-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhdfeos5_2json_mbtiles.py
executable file
·409 lines (346 loc) · 16.7 KB
/
hdfeos5_2json_mbtiles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#!/usr/bin/env python3
############################################################
# Program is part of MintPy #
# Copyright (c) 2013, Zhang Yunjun, Heresh Fattahi #
# Author: Alfredo Terrero, 2016 #
############################################################
import os
import sys
import argparse
import pickle
import json
import time
from datetime import date
import math
import geocoder
import numpy as np
from mintpy.objects import HDFEOS
from mintpy.mask import mask_matrix
from mintpy.utils import utils as ut
import h5py
import multiprocessing as mp
from multiprocessing import shared_memory
from multiprocessing import Pool
from multiprocessing import Value
chunk_num = Value("i", 0)
# ex: python Converter_unavco.py Alos_SM_73_2980_2990_20070107_20110420.h5
# This script takes a UNAVCO format timeseries h5 file, converts to mbtiles,
# and sends to database which allows website to make queries and display data
# ---------------------------------------------------------------------------------------
# FUNCTIONS
# ---------------------------------------------------------------------------------------
# returns a dictionary of datasets that are stored in memory to speed up h5 read process
def get_date(date_string):
year = int(date_string[0:4])
month = int(date_string[4:6])
day = int(date_string[6:8])
return date(year, month, day)
# ---------------------------------------------------------------------------------------
# takes a date and calculates the number of days elapsed in the year of that date
# returns year + (days_elapsed / 365), a decimal representation of the date necessary
# for calculating linear regression of displacement vs time
def get_decimal_date(d):
start = date(d.year, 1, 1)
return abs(d-start).days / 365.0 + d.year
def region_name_from_project_name(project_name):
track_index = project_name.find('T')
return project_name[:track_index]
needed_attributes = {
"prf", "first_date", "mission", "WIDTH", "X_STEP", "processing_software",
"wavelength", "processing_type", "beam_swath", "Y_FIRST", "look_direction",
"flight_direction", "last_frame", "post_processing_method", "min_baseline_perp"
"unwrap_method", "relative_orbit", "beam_mode", "LENGTH", "max_baseline_perp",
"X_FIRST", "atmos_correct_method", "last_date", "first_frame", "frame", "Y_STEP", "history",
"scene_footprint", "data_footprint", "downloadUnavcoUrl", "referencePdfUrl", "areaName", "referenceText",
"REF_LAT", "REF_LON", "CENTER_LINE_UTC", "insarmaps_download_flag", "mintpy.subset.lalo"
}
def serialize_dictionary(dictionary, fileName):
with open(fileName, "wb") as file:
pickle.dump(dictionary, file, protocol=pickle.HIGHEST_PROTOCOL)
return
def get_attribute_or_remove_from_needed(needed_attributes, attributes, attribute_name):
val = None
try:
val = attributes[attribute_name]
except:
needed_attributes.remove(attribute_name)
return val
def generate_worker_args(decimal_dates, timeseries_datasets, dates, json_path, folder_name, chunk_size, lats, lons, num_columns, num_rows):
num_points = num_columns * num_rows
worker_args = []
start = 0
end = 0
idx = 0
for i in range(num_points // chunk_size):
start = idx * chunk_size
end = (idx + 1) * chunk_size
if end > num_points:
end = num_points
args = [decimal_dates, timeseries_datasets, dates, json_path, folder_name, (start, end - 1), num_columns, num_rows, lats, lons]
worker_args.append(tuple(args))
idx += 1
if num_points % chunk_size != 0:
start = end
end = num_points
args = [decimal_dates, timeseries_datasets, dates, json_path, folder_name, (start, end - 1), num_columns, num_rows, lats, lons]
worker_args.append(tuple(args))
return worker_args
def create_json(decimal_dates, timeseries_datasets, dates, json_path, folder_name, work_idxs, num_columns, num_rows, lats=None, lons=None):
global chunk_num
# create a siu_man array to store json point objects
siu_man = []
displacement_values = []
displacements = '{'
# np array of decimal dates, x parameter in linear regression equation
x = decimal_dates
A = np.vstack([x, np.ones(len(x))]).T
y = []
point_num = work_idxs[0]
# iterate through h5 file timeseries
for (row, col), value in np.ndenumerate(timeseries_datasets[dates[0]]):
cur_iter_point_num = row * num_columns + col
if cur_iter_point_num < work_idxs[0]:
continue
elif cur_iter_point_num > work_idxs[1]:
break
longitude = float(lons[row][col])
latitude = float(lats[row][col])
displacement = float(value)
# if value is not equal to naN, create a new json point object and append to siu_man array
if not math.isnan(displacement):
# get displacement values for all the dates into array for json and string for pgsql
for datei in dates:
displacement = timeseries_datasets[datei][row][col]
displacements += (str(displacement) + ",")
displacement_values.append(float(displacement))
displacements = displacements[:len(displacements) - 1] + '}'
# np array of displacement values, y parameter in linear regression equation
y = displacement_values
# y = mx + c -> we want m = slope of the linear regression line
m, c = np.linalg.lstsq(A, y, rcond=None)[0]
data = {
"type": "Feature",
"geometry": {"type": "Point", "coordinates": [longitude, latitude]},
"properties": {"d": displacement_values, "m": m, "p": point_num}
}
siu_man.append(data)
# clear displacement array for json and the other string for dictionary, for next point
displacement_values = []
displacements = '{'
point_num += 1
if len(siu_man) > 0:
chunk_num_val = -1
with chunk_num.get_lock():
chunk_num_val = chunk_num.value
chunk_num.value += 1
make_json_file(chunk_num_val, siu_man, dates, json_path, folder_name)
siu_man = []
# ---------------------------------------------------------------------------------------
# convert h5 file to json and upload it. folder_name == unavco_name
def convert_data(attributes, decimal_dates, timeseries_datasets, dates, json_path, folder_name, lats=None, lons=None, num_workers=1):
project_name = attributes["PROJECT_NAME"]
region = region_name_from_project_name(project_name)
# get the attributes for calculating latitude and longitude
x_step, y_step, x_first, y_first = 0, 0, 0, 0
if high_res_mode(attributes):
needed_attributes.remove("X_STEP")
needed_attributes.remove("Y_STEP")
needed_attributes.remove("X_FIRST")
needed_attributes.remove("Y_FIRST")
else:
x_step = float(attributes["X_STEP"])
y_step = float(attributes["Y_STEP"])
x_first = float(attributes["X_FIRST"])
y_first = float(attributes["Y_FIRST"])
num_columns = int(attributes["WIDTH"])
num_rows = int(attributes["LENGTH"])
print("columns: %d" % num_columns)
print("rows: %d" % num_rows)
if lats is None and lons is None:
lats, lons = ut.get_lat_lon(attributes, dimension=1)
CHUNK_SIZE = 20000
process_pool = Pool(num_workers)
process_pool.starmap(create_json, generate_worker_args(decimal_dates, timeseries_datasets, dates, json_path, folder_name, CHUNK_SIZE, lats, lons, num_columns, num_rows))
process_pool.close()
# dictionary to contain metadata needed by db to be written to a file
# and then be read by json_mbtiles2insarmaps.py
insarmapsMetadata = {}
# calculate mid lat and long of dataset - then use google python lib to get country
# technically don't need the else since we always use lats and lons arrays now
if high_res_mode(attributes):
num_rows, num_columns = lats.shape
mid_long = float(lons[num_rows // 2][num_columns // 2])
mid_lat = float(lats[num_rows // 2][num_columns // 2])
else:
mid_long = x_first + ((num_columns/2) * x_step)
mid_lat = y_first + ((num_rows/2) * y_step)
country = None
try:
g = geocoder.google([mid_lat,mid_long], method='reverse', timeout=60.0)
country = str(g.country_long)
except Exception:
sys.stderr.write("timeout reverse geocoding country name")
area = folder_name
# for some reason pgsql only takes {} not [] - format date arrays and attributes to be inserted to pgsql
string_dates_sql = '{'
for k in dates:
string_dates_sql += (str(k) + ",")
string_dates_sql = string_dates_sql[:len(string_dates_sql) - 1] + '}'
decimal_dates_sql = '{'
for d in decimal_dates:
decimal_dates_sql += (str(d) + ",")
decimal_dates_sql = decimal_dates_sql[:len(decimal_dates_sql) - 1] + '}'
# add keys and values to area table. TODO: this will be removed eventually
# and all attributes will be put in extra_attributes table
attribute_keys = '{'
attribute_values = '{'
max_digit = max([len(key) for key in list(needed_attributes)] + [0])
for k in attributes:
v = attributes[k]
if k in needed_attributes:
print('{k:<{w}} {v}'.format(k=k, w=max_digit, v=v))
attribute_keys += (str(k) + ",")
attribute_values += (str(v) + ',')
attribute_keys = attribute_keys[:len(attribute_keys)-1] + '}'
attribute_values = attribute_values[:len(attribute_values)-1] + '}'
# write out metadata to json file
insarmapsMetadata["area"] = area
insarmapsMetadata["project_name"] = project_name
insarmapsMetadata["mid_long"] = mid_long
insarmapsMetadata["mid_lat"] = mid_lat
insarmapsMetadata["country"] = country
insarmapsMetadata["region"] = region
insarmapsMetadata["chunk_num"] = 1
insarmapsMetadata["attribute_keys"] = attribute_keys
insarmapsMetadata["attribute_values"] = attribute_values
insarmapsMetadata["string_dates_sql"] = string_dates_sql
insarmapsMetadata["decimal_dates_sql"] = decimal_dates_sql
insarmapsMetadata["attributes"] = attributes
insarmapsMetadata["needed_attributes"] = needed_attributes
metadataFilePath = json_path + "/metadata.pickle"
serialize_dictionary(insarmapsMetadata, metadataFilePath)
return
# ---------------------------------------------------------------------------------------
# create a json file out of siu man array
# then put json file into directory named after the h5 file
def make_json_file(chunk_num, points, dates, json_path, folder_name):
chunk = "chunk_" + str(chunk_num) + ".json"
json_file = open(json_path + "/" + chunk, "w")
json_features = [json.dumps(feature) for feature in points]
string_json = '\n'.join(json_features)
json_file.write("%s" % string_json)
json_file.close()
print("converted chunk " + str(chunk_num))
return chunk
def high_res_mode(attributes):
high_res = False # default
try:
x_step = attributes["X_STEP"]
y_step = attributes["Y_STEP"]
except:
high_res = True # one or both not there, so we are high res
return high_res
# ---------------------------------------------------------------------------------------
def build_parser():
parser = argparse.ArgumentParser(description='Convert a Unavco format H5 file for ingestion into insarmaps.', epilog="This program will create temporary json chunk files which, when concatenated together, comprise the whole dataset. Tippecanoe is used for concatenating these chunk files into the mbtiles file which describes the whole dataset.")
parser.add_argument("--num-workers", help="Number of simultaneous processes to run for ingest.", required=False, default=1, type=int)
required = parser.add_argument_group("required arguments")
required.add_argument("file", help="unavco file to ingest")
required.add_argument("outputDir", help="directory to place json files and mbtiles file")
return parser
# ---------------------------------------------------------------------------------------
# START OF EXECUTABLE
# ---------------------------------------------------------------------------------------
def main():
parser = build_parser()
parseArgs = parser.parse_args()
file_name = parseArgs.file
output_folder = parseArgs.outputDir
should_mask = True
path_name_and_extension = os.path.basename(file_name).split(".")
path_name = path_name_and_extension[0]
# ---------------------------------------------------------------------------------------
# start clock to track how long conversion process takes
start_time = time.perf_counter()
# use h5py to open specified group(s) in the h5 file
# then read datasets from h5 file into memory for faster reading of data
he_obj = HDFEOS(file_name)
he_obj.open(print_msg=False)
displacement_3d_matrix = he_obj.read(datasetName='displacement')
mask = he_obj.read(datasetName='mask')
if should_mask:
print("Masking displacement")
displacement_3d_matrix = mask_matrix(displacement_3d_matrix, mask)
del mask
print("Creating shared memory for multiple processes")
shm = shared_memory.SharedMemory(create=True, size=displacement_3d_matrix.nbytes)
shared_displacement_3d_matrix = np.ndarray(displacement_3d_matrix.shape, dtype=displacement_3d_matrix.dtype, buffer=shm.buf)
shared_displacement_3d_matrix[:] = displacement_3d_matrix[:]
del displacement_3d_matrix
displacement_3d_matrix = shared_displacement_3d_matrix
dates = he_obj.dateList
attributes = dict(he_obj.metadata)
#file = h5py.File(file_name, "r")
#timeseries_group = file["HDFEOS"]["GRIDS"]["timeseries"]
#displacement_3d_matrix = timeseries_group["observation"]["displacement"]
# get attributes (stored at root) of UNAVCO timeseries file
#attributes = dict(file.attrs)
# in timeseries displacement_3d_matrix, there are datasets
# need to get datasets with dates - strings that can be converted to integers
#dates = displacement_3d_matrix.attrs["DATE_TIMESERIES"].split(" ")
# array that stores dates from dates that have been converted to decimal
decimal_dates = []
# read datasets in the group into a dictionary of 2d arrays and intialize decimal dates
timeseries_datasets = {}
num_date = len(dates)
for i in range(num_date):
timeseries_datasets[dates[i]] = np.squeeze(displacement_3d_matrix[i, :, :])
d = get_date(dates[i])
decimal = get_decimal_date(d)
decimal_dates.append(decimal)
del displacement_3d_matrix
#for displacement_2d_matrix in displacement_3d_matrix:
# dataset = displacement_2d_matrix[:]
# if should_mask:
# print("Masking " + dates[i])
# mask = timeseries_group["quality"]["mask"][:]
# dataset = mask_matrix(dataset, mask)
# timeseries_datasets[dates[i]] = dataset
# d = get_date(dates[i])
# decimal = get_decimal_date(d)
# decimal_dates.append(decimal)
# i += 1
# close h5 file
#file.close()
path_list = path_name.split("/")
folder_name = path_name.split("/")[len(path_list)-1]
try: # create path for output
os.mkdir(output_folder)
except:
print(output_folder + " already exists")
# read lat and long. MintPy doesn't seem to support this yet, so we use the raw
# h5 file object
f = h5py.File(he_obj.file, "r")
lats = np.array(f["HDFEOS"]["GRIDS"]["timeseries"]["geometry"]["latitude"])
lons = np.array(f["HDFEOS"]["GRIDS"]["timeseries"]["geometry"]["longitude"])
# read and convert the datasets, then write them into json files and insert into database
convert_data(attributes, decimal_dates, timeseries_datasets, dates, output_folder, folder_name, lats, lons, parseArgs.num_workers)
del lats
del lons
# run tippecanoe command to get mbtiles file
os.chdir(os.path.abspath(output_folder))
cmd = None
if high_res_mode(attributes):
cmd = "tippecanoe *.json -P -l chunk_1 -x d -pf -pk -o " + folder_name + ".mbtiles 2> tippecanoe_stderr.log"
else:
cmd = "tippecanoe *.json -P -l chunk_1 -x d -pf -pk -Bg -d9 -D12 -g12 -r0 -o " + folder_name + ".mbtiles 2> tippecanoe_stderr.log"
print("Now running tippecanoe with command %s" % cmd)
os.system(cmd)
# ---------------------------------------------------------------------------------------
# check how long it took to read h5 file data and create json files
end_time = time.perf_counter()
print(("time elapsed: " + str(end_time - start_time)))
return
# ---------------------------------------------------------------------------------------
if __name__ == '__main__':
main()