-
Notifications
You must be signed in to change notification settings - Fork 2
/
measure_map.py
284 lines (222 loc) · 7.9 KB
/
measure_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
import cv2
import numpy as np
import sys
import pickle
from optparse import OptionParser
import time
from keras_frcnn import config
import keras_frcnn.resnet as nn
from keras import backend as K
from keras.layers import Input
from keras.models import Model
from keras_frcnn import roi_helpers
from keras_frcnn import data_generators
from sklearn.metrics import average_precision_score
def get_map(pred, gt, f):
T = {}
P = {}
fx, fy = f
for bbox in gt:
bbox['bbox_matched'] = False
pred_probs = np.array([s['prob'] for s in pred])
box_idx_sorted_by_prob = np.argsort(pred_probs)[::-1]
for box_idx in box_idx_sorted_by_prob:
pred_box = pred[box_idx]
pred_class = pred_box['class']
pred_x1 = pred_box['x1']
pred_x2 = pred_box['x2']
pred_y1 = pred_box['y1']
pred_y2 = pred_box['y2']
pred_prob = pred_box['prob']
if pred_class not in P:
P[pred_class] = []
T[pred_class] = []
P[pred_class].append(pred_prob)
found_match = False
for gt_box in gt:
gt_class = gt_box['class']
gt_x1 = gt_box['x1']/fx
gt_x2 = gt_box['x2']/fx
gt_y1 = gt_box['y1']/fy
gt_y2 = gt_box['y2']/fy
gt_seen = gt_box['bbox_matched']
if gt_class != pred_class:
continue
if gt_seen:
continue
iou = data_generators.iou((pred_x1, pred_y1, pred_x2, pred_y2), (gt_x1, gt_y1, gt_x2, gt_y2))
if iou >= 0.5:
found_match = True
gt_box['bbox_matched'] = True
break
else:
continue
T[pred_class].append(int(found_match))
for gt_box in gt:
if not gt_box['bbox_matched'] and not gt_box['difficult']:
if gt_box['class'] not in P:
P[gt_box['class']] = []
T[gt_box['class']] = []
T[gt_box['class']].append(1)
P[gt_box['class']].append(0)
#import pdb
#pdb.set_trace()
return T, P
sys.setrecursionlimit(40000)
parser = OptionParser()
parser.add_option("-p", "--path", dest="test_path", help="Path to test data.")
parser.add_option("-n", "--num_rois", dest="num_rois",
help="Number of ROIs per iteration. Higher means more memory use.", default=32)
parser.add_option("--config_filename", dest="config_filename", help=
"Location to read the metadata related to the training (generated when training).",
default="config.pickle")
parser.add_option("-o", "--parser", dest="parser", help="Parser to use. One of simple or pascal_voc",
default="pascal_voc"),
(options, args) = parser.parse_args()
if not options.test_path: # if filename is not given
parser.error('Error: path to test data must be specified. Pass --path to command line')
if options.parser == 'pascal_voc':
from keras_frcnn.pascal_voc_parser import get_data
elif options.parser == 'simple':
from keras_frcnn.simple_parser import get_data
else:
raise ValueError("Command line option parser must be one of 'pascal_voc' or 'simple'")
config_output_filename = options.config_filename
with open(config_output_filename, 'r') as f_in:
C = pickle.load(f_in)
# turn off any data augmentation at test time
C.use_horizontal_flips = False
C.use_vertical_flips = False
C.rot_90 = False
img_path = options.test_path
def format_img(img, C):
img_min_side = float(C.im_size)
(height,width,_) = img.shape
if width <= height:
f = img_min_side/width
new_height = int(f * height)
new_width = int(img_min_side)
else:
f = img_min_side/height
new_width = int(f * width)
new_height = int(img_min_side)
fx = width/float(new_width)
fy = height/float(new_height)
img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
img = img[:, :, (2, 1, 0)]
img = img.astype(np.float32)
img[:, :, 0] -= C.img_channel_mean[0]
img[:, :, 1] -= C.img_channel_mean[1]
img[:, :, 2] -= C.img_channel_mean[2]
img /= C.img_scaling_factor
img = np.transpose(img, (2, 0, 1))
img = np.expand_dims(img, axis=0)
return img, fx, fy
class_mapping = C.class_mapping
if 'bg' not in class_mapping:
class_mapping['bg'] = len(class_mapping)
class_mapping = {v: k for k, v in class_mapping.iteritems()}
print(class_mapping)
class_to_color = {class_mapping[v]: np.random.randint(0, 255, 3) for v in class_mapping}
C.num_rois = int(options.num_rois)
if K.image_dim_ordering() == 'th':
input_shape_img = (3, None, None)
input_shape_features = (1024, None, None)
else:
input_shape_img = (None, None, 3)
input_shape_features = (None, None, 1024)
img_input = Input(shape=input_shape_img)
roi_input = Input(shape=(C.num_rois, 4))
feature_map_input = Input(shape=input_shape_features)
# define the base network (resnet here, can be VGG, Inception, etc)
shared_layers = nn.nn_base(img_input, trainable=True)
# define the RPN, built on the base layers
num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)
rpn_layers = nn.rpn(shared_layers, num_anchors)
classifier = nn.classifier(feature_map_input, roi_input, C.num_rois, nb_classes=len(class_mapping), trainable=True)
model_rpn = Model(img_input, rpn_layers)
model_classifier_only = Model([feature_map_input, roi_input], classifier)
model_classifier = Model([feature_map_input, roi_input], classifier)
model_rpn.load_weights(C.model_path, by_name=True)
model_classifier.load_weights(C.model_path, by_name=True)
model_rpn.compile(optimizer='sgd', loss='mse')
model_classifier.compile(optimizer='sgd', loss='mse')
all_imgs, _, _ = get_data(options.test_path)
test_imgs = [s for s in all_imgs if s['imageset'] == 'test']
T = {}
P = {}
for idx, img_data in enumerate(test_imgs):
print('{}/{}'.format(idx,len(test_imgs)))
st = time.time()
filepath = img_data['filepath']
img = cv2.imread(filepath)
X, fx, fy = format_img(img, C)
if K.image_dim_ordering() == 'tf':
X = np.transpose(X, (0, 2, 3, 1))
# get the feature maps and output from the RPN
[Y1, Y2, F] = model_rpn.predict(X)
R = roi_helpers.rpn_to_roi(Y1, Y2, C, K.image_dim_ordering(), overlap_thresh=0.7)
# convert from (x1,y1,x2,y2) to (x,y,w,h)
R[:, 2] -= R[:, 0]
R[:, 3] -= R[:, 1]
# apply the spatial pyramid pooling to the proposed regions
bboxes = {}
probs = {}
for jk in range(R.shape[0] // C.num_rois + 1):
ROIs = np.expand_dims(R[C.num_rois * jk:C.num_rois * (jk + 1), :], axis=0)
if ROIs.shape[1] == 0:
break
if jk == R.shape[0] // C.num_rois:
# pad R
curr_shape = ROIs.shape
target_shape = (curr_shape[0], C.num_rois, curr_shape[2])
ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype)
ROIs_padded[:, :curr_shape[1], :] = ROIs
ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :]
ROIs = ROIs_padded
[P_cls, P_regr] = model_classifier_only.predict([F, ROIs])
for ii in range(P_cls.shape[1]):
if np.argmax(P_cls[0, ii, :]) == (P_cls.shape[2] - 1):
continue
cls_name = class_mapping[np.argmax(P_cls[0, ii, :])]
if cls_name not in bboxes:
bboxes[cls_name] = []
probs[cls_name] = []
(x, y, w, h) = ROIs[0, ii, :]
cls_num = np.argmax(P_cls[0, ii, :])
try:
(tx, ty, tw, th) = P_regr[0, ii, 4 * cls_num:4 * (cls_num + 1)]
tx /= C.classifier_regr_std[0]
ty /= C.classifier_regr_std[1]
tw /= C.classifier_regr_std[2]
th /= C.classifier_regr_std[3]
x, y, w, h = roi_helpers.apply_regr(x, y, w, h, tx, ty, tw, th)
except:
pass
bboxes[cls_name].append([16 * x, 16 * y, 16 * (x + w), 16 * (y + h)])
probs[cls_name].append(np.max(P_cls[0, ii, :]))
all_dets = []
for key in bboxes:
bbox = np.array(bboxes[key])
new_boxes, new_probs = roi_helpers.non_max_suppression_fast(bbox, np.array(probs[key]), overlap_thresh=0.5)
for jk in range(new_boxes.shape[0]):
(x1, y1, x2, y2) = new_boxes[jk, :]
det = {'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'class': key, 'prob': new_probs[jk]}
all_dets.append(det)
print('Elapsed time = {}'.format(time.time() - st))
t, p = get_map(all_dets, img_data['bboxes'], (fx, fy))
for key in t.keys():
if key not in T:
T[key] = []
P[key] = []
T[key].extend(t[key])
P[key].extend(p[key])
all_aps = []
for key in T.keys():
ap = average_precision_score(T[key], P[key])
print('{} AP: {}'.format(key, ap))
all_aps.append(ap)
print('mAP = {}'.format(np.mean(np.array(all_aps))))
#print(T)
#print(P)