-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathround.rs
436 lines (366 loc) · 14 KB
/
round.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
use barnett_smart_card_protocol::discrete_log_cards;
use barnett_smart_card_protocol::BarnettSmartProtocol;
use anyhow;
use ark_ff::{to_bytes, UniformRand};
use ark_std::{rand::Rng, One};
use proof_essentials::utils::permutation::Permutation;
use proof_essentials::utils::rand::sample_vector;
use proof_essentials::zkp::proofs::{chaum_pedersen_dl_equality, schnorr_identification};
use rand::thread_rng;
use std::collections::HashMap;
use std::iter::Iterator;
use thiserror::Error;
// Choose elliptic curve setting
type Curve = starknet_curve::Projective;
type Scalar = starknet_curve::Fr;
// Instantiate concrete type for our card protocol
type CardProtocol = discrete_log_cards::DLCards<Curve>;
type CardParameters = discrete_log_cards::Parameters<Curve>;
type PublicKey = discrete_log_cards::PublicKey<Curve>;
type SecretKey = discrete_log_cards::PlayerSecretKey<Curve>;
type Card = discrete_log_cards::Card<Curve>;
type MaskedCard = discrete_log_cards::MaskedCard<Curve>;
type RevealToken = discrete_log_cards::RevealToken<Curve>;
type ProofKeyOwnership = schnorr_identification::proof::Proof<Curve>;
type RemaskingProof = chaum_pedersen_dl_equality::proof::Proof<Curve>;
type RevealProof = chaum_pedersen_dl_equality::proof::Proof<Curve>;
#[derive(Error, Debug, PartialEq)]
pub enum GameErrors {
#[error("No such card in hand")]
CardNotFound,
#[error("Invalid card")]
InvalidCard,
}
#[derive(PartialEq, Clone, Copy, Eq)]
pub enum Suite {
Club,
Diamond,
Heart,
Spade,
}
impl Suite {
const VALUES: [Self; 4] = [Self::Club, Self::Diamond, Self::Heart, Self::Spade];
}
#[derive(PartialEq, PartialOrd, Clone, Copy, Eq)]
pub enum Value {
Two,
Three,
Four,
Five,
Six,
Seven,
Eight,
Nine,
Ten,
Jack,
Queen,
King,
Ace,
}
impl Value {
const VALUES: [Self; 13] = [
Self::Two,
Self::Three,
Self::Four,
Self::Five,
Self::Six,
Self::Seven,
Self::Eight,
Self::Nine,
Self::Ten,
Self::Jack,
Self::Queen,
Self::King,
Self::Ace,
];
}
#[derive(PartialEq, Clone, Eq, Copy)]
pub struct ClassicPlayingCard {
value: Value,
suite: Suite,
}
impl ClassicPlayingCard {
pub fn new(value: Value, suite: Suite) -> Self {
Self { value, suite }
}
}
impl std::fmt::Debug for ClassicPlayingCard {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let suite = match self.suite {
Suite::Club => "♣",
Suite::Diamond => "♦",
Suite::Heart => "♥",
Suite::Spade => "♠",
};
let val = match self.value {
Value::Two => "2",
Value::Three => "3",
Value::Four => "4",
Value::Five => "5",
Value::Six => "6",
Value::Seven => "7",
Value::Eight => "8",
Value::Nine => "9",
Value::Ten => "10",
Value::Jack => "J",
Value::Queen => "Q",
Value::King => "K",
Value::Ace => "A",
};
write!(f, "{}{}", val, suite)
}
}
#[derive(Clone)]
struct Player {
name: Vec<u8>,
sk: SecretKey,
pk: PublicKey,
proof_key: ProofKeyOwnership,
cards: Vec<MaskedCard>,
opened_cards: Vec<Option<ClassicPlayingCard>>,
}
impl Player {
pub fn new<R: Rng>(rng: &mut R, pp: &CardParameters, name: &Vec<u8>) -> anyhow::Result<Self> {
let (pk, sk) = CardProtocol::player_keygen(rng, pp)?;
let proof_key = CardProtocol::prove_key_ownership(rng, pp, &pk, &sk, name)?;
Ok(Self {
name: name.clone(),
sk,
pk,
proof_key,
cards: vec![],
opened_cards: vec![],
})
}
pub fn receive_card(&mut self, card: MaskedCard) {
self.cards.push(card);
self.opened_cards.push(None);
}
pub fn peek_at_card(
&mut self,
parameters: &CardParameters,
reveal_tokens: &mut Vec<(RevealToken, RevealProof, PublicKey)>,
card_mappings: &HashMap<Card, ClassicPlayingCard>,
card: &MaskedCard,
) -> Result<(), anyhow::Error> {
let i = self.cards.iter().position(|&x| x == *card);
let i = i.ok_or(GameErrors::CardNotFound)?;
//TODO add function to create that without the proof
let rng = &mut thread_rng();
let own_reveal_token = self.compute_reveal_token(rng, parameters, card)?;
reveal_tokens.push(own_reveal_token);
let unmasked_card = CardProtocol::unmask(¶meters, reveal_tokens, card)?;
let opened_card = card_mappings.get(&unmasked_card);
let opened_card = opened_card.ok_or(GameErrors::InvalidCard)?;
self.opened_cards[i] = Some(*opened_card);
Ok(())
}
pub fn compute_reveal_token<R: Rng>(
&self,
rng: &mut R,
pp: &CardParameters,
card: &MaskedCard,
) -> anyhow::Result<(RevealToken, RevealProof, PublicKey)> {
let (reveal_token, reveal_proof) =
CardProtocol::compute_reveal_token(rng, &pp, &self.sk, &self.pk, card)?;
Ok((reveal_token, reveal_proof, self.pk))
}
}
//Every player will have to calculate this function for cards that are in play
pub fn open_card(
parameters: &CardParameters,
reveal_tokens: &Vec<(RevealToken, RevealProof, PublicKey)>,
card_mappings: &HashMap<Card, ClassicPlayingCard>,
card: &MaskedCard,
) -> Result<ClassicPlayingCard, anyhow::Error> {
let unmasked_card = CardProtocol::unmask(¶meters, reveal_tokens, card)?;
let opened_card = card_mappings.get(&unmasked_card);
let opened_card = opened_card.ok_or(GameErrors::InvalidCard)?;
Ok(*opened_card)
}
fn encode_cards<R: Rng>(rng: &mut R, num_of_cards: usize) -> HashMap<Card, ClassicPlayingCard> {
let mut map: HashMap<Card, ClassicPlayingCard> = HashMap::new();
let plaintexts = (0..num_of_cards)
.map(|_| Card::rand(rng))
.collect::<Vec<_>>();
let mut i = 0;
for value in Value::VALUES.iter().copied() {
for suite in Suite::VALUES.iter().copied() {
let current_card = ClassicPlayingCard::new(value, suite);
map.insert(plaintexts[i], current_card);
i += 1;
}
}
map
}
fn main() -> anyhow::Result<()> {
let m = 2;
let n = 26;
let num_of_cards = m * n;
let rng = &mut thread_rng();
let parameters = CardProtocol::setup(rng, m, n)?;
let card_mapping = encode_cards(rng, num_of_cards);
let mut andrija = Player::new(rng, ¶meters, &to_bytes![b"Andrija"].unwrap())?;
let mut kobi = Player::new(rng, ¶meters, &to_bytes![b"Kobi"].unwrap())?;
let mut nico = Player::new(rng, ¶meters, &to_bytes![b"Nico"].unwrap())?;
let mut tom = Player::new(rng, ¶meters, &to_bytes![b"Tom"].unwrap())?;
let players = vec![andrija.clone(), kobi.clone(), nico.clone(), tom.clone()];
let key_proof_info = players
.iter()
.map(|p| (p.pk, p.proof_key, p.name.clone()))
.collect::<Vec<_>>();
// Each player should run this computation. Alternatively, it can be ran by a smart contract
let joint_pk = CardProtocol::compute_aggregate_key(¶meters, &key_proof_info)?;
// Each player should run this computation and verify that all players agree on the initial deck
let deck_and_proofs: Vec<(MaskedCard, RemaskingProof)> = card_mapping
.keys()
.map(|card| CardProtocol::mask(rng, ¶meters, &joint_pk, &card, &Scalar::one()))
.collect::<Result<Vec<_>, _>>()?;
let deck = deck_and_proofs
.iter()
.map(|x| x.0)
.collect::<Vec<MaskedCard>>();
// SHUFFLE TIME --------------
// 1.a Andrija shuffles first
let permutation = Permutation::new(rng, m * n);
let masking_factors: Vec<Scalar> = sample_vector(rng, m * n);
let (a_shuffled_deck, a_shuffle_proof) = CardProtocol::shuffle_and_remask(
rng,
¶meters,
&joint_pk,
&deck,
&masking_factors,
&permutation,
)?;
// 1.b everyone checks!
CardProtocol::verify_shuffle(
¶meters,
&joint_pk,
&deck,
&a_shuffled_deck,
&a_shuffle_proof,
)?;
//2.a Kobi shuffles second
let permutation = Permutation::new(rng, m * n);
let masking_factors: Vec<Scalar> = sample_vector(rng, m * n);
let (k_shuffled_deck, k_shuffle_proof) = CardProtocol::shuffle_and_remask(
rng,
¶meters,
&joint_pk,
&a_shuffled_deck,
&masking_factors,
&permutation,
)?;
//2.b Everyone checks
CardProtocol::verify_shuffle(
¶meters,
&joint_pk,
&a_shuffled_deck,
&k_shuffled_deck,
&k_shuffle_proof,
)?;
//3.a Nico shuffles third
let permutation = Permutation::new(rng, m * n);
let masking_factors: Vec<Scalar> = sample_vector(rng, m * n);
let (n_shuffled_deck, n_shuffle_proof) = CardProtocol::shuffle_and_remask(
rng,
¶meters,
&joint_pk,
&k_shuffled_deck,
&masking_factors,
&permutation,
)?;
//3.b Everyone checks
CardProtocol::verify_shuffle(
¶meters,
&joint_pk,
&k_shuffled_deck,
&n_shuffled_deck,
&n_shuffle_proof,
)?;
//4.a Tom shuffles last
let permutation = Permutation::new(rng, m * n);
let masking_factors: Vec<Scalar> = sample_vector(rng, m * n);
let (final_shuffled_deck, final_shuffle_proof) = CardProtocol::shuffle_and_remask(
rng,
¶meters,
&joint_pk,
&n_shuffled_deck,
&masking_factors,
&permutation,
)?;
//4.b Everyone checks before accepting last deck for game
CardProtocol::verify_shuffle(
¶meters,
&joint_pk,
&n_shuffled_deck,
&final_shuffled_deck,
&final_shuffle_proof,
)?;
// CARDS ARE SHUFFLED. ROUND OF THE GAME CAN BEGIN
let deck = final_shuffled_deck;
andrija.receive_card(deck[0]);
kobi.receive_card(deck[1]);
nico.receive_card(deck[2]);
tom.receive_card(deck[3]);
let andrija_rt_1 = andrija.compute_reveal_token(rng, ¶meters, &deck[1])?;
let andrija_rt_2 = andrija.compute_reveal_token(rng, ¶meters, &deck[2])?;
let andrija_rt_3 = andrija.compute_reveal_token(rng, ¶meters, &deck[3])?;
let kobi_rt_0 = kobi.compute_reveal_token(rng, ¶meters, &deck[0])?;
let kobi_rt_2 = kobi.compute_reveal_token(rng, ¶meters, &deck[2])?;
let kobi_rt_3 = kobi.compute_reveal_token(rng, ¶meters, &deck[3])?;
let nico_rt_0 = nico.compute_reveal_token(rng, ¶meters, &deck[0])?;
let nico_rt_1 = nico.compute_reveal_token(rng, ¶meters, &deck[1])?;
let nico_rt_3 = nico.compute_reveal_token(rng, ¶meters, &deck[3])?;
let tom_rt_0 = tom.compute_reveal_token(rng, ¶meters, &deck[0])?;
let tom_rt_1 = tom.compute_reveal_token(rng, ¶meters, &deck[1])?;
let tom_rt_2 = tom.compute_reveal_token(rng, ¶meters, &deck[2])?;
let mut rts_andrija = vec![kobi_rt_0, nico_rt_0, tom_rt_0];
let mut rts_kobi = vec![andrija_rt_1, nico_rt_1, tom_rt_1];
let mut rts_nico = vec![andrija_rt_2, kobi_rt_2, tom_rt_2];
let mut rts_tom = vec![andrija_rt_3, kobi_rt_3, nico_rt_3];
//At this moment players privately open their cards and only they know that values
andrija.peek_at_card(¶meters, &mut rts_andrija, &card_mapping, &deck[0])?;
kobi.peek_at_card(¶meters, &mut rts_kobi, &card_mapping, &deck[1])?;
nico.peek_at_card(¶meters, &mut rts_nico, &card_mapping, &deck[2])?;
tom.peek_at_card(¶meters, &mut rts_tom, &card_mapping, &deck[3])?;
/* Here we can add custom logic of a game:
1. swap card
2. place a bet
3. ...
*/
//At this moment players reveal their cards to each other and everything becomes public
//1.a everyone reveals the secret for their card
let andrija_rt_0 = andrija.compute_reveal_token(rng, ¶meters, &deck[0])?;
let kobi_rt_1 = kobi.compute_reveal_token(rng, ¶meters, &deck[1])?;
let nico_rt_2 = nico.compute_reveal_token(rng, ¶meters, &deck[2])?;
let tom_rt_3 = tom.compute_reveal_token(rng, ¶meters, &deck[3])?;
//2. tokens for all other cards are exchanged
//TODO add struct for this so that we can just clone
let andrija_rt_1 = andrija.compute_reveal_token(rng, ¶meters, &deck[1])?;
let andrija_rt_2 = andrija.compute_reveal_token(rng, ¶meters, &deck[2])?;
let andrija_rt_3 = andrija.compute_reveal_token(rng, ¶meters, &deck[3])?;
let kobi_rt_0 = kobi.compute_reveal_token(rng, ¶meters, &deck[0])?;
let kobi_rt_2 = kobi.compute_reveal_token(rng, ¶meters, &deck[2])?;
let kobi_rt_3 = kobi.compute_reveal_token(rng, ¶meters, &deck[3])?;
let nico_rt_0 = nico.compute_reveal_token(rng, ¶meters, &deck[0])?;
let nico_rt_1 = nico.compute_reveal_token(rng, ¶meters, &deck[1])?;
let nico_rt_3 = nico.compute_reveal_token(rng, ¶meters, &deck[3])?;
let tom_rt_0 = tom.compute_reveal_token(rng, ¶meters, &deck[0])?;
let tom_rt_1 = tom.compute_reveal_token(rng, ¶meters, &deck[1])?;
let tom_rt_2 = tom.compute_reveal_token(rng, ¶meters, &deck[2])?;
let rt_0 = vec![andrija_rt_0, kobi_rt_0, nico_rt_0, tom_rt_0];
let rt_1 = vec![andrija_rt_1, kobi_rt_1, nico_rt_1, tom_rt_1];
let rt_2 = vec![andrija_rt_2, kobi_rt_2, nico_rt_2, tom_rt_2];
let rt_3 = vec![andrija_rt_3, kobi_rt_3, nico_rt_3, tom_rt_3];
//Everyone computes for each card (except for their own card):
let andrija_card = open_card(¶meters, &rt_0, &card_mapping, &deck[0])?;
let kobi_card = open_card(¶meters, &rt_1, &card_mapping, &deck[1])?;
let nico_card = open_card(¶meters, &rt_2, &card_mapping, &deck[2])?;
let tom_card = open_card(¶meters, &rt_3, &card_mapping, &deck[3])?;
println!("Andrija: {:?}", andrija_card);
println!("Kobi: {:?}", kobi_card);
println!("Nico: {:?}", nico_card);
println!("Tom: {:?}", tom_card);
Ok(())
}