // DD + + // decoder.ln + struct ggml_tensor * d_ln_w; // DD + struct ggml_tensor * d_ln_b; // DD + + std::vector layers_encoder; + std::vector layers_decoder; + + // key + value memory + struct ggml_tensor * memory_k; + struct ggml_tensor * memory_v; + + struct ggml_tensor * memory_cross_k; + struct ggml_tensor * memory_cross_v; + + // + struct ggml_context * ctx; + std::map tensors; +}; + +// load the model from a ggml file +// +// file format: +// +// - hparams +// - pre-computed mel filters +// - vocab +// - weights +// +// see the convert-pt-to-ggml.py script for details +// +bool whisper_model_load(const std::string & fname, whisper_model & model, whisper_vocab & vocab) { + printf("%s: loading model from '%s'\n", __func__, fname.c_str()); + + auto fin = std::ifstream(fname, std::ios::binary); + if (!fin) { + fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); + return false; + } + + // verify magic + { + uint32_t magic; + fin.read((char *) &magic, sizeof(magic)); + if (magic != 0x67676d6c) { + fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); + return false; + } + } + + //load hparams + { + auto & hparams = model.hparams; + + fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); + fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx)); + fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state)); + fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head)); + fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer)); + fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx)); + fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state)); + fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head)); + fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer)); + fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels)); + fin.read((char *) &hparams.f16, sizeof(hparams.f16)); + + assert(hparams.n_text_state == hparams.n_audio_state); + + if (hparams.n_audio_layer == 4) { + model.type = e_model::MODEL_TINY; + } + + if (hparams.n_audio_layer == 6) { + model.type = e_model::MODEL_BASE; + } + + if (hparams.n_audio_layer == 12) { + model.type = e_model::MODEL_SMALL; + } + + if (hparams.n_audio_layer == 24) { + model.type = e_model::MODEL_MEDIUM; + } + + if (hparams.n_audio_layer == 32) { + model.type = e_model::MODEL_LARGE; + } + + printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); + printf("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx); + printf("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state); + printf("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head); + printf("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer); + printf("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx); + printf("%s: n_text_state = %d\n", __func__, hparams.n_text_state); + printf("%s: n_text_head = %d\n", __func__, hparams.n_text_head); + printf("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer); + printf("%s: n_mels = %d\n", __func__, hparams.n_mels); + printf("%s: f16 = %d\n", __func__, hparams.f16); + printf("%s: type = %d\n", __func__, model.type); + + g_buf_model.resize(MEM_REQ_MODEL.at(model.type)); + g_buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type))); + g_buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type))); + + // this is the total memory required to run the inference + const size_t mem_required = + g_buf_model.size() + + g_buf_compute.size() + + g_buf_compute_layer.size(); + + printf("%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0); + } + + // load mel filters + { + auto & filters = model.filters; + + fin.read((char *) &filters.n_mel, sizeof(filters.n_mel)); + fin.read((char *) &filters.n_fft, sizeof(filters.n_fft)); + + filters.data.resize(filters.n_mel * filters.n_fft); + fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float)); + } + + // load vocab + { + int32_t n_vocab = 0; + fin.read((char *) &n_vocab, sizeof(n_vocab)); + + //if (n_vocab != model.hparams.n_vocab) { + // fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", + // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); + // return false; + //} + + std::string word; + for (int i = 0; i < n_vocab; i++) { + uint32_t len; + fin.read((char *) &len, sizeof(len)); + + word.resize(len); + fin.read((char *) word.data(), len); + + vocab.token_to_id[word] = i; + vocab.id_to_token[i] = word; + + //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); + } + + vocab.n_vocab = model.hparams.n_vocab; + if (vocab.is_multilingual()) { + vocab.token_eot++; + vocab.token_sot++; + vocab.token_prev++; + vocab.token_solm++; + vocab.token_not++; + vocab.token_beg++; + } + + if (n_vocab < model.hparams.n_vocab) { + printf("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab); + for (int i = n_vocab; i < model.hparams.n_vocab; i++) { + if (i > vocab.token_beg) { + word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]"; + } else if (i == vocab.token_eot) { + word = "[_EOT_]"; + } else if (i == vocab.token_sot) { + word = "[_SOT_]"; + } else if (i == vocab.token_prev) { + word = "[_PREV_]"; + } else if (i == vocab.token_not) { + word = "[_NOT_]"; + } else if (i == vocab.token_beg) { + word = "[_BEG_]"; + } else { + word = "[_extra_token_" + std::to_string(i) + "]"; + } + vocab.token_to_id[word] = i; + vocab.id_to_token[i] = word; + } + } + } + + // for the big tensors, we have the option to store the data in 16-bit floats + // in order to save memory and also to speed up the computation + const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32; + + auto & ctx = model.ctx; + + size_t ctx_size = 0; + + { + const auto & hparams = model.hparams; + + const int n_vocab = hparams.n_vocab; + + const int n_audio_ctx = hparams.n_audio_ctx; + const int n_audio_state = hparams.n_audio_state; + const int n_audio_layer = hparams.n_audio_layer; + + const int n_text_ctx = hparams.n_text_ctx; + const int n_text_state = hparams.n_text_state; + const int n_text_layer = hparams.n_text_layer; + + const int n_mels = hparams.n_mels; + + // encoder + { + // TODO: F16 .. maybe not? + ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe; + + ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w + ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b + + ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w + ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b + + ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w; + ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b; + } + + // decoder + { + // TODO: F16 .. maybe not? + ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe; + + ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te; + + ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w; + ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b; + } + + // encoder layers + { + ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w + ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b + + ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w + ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b + + ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w + ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b + + ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w + ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b + + ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w + ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b + + ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w + + ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w + ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b + + ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w + ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b + } + + // decoder layers + { + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b + + ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w + ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b + + ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b + + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b + // + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b + } + + ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k + ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v + + ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k + ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v + + ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead + + printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); + } + + // create the ggml context + { + struct ggml_init_params params = { + .mem_size = g_buf_model.size(), + .mem_buffer = g_buf_model.data(), + }; + + model.ctx = ggml_init(params); + if (!model.ctx) { + fprintf(stderr, "%s: ggml_init() failed\n", __func__); + return false; + } + } + + // prepare memory for the weights + { + const auto & hparams = model.hparams; + + const int n_vocab = hparams.n_vocab; + + const int n_audio_ctx = hparams.n_audio_ctx; + const int n_audio_state = hparams.n_audio_state; + const int n_audio_layer = hparams.n_audio_layer; + + const int n_text_ctx = hparams.n_text_ctx; + const int n_text_state = hparams.n_text_state; + const int n_text_layer = hparams.n_text_layer; + + const int n_mels = hparams.n_mels; + + model.layers_encoder.resize(n_audio_layer); + model.layers_decoder.resize(n_text_layer); + + // encoder + { + model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx); + + model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state); + model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); + + model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state); + model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); + + model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + // map by name + model.tensors["encoder.positional_embedding"] = model.e_pe; + + model.tensors["encoder.conv1.weight"] = model.e_conv_1_w; + model.tensors["encoder.conv1.bias"] = model.e_conv_1_b; + + model.tensors["encoder.conv2.weight"] = model.e_conv_2_w; + model.tensors["encoder.conv2.bias"] = model.e_conv_2_b; + + model.tensors["encoder.ln_post.weight"] = model.e_ln_w; + model.tensors["encoder.ln_post.bias"] = model.e_ln_b; + + for (int i = 0; i < n_audio_layer; ++i) { + auto & layer = model.layers_encoder[i]; + + layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state); + layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state); + + layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state); + layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); + layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); + + layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); + layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); + layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + // map by name + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; + } + } + + // decoder + { + model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx); + + model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab); + + model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + // map by name + model.tensors["decoder.positional_embedding"] = model.d_pe; + + model.tensors["decoder.token_embedding.weight"] = model.d_te; + + model.tensors["decoder.ln.weight"] = model.d_ln_w; + model.tensors["decoder.ln.bias"] = model.d_ln_b; + + for (int i = 0; i < n_text_layer; ++i) { + auto & layer = model.layers_decoder[i]; + + layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state); + layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state); + + layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state); + layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + + layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + + layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + // map by name + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b; + } + } + } + + // key + value memory + { + const auto & hparams = model.hparams; + + const int n_text_state = hparams.n_text_state; + const int n_text_layer = hparams.n_text_layer; + const int n_text_ctx = hparams.n_text_ctx; + + // key/value memory for the self-attention layer + { + const int n_mem = n_text_layer*n_text_ctx; + const int n_elements = n_text_state*n_mem; + + model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); + model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); + } + + // key/value memory for the cross-attention layer + { + const int n_audio_ctx = hparams.n_audio_ctx; + + const int n_mem = n_text_layer*n_audio_ctx; + const int n_elements = n_text_state*n_mem; + + model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); + model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); + } + + const size_t memory_size = + ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + + ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); + + printf("%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0); + } + + // load weights + { + size_t total_size = 0; + + while (true) { + int32_t n_dims; + int32_t length; + int32_t ftype; + + fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); + fin.read(reinterpret_cast(&length), sizeof(length)); + fin.read(reinterpret_cast(&ftype), sizeof(ftype)); + + if (fin.eof()) { + break; + } + + int32_t nelements = 1; + int32_t ne[3] = { 1, 1, 1 }; + for (int i = 0; i < n_dims; ++i) { + fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); + nelements *= ne[i]; + } + + std::string name(length, 0); + fin.read(&name[0], length); + + if (model.tensors.find(name.data()) == model.tensors.end()) { + fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); + return false; + } + + auto tensor = model.tensors[name.data()]; + if (ggml_nelements(tensor) != nelements) { + fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); + return false; + } + + if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) { + fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n", + __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]); + return false; + } + + const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t); + + if (nelements*bpe != ggml_nbytes(tensor)) { + fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", + __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); + return false; + } + + fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); + + //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); + total_size += ggml_nbytes(tensor); + } + + printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); + } + + fin.close(); + + return true; +} + +// evaluate the encoder +// +// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder +// part of the transformer model and returns the encoded features +// +// - model: the model +// - n_threads: number of threads to use +// - mel_offset: offset in the mel spectrogram (i.e. audio offset) +// - mel_inp: input mel spectrogram +// - features: output encoded features +// +bool whisper_encode( + const whisper_model & model, + const int n_threads, + const int mel_offset, + const whisper_mel & mel_inp, + std::vector & features) { + const auto & hparams = model.hparams; + + const int n_vocab = hparams.n_vocab; + + const int n_ctx = hparams.n_audio_ctx; + const int n_state = hparams.n_audio_state; + const int n_head = hparams.n_audio_head; + const int n_layer = hparams.n_audio_layer; + + const int N = n_ctx; + + const int n_mels = hparams.n_mels; + assert(mel_inp.n_mel == n_mels); + + struct ggml_init_params params = { + .mem_size = g_buf_compute.size(), + .mem_buffer = g_buf_compute.data(), + }; + + struct ggml_context * ctx0 = ggml_init(params); + + struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels); + assert(mel->type == GGML_TYPE_F32); + { + float * dst = (float *) mel->data; + memset(dst, 0, ggml_nbytes(mel)); + + const int i0 = std::min(mel_offset, mel_inp.n_len); + const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len); + + for (int j = 0; j < mel_inp.n_mel; ++j) { + for (int i = i0; i < i1; ++i) { + dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i]; + } + } + } + + struct ggml_tensor * cur; + + // convolution + gelu + { + cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel); + cur = ggml_add(ctx0, + ggml_repeat(ctx0, + model.e_conv_1_b, + cur), + cur); + + cur = ggml_gelu(ctx0, cur); + + cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur); + cur = ggml_add(ctx0, + ggml_repeat(ctx0, + model.e_conv_2_b, + cur), + cur); + + cur = ggml_gelu(ctx0, cur); + } + + cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur)); + + struct ggml_tensor * inpL = cur; + + for (int il = 0; il < n_layer; ++il) { + const auto & layer = model.layers_encoder[il]; + + // create separate context for each layer to reduce memory usage + + struct ggml_init_params paramsL = { + .mem_size = g_buf_compute_layer.size(), + .mem_buffer = g_buf_compute_layer.data(), + }; + + struct ggml_context * ctxL = ggml_init(paramsL); + + // norm + { + cur = ggml_norm(ctxL, inpL); + + // cur = ln_0_w*cur + ln_0_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.attn_ln_0_w, cur), + cur), + ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); + } + + // self-attention + { + struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, + layer.attn_q_w, + cur); + + Qcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.attn_q_b, + Qcur), + Qcur); + + //Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + // note: no bias for Key + struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, + layer.attn_k_w, + cur); + + //Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, + layer.attn_v_w, + cur); + + Vcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.attn_v_b, + Vcur), + Vcur); + + // ------ + +#ifdef USE_FLASH_ATTN + struct ggml_tensor * Q = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Qcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + struct ggml_tensor * K = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Kcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + struct ggml_tensor * V = + ggml_cpy(ctxL, + ggml_permute(ctxL, + ggml_reshape_3d(ctxL, + Vcur, + n_state/n_head, n_head, N), + 1, 2, 0, 3), + ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head) + ); + + struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false); +#else + struct ggml_tensor * Q = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Qcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + struct ggml_tensor * K = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Kcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); + + struct ggml_tensor * KQ_scaled = + ggml_scale(ctxL, + KQ, + ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) + ); + + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled); + + //struct ggml_tensor * V_trans = + // ggml_permute(ctxL, + // ggml_cpy(ctxL, + // Vcur, + // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), + // 1, 2, 0, 3); + + //struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); + + struct ggml_tensor * V = + ggml_cpy(ctxL, + ggml_permute(ctxL, + ggml_reshape_3d(ctxL, + Vcur, + n_state/n_head, n_head, N), + 0, 2, 1, 3), + ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head) + ); + + struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max); +#endif + + struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); + + cur = ggml_cpy(ctxL, + KQV_merged, + ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); + } + + // projection + { + cur = ggml_mul_mat(ctxL, + layer.attn_ln_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.attn_ln_1_b, cur), + cur); + } + + // add the input + cur = ggml_add(ctxL, cur, inpL); + + struct ggml_tensor * inpFF = cur; + + // feed-forward network + { + // norm + { + cur = ggml_norm(ctxL, inpFF); + + // cur = mlp_ln_w*cur + mlp_ln_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.mlp_ln_w, cur), + cur), + ggml_repeat(ctxL, layer.mlp_ln_b, cur)); + } + +#ifdef USE_FLASH_FF + cur = ggml_flash_ff(ctxL, + ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)), + layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b); +#else + // fully connected + cur = ggml_mul_mat(ctxL, + layer.mlp_0_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.mlp_0_b, cur), + cur); + + // GELU activation + cur = ggml_gelu(ctxL, cur); + + // projection + cur = ggml_mul_mat(ctxL, + layer.mlp_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.mlp_1_b, cur), + cur); +#endif + } + + // output from this layer + struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); + + { + struct ggml_cgraph gf = { .n_threads = n_threads }; + + ggml_build_forward_expand(&gf, inpO); + ggml_graph_compute (ctxL, &gf); + + //ggml_graph_print(&gf); + } + + // TODO: this is a hack to have per-layer computation graphs - need to come up with something better + // input for next layer (inpO -> inpL) + memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); + inpL->op = GGML_OP_NONE; + inpL->src0 = NULL; + inpL->src1 = NULL; + + //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); + + ggml_free(ctxL); + } + + cur = inpL; + + // norm + { + cur = ggml_norm(ctx0, cur); + + // cur = ln_f_g*cur + ln_f_b + cur = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, model.e_ln_w, cur), + cur), + ggml_repeat(ctx0, model.e_ln_b, cur)); + } + + // run the computation + { + struct ggml_cgraph gf = { .n_threads = n_threads }; + + ggml_build_forward_expand(&gf, cur); + ggml_graph_compute (ctx0, &gf); + + //ggml_graph_print(&gf); + } + + // cur + //{ + // printf("ne0 = %d\n", cur->ne[0]); + // printf("ne1 = %d\n", cur->ne[1]); + // for (int i = 0; i < 10; ++i) { + // printf("%8.4f ", ((float *)(cur->data))[i]); + // } + // printf("... "); + // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) { + // printf("%8.4f ", ((float *)(cur->data))[i]); + // } + // printf("\n"); + //} + + // pre-compute cross-attention memory + { + struct ggml_cgraph gf = { .n_threads = n_threads }; + + // TODO: hack to disconnect the encoded features from the previous graph + cur->op = GGML_OP_NONE; + cur->src0 = NULL; + cur->src1 = NULL; + + for (int il = 0; il < model.hparams.n_text_layer; ++il) { + auto & layer = model.layers_decoder[il]; + + struct ggml_tensor * Kcross = ggml_mul_mat(ctx0, + layer.cross_attn_k_w, + cur); + + Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); + + struct ggml_tensor * Vcross = ggml_mul_mat(ctx0, + layer.cross_attn_v_w, + cur); + + Vcross = ggml_add(ctx0, + ggml_repeat(ctx0, + layer.cross_attn_v_b, + Vcross), + Vcross); + + struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx)); + struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx)); + + ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k)); + ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v)); + } + + ggml_graph_compute(ctx0, &gf); + } + + //////////////////////////////////////////////////////////////////////////// + + // output the features + assert(cur->type == GGML_TYPE_F32); + features.resize(cur->ne[0]*cur->ne[1]); + memcpy(features.data(), cur->data, features.size()*sizeof(float)); + + //printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0); + + ggml_free(ctx0); + + return true; +} + +// evaluate the decoder +// +// given text prompt + audio features -> predicts the probabilities for the next token +// +// - model: the model +// - n_threads: number of threads to use +// - n_past: prompt length +// - prompt: text prompt +// - logits_out: output logits +// - probs_out: output probabilities +// +bool whisper_decode( + const whisper_model & model, + const int n_threads, + const int n_past, + const std::vector & prompt, + std::vector & logits_out, + std::vector & probs_out) { + const auto & hparams = model.hparams; + + const int n_vocab = hparams.n_vocab; + + const int n_ctx = hparams.n_text_ctx; + const int n_state = hparams.n_text_state; + const int n_head = hparams.n_text_head; + const int n_layer = hparams.n_text_layer; + + const int N = prompt.size(); + const int M = hparams.n_audio_ctx; + + struct ggml_init_params params = { + .mem_size = g_buf_compute.size(), + .mem_buffer = g_buf_compute.data(), + }; + + struct ggml_context * ctx0 = ggml_init(params); + + struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + memcpy(embd->data, prompt.data(), N*ggml_element_size(embd)); + + struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + for (int i = 0; i < N; ++i) { + ((int32_t *) position->data)[i] = n_past + i; + } + + // token encoding + position encoding + struct ggml_tensor * cur = + ggml_add(ctx0, + ggml_get_rows(ctx0, model.d_te, embd), + ggml_get_rows(ctx0, model.d_pe, position)); + + struct ggml_tensor * inpL = cur; + + for (int il = 0; il < n_layer; ++il) { + const auto & layer = model.layers_decoder[il]; + + struct ggml_init_params paramsL = { + .mem_size = g_buf_compute_layer.size(), + .mem_buffer = g_buf_compute_layer.data(), + }; + + struct ggml_context * ctxL = ggml_init(paramsL); + struct ggml_cgraph gf = { .n_threads = n_threads }; + + // norm + { + cur = ggml_norm(ctxL, inpL); + + // cur = ln_0_w*cur + ln_0_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.attn_ln_0_w, cur), + cur), + ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); + } + + // self-attention + { + struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, + layer.attn_q_w, + cur); + + Qcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.attn_q_b, + Qcur), + Qcur); + + Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + // note: no bias for Key + struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, + layer.attn_k_w, + cur); + + Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, + layer.attn_v_w, + cur); + + Vcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.attn_v_b, + Vcur), + Vcur); + + // store key and value to memory + { + struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past)); + struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past)); + + ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k)); + ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v)); + } + + // ------ + + struct ggml_tensor * Q = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Qcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + struct ggml_tensor * K = + ggml_permute(ctxL, + ggml_reshape_3d(ctxL, + ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state), + n_state/n_head, n_head, n_past + N), + 0, 2, 1, 3); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); + + //struct ggml_tensor * KQ_scaled = + // ggml_scale(ctxL, + // KQ, + // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) + // ); + + struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past); + + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked); + + struct ggml_tensor * V_trans = + ggml_permute(ctxL, + ggml_reshape_3d(ctxL, + ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state), + n_state/n_head, n_head, n_past + N), + 1, 2, 0, 3); + + struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); + + struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); + + cur = ggml_cpy(ctxL, + KQV_merged, + ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); + } + + { + cur = ggml_mul_mat(ctxL, + layer.attn_ln_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.attn_ln_1_b, cur), + cur); + } + + // add the input + struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL); + + // norm + { + cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here + + // cur = ln_0_w*cur + ln_0_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur), + cur), + ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur)); + } + + // cross-attention + { + struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, + layer.cross_attn_q_w, + cur); + + Qcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.cross_attn_q_b, + Qcur), + Qcur); + + Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + // Kcross is already scaled + struct ggml_tensor * Kcross = + ggml_reshape_3d(ctxL, + ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state), + n_state/n_head, n_head, M); + + struct ggml_tensor * Vcross = + ggml_reshape_3d(ctxL, + ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state), + n_state/n_head, n_head, M); + + // ------ + + struct ggml_tensor * Q = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Qcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); + + //struct ggml_tensor * KQ_scaled = + // ggml_scale(ctxL, + // KQ, + // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) + // ); + + // no masking for cross-attention + //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past); + + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ); + + struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3); + + struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); + + struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); + + // cur = KQV_merged.contiguous().view(n_state, N) + cur = ggml_cpy(ctxL, + KQV_merged, + ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); + } + + // projection + { + cur = ggml_mul_mat(ctxL, + layer.cross_attn_ln_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur), + cur); + } + + // add the input + cur = ggml_add(ctxL, cur, inpCA); + + struct ggml_tensor * inpFF = cur; + + // feed-forward network + { + // norm + { + cur = ggml_norm(ctxL, inpFF); + + // cur = mlp_ln_w*cur + mlp_ln_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.mlp_ln_w, cur), + cur), + ggml_repeat(ctxL, layer.mlp_ln_b, cur)); + } + + // fully connected + cur = ggml_mul_mat(ctxL, + layer.mlp_0_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.mlp_0_b, cur), + cur); + + // GELU activation + cur = ggml_gelu(ctxL, cur); + + // projection + cur = ggml_mul_mat(ctxL, + layer.mlp_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.mlp_1_b, cur), + cur); + } + + // output from this layer + struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); + + { + ggml_build_forward_expand(&gf, inpO); + ggml_graph_compute (ctxL, &gf); + + //ggml_graph_print(&gf); + } + + // TODO: this is a hack to have per-layer computation graphs - need to come up with something better + // input for next layer (inpO -> inpL) + memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); + inpL->op = GGML_OP_NONE; + inpL->src0 = NULL; + inpL->src1 = NULL; + + if (N > 1) { + //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); + } + + ggml_free(ctxL); + } + + cur = inpL; + + // norm + { + cur = ggml_norm(ctx0, cur); + + cur = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, model.d_ln_w, cur), + cur), + ggml_repeat(ctx0, model.d_ln_b, cur)); + } + + struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur); + + // logits -> probs + cur = ggml_dup(ctx0, logits); + cur = ggml_soft_max(ctx0, cur); // in-place + + // run the computation + { + struct ggml_cgraph gf = { .n_threads = n_threads }; + + ggml_build_forward_expand(&gf, cur); + ggml_graph_compute (ctx0, &gf); + } + + logits_out.resize(N*n_vocab); + memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab); + + probs_out.resize(N*n_vocab); + memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab); + + if (N > 1) { + //const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N; + //printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token); + //printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx); + } + + ggml_free(ctx0); + + return true; +} + +// the most basic sampling scheme - select the top token +// TODO: beam search +// TODO: temperature +whisper_vocab::id whisper_sample_best( + const whisper_vocab & vocab, + const float * probs, bool need_timestamp) { + int n_logits = vocab.id_to_token.size(); + + std::vector> probs_id; + probs_id.reserve(n_logits); + + for (int i = 0; i < n_logits; i++) { + probs_id.push_back(std::make_pair(probs[i], i)); + } + + const int top_k = 4; + + // find the top K tokens + std::partial_sort( + probs_id.begin(), + probs_id.begin() + top_k, probs_id.end(), + [](const std::pair & a, const std::pair & b) { + return a.first > b.first; + }); + + probs_id.resize(top_k); + + //printf("\n"); + //for (int i = 0; i < (int) probs_id.size(); i++) { + // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); + //} + + if (need_timestamp) { + // at the end of the 30-second audio segment, we start giving preference to time tokens + for (int i = 0; i < top_k; i++) { + if (probs_id[i].second > vocab.token_beg + 1300 && probs_id[i].first > 0.01*probs_id[0].first) { + return probs_id[i].second; + } + } + } + + int res = 0; + while ((probs_id[res].second == vocab.token_sot || + probs_id[res].second == vocab.token_solm || + probs_id[res].second == vocab.token_not) && + res < (int) probs_id.size() - 1) { + res++; + } + + return probs_id[res].second; +} + +// samples only from the timestamps tokens +whisper_vocab::id whisper_sample_timestamp( + const whisper_vocab & vocab, + const float * probs) { + int n_logits = vocab.id_to_token.size(); + + std::vector> probs_id; + probs_id.reserve(n_logits); + + for (int i = vocab.token_beg + 1; i < n_logits; i++) { + probs_id.push_back(std::make_pair(probs[i], i)); + } + + const int top_k = 10; + + // find the top K tokens + std::partial_sort( + probs_id.begin(), + probs_id.begin() + top_k, probs_id.end(), + [](const std::pair & a, const std::pair & b) { + return a.first > b.first; + }); + + probs_id.resize(top_k); + + //printf("\n"); + //for (int i = 0; i < (int) probs_id.size(); i++) { + // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); + //} + + return probs_id[0].second; +} + +// naive Discrete Fourier Transform +// input is real-valued +// output is complex-valued +void dft(const std::vector & in, std::vector & out) { + int N = in.size(); + + out.resize(N*2); + + for (int k = 0; k < N; k++) { + float re = 0; + float im = 0; + + for (int n = 0; n < N; n++) { + float angle = 2*M_PI*k*n/N; + re += in[n]*cos(angle); + im -= in[n]*sin(angle); + } + + out[k*2 + 0] = re; + out[k*2 + 1] = im; + } +} + +// Cooley-Tukey FFT +// poor man's implmentation - use something better +// input is real-valued +// output is complex-valued +void fft(const std::vector & in, std::vector & out) { + out.resize(in.size()*2); + + int N = in.size(); + + if (N == 1) { + out[0] = in[0]; + out[1] = 0; + return; + } + + if (N%2 == 1) { + dft(in, out); + return; + } + + std::vector even; + std::vector odd; + + for (int i = 0; i < N; i++) { + if (i % 2 == 0) { + even.push_back(in[i]); + } else { + odd.push_back(in[i]); + } + } + + std::vector even_fft; + std::vector odd_fft; + + fft(even, even_fft); + fft(odd, odd_fft); + + for (int k = 0; k < N/2; k++) { + float theta = 2*M_PI*k/N; + + float re = cos(theta); + float im = -sin(theta); + + float re_odd = odd_fft[2*k + 0]; + float im_odd = odd_fft[2*k + 1]; + + out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd; + out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd; + + out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd; + out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd; + } +} + +// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124 +bool log_mel_spectrogram( + const std::vector sf32, + const int sample_rate, + const int fft_size, + const int fft_step, + const int n_mel, + const int n_threads, + const whisper_filters & filters, + whisper_mel & mel) { + const int n_sample = sf32.size(); + const float * samples = sf32.data(); + + // Hanning window + std::vector hann; + hann.resize(fft_size); + for (int i = 0; i < fft_size; i++) { + hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size))); + } + + mel.n_mel = n_mel; + mel.n_len = (n_sample)/fft_step; + mel.data.resize(mel.n_mel*mel.n_len); + + const int n_fft = 1 + fft_size/2; + + //printf("%s: n_sample = %d, n_len = %d\n", __func__, n_sample, mel.n_len); + //printf("%s: recording length: %f s\n", __func__, (float) n_sample/sample_rate); + + std::vector workers(n_threads); + for (int iw = 0; iw < n_threads; ++iw) { + workers[iw] = std::thread([&](int ith) { + std::vector fft_in; + fft_in.resize(fft_size); + for (int i = 0; i < fft_size; i++) { + fft_in[i] = 0.0; + } + + std::vector fft_out; + fft_out.resize(2*fft_size); + + for (int i = ith; i < mel.n_len; i += n_threads) { + const int offset = i*fft_step; + + // apply Hanning window + for (int j = 0; j < fft_size; j++) { + if (offset + j < n_sample) { + fft_in[j] = hann[j]*samples[offset + j]; + } else { + fft_in[j] = 0.0; + } + } + + // FFT -> mag^2 + fft(fft_in, fft_out); + + for (int j = 0; j < fft_size; j++) { + fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]); + } + for (int j = 1; j < fft_size/2; j++) { + fft_out[j] += fft_out[fft_size - j]; + } + + // mel spectrogram + for (int j = 0; j < mel.n_mel; j++) { + double sum = 0.0; + + for (int k = 0; k < n_fft; k++) { + sum += fft_out[k]*filters.data[j*n_fft + k]; + } + if (sum < 1e-10) { + sum = 1e-10; + } + + sum = log10(sum); + + mel.data[j*mel.n_len + i] = sum; + } + } + }, iw); + } + + for (int iw = 0; iw < n_threads; ++iw) { + workers[iw].join(); + } + + // clamping and normalization + double mmax = -1e20; + for (int i = 0; i < mel.n_mel*mel.n_len; i++) { + if (mel.data[i] > mmax) { + mmax = mel.data[i]; + } + } + + mmax -= 8.0; + + for (int i = 0; i < mel.n_mel*mel.n_len; i++) { + if (mel.data[i] < mmax) { + mel.data[i] = mmax; + } + + mel.data[i] = (mel.data[i] + 4.0)/4.0; + } + + return true; +} + +// 500 -> 00:05.000 +// 6000 -> 01:00.000 +std::string to_timestamp(int64_t t) { + int64_t sec = t/100; + int64_t msec = t - sec*100; + int64_t min = sec/60; + sec = sec - min*60; + + char buf[32]; + snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec); + + return std::string(buf); +} + +// +// SDL Audio capture +// + +SDL_AudioDeviceID g_dev_id_in = 0; + +bool audio_sdl_init(const int capture_id) { + if (g_dev_id_in) { + fprintf(stderr, "%s: already initialized\n", __func__); + return false; + } + + if (g_dev_id_in == 0) { + SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO); + + if (SDL_Init(SDL_INIT_AUDIO) < 0) { + SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError()); + return (1); + } + + SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE); + + { + int nDevices = SDL_GetNumAudioDevices(SDL_TRUE); + printf("%s: found %d capture devices:\n", __func__, nDevices); + for (int i = 0; i < nDevices; i++) { + printf("%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE)); + } + } + } + + if (g_dev_id_in == 0) { + SDL_AudioSpec capture_spec_requested; + SDL_AudioSpec capture_spec_obtained; + + SDL_zero(capture_spec_requested); + SDL_zero(capture_spec_obtained); + + capture_spec_requested.freq = SAMPLE_RATE; + capture_spec_requested.format = AUDIO_F32; + capture_spec_requested.channels = 1; + capture_spec_requested.samples = 1024; + + if (capture_id >= 0) { + printf("%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE)); + g_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0); + } else { + printf("%s: attempt to open default capture device ...\n", __func__); + g_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0); + } + if (!g_dev_id_in) { + printf("%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError()); + g_dev_id_in = 0; + } else { + printf("%s: obtained spec for input device (SDL Id = %d):\n", __func__, g_dev_id_in); + printf("%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq); + printf("%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format, capture_spec_requested.format); + printf("%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels, capture_spec_requested.channels); + printf("%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples); + } + } + + + return true; +} + +/////////////////////////// + +int main(int argc, char ** argv) { + const int64_t t_main_start_us = ggml_time_us(); + + whisper_params params; + + if (whisper_params_parse(argc, argv, params) == false) { + return 1; + } + + if (params.seed < 0) { + params.seed = time(NULL); + } + + // init audio + + if (!audio_sdl_init(-1)) { + fprintf(stderr, "%s: audio_sdl_init() failed!\n", __func__); + return 1; + } + + // model loading + + //printf("%s: seed = %d\n", __func__, params.seed); + + int64_t t_load_us = 0; + int64_t t_mel_us = 0; + int64_t t_sample_us = 0; + int64_t t_encode_us = 0; + int64_t t_decode_us = 0; + + whisper_vocab vocab; + whisper_model model; + + // load the model + { + const int64_t t_start_us = ggml_time_us(); + + if (!whisper_model_load(params.model, model, vocab)) { + fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); + whisper_print_usage(argc, argv, {}); + return 1; + } + + t_load_us = ggml_time_us() - t_start_us; + } + + const int n_samples_30s = 30*SAMPLE_RATE; + std::vector pcmf32(n_samples_30s, 0.0f); + std::vector pcmf32_old; + + // print some info about the processing + { + printf("\n"); + if (!vocab.is_multilingual()) { + if (params.language != "en" || params.translate) { + params.language = "en"; + params.translate = false; + printf("%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); + } + } + printf("%s: processing %d samples (%.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n", + __func__, int(pcmf32.size()), float(pcmf32.size())/SAMPLE_RATE, params.n_threads, + g_lang.at(params.language).second.c_str(), + params.translate ? "translate" : "transcribe", + params.no_timestamps ? 0 : 1); + printf("\n"); + } + + SDL_PauseAudioDevice(g_dev_id_in, 0); + + // main audio loop + while (true) { + // process 3 seconds of new audio + while ((int) SDL_GetQueuedAudioSize(g_dev_id_in) < 3*SAMPLE_RATE*sizeof(float)) { + SDL_Delay(1); + } + const int n_samples_new = SDL_GetQueuedAudioSize(g_dev_id_in)/sizeof(float); + + // take one second from previous iteration + // TODO: better strategy + const int n_samples_take = std::min((int) pcmf32_old.size(), std::max(0, n_samples_30s/30 - n_samples_new)); + + //printf("processing: take = %d, new = %d, old = %d\n", n_samples_take, n_samples_new, (int) pcmf32_old.size()); + + pcmf32.resize(n_samples_new + n_samples_take); + + for (int i = 0; i < n_samples_take; i++) { + pcmf32[i] = pcmf32_old[pcmf32_old.size() - n_samples_take + i]; + } + + SDL_DequeueAudio(g_dev_id_in, pcmf32.data() + n_samples_take, n_samples_new*sizeof(float)); + + pcmf32_old = pcmf32; + + // compute log mel spectrogram + whisper_mel mel_inp; + { + const int64_t t_start_us = ggml_time_us(); + + log_mel_spectrogram(pcmf32, SAMPLE_RATE, N_FFT, HOP_LENGTH, N_MEL, params.n_threads, model.filters, mel_inp); + + t_mel_us = ggml_time_us() - t_start_us; + } + + // the accumulated text context so far + std::vector prompt_past = { }; + + // these tokens determine the task that will be performed + std::vector prompt_init = { vocab.token_sot }; + if (vocab.is_multilingual()) { + prompt_init.push_back(vocab.token_sot + 1 + g_lang.at(params.language).first); + if (params.translate) { + prompt_init.push_back(vocab.token_translate); + } else { + prompt_init.push_back(vocab.token_transcribe); + } + } + + // the generated text including timestamps + //std::vector result_all; + + // main loop + int seek = 0; + while (true) { + if (seek >= mel_inp.n_len) { + break; + } + + // encode audio features starting at offset seek + std::vector features; + { + const int64_t t_start_us = ggml_time_us(); + + if (!whisper_encode(model, params.n_threads, seek, mel_inp, features)) { + fprintf(stderr, "%s: failed to eval\n", __func__); + return 1; + } + + t_encode_us += ggml_time_us() - t_start_us; + } + + std::vector probs; + std::vector logits; + + std::vector prompt; + + int n_past = 0; + + // if we have already generated some text, use it as a prompt to condition the next generation + if (prompt_past.size() > 0) { + int n_take = std::min(model.hparams.n_text_ctx/2, int(prompt_past.size())); + + prompt = { vocab.token_prev }; + prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end()); + + prompt_past.clear(); + prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end()); + } + + prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end()); + + bool done = false; + int seek_delta = 100*CHUNK_SIZE; + whisper_vocab::id last_id = 0; + + // print the prompt + //printf("\n\n"); + //for (int i = 0; i < prompt.size(); i++) { + // printf("%s: prompt[%d] = %s\n", __func__, i, vocab.id_to_token[prompt[i]].c_str()); + //} + //printf("\n\n"); + + // the accumulated transcription in the current interation + int result_len = 0; + std::vector result_cur; + + for (int i = 0; i < model.hparams.n_text_ctx/2 - 4; ++i) { + // decode + if (prompt.size() > 0) { + const int64_t t_start_us = ggml_time_us(); + + if (!whisper_decode(model, params.n_threads, n_past, prompt, logits, probs)) { + fprintf(stderr, "%s: failed to eval\n", __func__); + return 1; + } + + t_decode_us += ggml_time_us() - t_start_us; + } + + n_past += prompt.size(); + prompt.clear(); + + // very basic greedy sampling strategy: + // + // - always take the most probable token + // + // more sophisticated sampling strategies could be implemented here, but we keep it simple + // feel free to experiment! + // + { + const int n_vocab = model.hparams.n_vocab; + + whisper_vocab::id id = 0; + whisper_vocab::id tid = vocab.token_beg; + + { + const int64_t t_start_sample_us = ggml_time_us(); + + id = whisper_sample_best(vocab, probs.data() + (probs.size() - n_vocab), result_len == 0); + if (i > 0) { + tid = whisper_sample_timestamp(vocab, probs.data() + (probs.size() - n_vocab)); + } + + t_sample_us += ggml_time_us() - t_start_sample_us; + } + + // update sliding window + if (id > vocab.token_beg) { + seek_delta = 2*(id - vocab.token_beg); + result_len = i + 1; + } + last_id = id; + + // add it to the context + prompt.push_back(id); + result_cur.push_back({ id, seek + 2*(tid - vocab.token_beg) }); + + //printf("%s: %s\n", __func__, vocab.id_to_token[id].c_str()); + + // end of text token + if (id == vocab.token_eot) { + break; + } + } + + if (done) { + break; + } + } + + result_cur.resize(result_len); + //result_all.insert(result_all.end(), result_cur.begin(), result_cur.end()); + + for (const auto & r : result_cur) { + prompt_past.push_back(r.id); + } + + // print the text from this iteration + if (result_cur.size() > 0) { + auto t0 = result_cur.front().t; + + std::string text = ""; + for (int i = 0; i < result_cur.size(); i++) { + if (params.print_special_tokens == false && result_cur[i].id >= vocab.token_eot) { + } else { + text += vocab.id_to_token[result_cur[i].id]; + } + if (result_cur[i].id > vocab.token_beg) { + const auto t1 = result_cur[i].t; + if (!text.empty()) { + if (params.no_timestamps) { + printf ("%s", text.c_str()); + fflush(stdout); + } else { + printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str()); + } + } + text = ""; + while (result_cur[i].id > vocab.token_beg && i < result_cur.size()) { + i++; + } + i--; + t0 = result_cur[i].t; + } + } + + if (!text.empty()) { + printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(seek + seek_delta).c_str(), text.c_str()); + } + } + + seek += seek_delta; + } + } + + // WIP: attempt for per-token timestamps + //if (!params.no_timestamps && result_all.size() > 0) { + // const int64_t dt = 500; // 5 second intervals + + // int i0 = 0; + + // int64_t t0 = result_all[0].t; + // int64_t t1 = t0; + + // printf("\n\n"); + // for (int i = 0; i < result_all.size(); ++i) { + // printf("'%s' -> %lld\n", vocab.id_to_token[result_all[i].id].c_str(), result_all[i].t); + // if (result_all[i].t - t0 > dt) { + // t1 = result_all[i - 1].t; + // printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str()); + // for (int j = i0; j < i; ++j) { + // printf("%s", vocab.id_to_token.at(result_all[j].id).c_str()); + // } + // printf("\n"); + // i0 = i; + // t0 = result_all[i].t; + // } + // } + //} + + // report timing + { + const int64_t t_main_end_us = ggml_time_us(); + + printf("\n\n"); + printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f); + printf("%s: mel time = %8.2f ms\n", __func__, t_mel_us/1000.0f); + printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); + printf("%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, t_encode_us/1000.0f, t_encode_us/1000.0f/model.hparams.n_audio_layer); + printf("%s: decode time = %8.2f ms\n", __func__, t_decode_us/1000.0f); + printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); + } + + ggml_free(model.ctx); + + return 0; +}