-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuralNet_test.py
78 lines (65 loc) · 1.92 KB
/
NeuralNet_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import NeuralNet as nn
import csv
import random
data_file = "gridwatch.csv"
iterations = 5000
sample_cases = 20000
test_cases = 500
input_size =
hidden_size = 10
hidden_layers = 4
output_size = 1
alpha = 1
inputG = np.array([[],
[0, 1, 0],
[1, 0, 0],
[1, 1, 0],
[0, 0, 1],
[0, 1, 1],
[1, 0, 1],
[1, 1, 1]])
outputG = np.array([[0, 0],
[1, 0],
[1, 0],
[0, 1],
[1, 0],
[0, 1],
[0, 1],
[1, 1]])
data_list = []
with open(data_file, 'rb') as csvfile:
reader = csv.reader(csvfile)
next(reader)
for row in reader:
data_list.append(float(row[6]))
for i in range(0, len(data_list)-1):
if data_list[i] < data_list[i+1]:
data_list[i] = 1
else:
data_list[i] = 0
print len(data_list)
inputH = np.array([])
outputH = np.array([])
training_list = []
training_output_list = []
test_list = []
test_output_list = []
for i in range(sample_cases):
pos = random.randint(0, len(data_list) - input_size - 1)
training_list.append(data_list[pos:pos + input_size])
training_output_list.append([data_list[pos + input_size]])
for i in range(test_cases):
pos = random.randint(0, len(data_list) - input_size - 1)
test_list.append(data_list[pos:pos + input_size])
test_output_list.append([data_list[pos + input_size]])
inputH = np.asarray(training_list)
outputH = np.asarray(training_output_list)
input_test = np.asarray(test_list)
output_test = np.asarray(test_output_list)
print "----------------------------"
#print inputH
#print outputH
net = nn.NeuralNet(input_size, hidden_size, output_size, hidden_layers, alpha)
net.test(input_test, test_cases, output_test)
#net.train(inputH, sample_cases, outputH, iterations)