-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy patheval_tmp.py
186 lines (169 loc) · 7.54 KB
/
eval_tmp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
from matplotlib import pyplot as plt
import numpy as np
import sys
sys.path.insert(0,'utils')
from utils.flowlib import flow_to_image, read_flow, compute_color, visualize_flow
from utils.io import mkdir_p
import pdb
import glob
import argparse
parser = argparse.ArgumentParser(description='')
parser.add_argument('--path', default='/data/ptmodel/',
help='database')
parser.add_argument('--vis', default='no',
help='database')
parser.add_argument('--dataset', default='2015',
help='database')
args = parser.parse_args()
aepe_s = []
fall_s64 = []
fall_s32 = []
fall_s16 = []
fall_s8 = []
fall_s = []
oor_tp = []
oor_fp = []
# dataloader
if args.dataset == '2015':
#from dataloader import kitti15list as DA
#from dataloader import kitti15list_val_lidar as DA
from dataloader import kitti15list_val as DA
datapath = '/ssd/kitti_scene/training/'
elif args.dataset == '2015test':
from dataloader import kitti15list as DA
datapath = '/ssd/kitti_scene/testing/'
elif args.dataset == 'kitticlip':
from dataloader import kitticliplist as DA
#datapath = '/ssd/rob_flow/test/image_2/Kitti2015_000140_'
datapath = '/data/gengshay/KITTI_png/2011_09_30/2011_09_30_drive_0028_sync/image_02/data/'
elif args.dataset == 'tumclip':
from dataloader import kitticliplist as DA
datapath = '/data/gengshay/TUM/rgbd_dataset_freiburg1_plant/rgb/'
elif args.dataset == '2012':
from dataloader import kitti12list as DA
datapath = '/ssd/data_stereo_flow/training/'
elif args.dataset == '2012test':
from dataloader import kitti12list as DA
datapath = '/ssd/data_stereo_flow/testing/'
elif args.dataset == 'mb':
from dataloader import mblist as DA
datapath = '/ssd/rob_flow/training/'
elif args.dataset == 'sintel':
#from dataloader import sintellist as DA
from dataloader import sintellist_val as DA
#from dataloader import sintellist_clean as DA
datapath = '/ssd/rob_flow/training/'
elif args.dataset == 'hd1k':
from dataloader import hd1klist as DA
datapath = '/ssd/rob_flow/training/'
elif args.dataset == 'mbtest':
from dataloader import mblist as DA
datapath = '/ssd/rob_flow/test/'
elif args.dataset == 'sinteltest':
from dataloader import sintellist as DA
datapath = '/ssd/rob_flow/test/'
elif args.dataset == 'chairs':
from dataloader import chairslist as DA
datapath = '/ssd/FlyingChairs_release/data/'
test_left_img, test_right_img ,flow_paths= DA.dataloader(datapath)
#pdb.set_trace()
#with open('/data/gengshay/PWC-Net/Caffe/sintel_test1.txt','w') as f:
# for i in test_left_img:
# f.write(i+'\n')
#
#with open('/data/gengshay/PWC-Net/Caffe/sintel_test2.txt','w') as f:
# for i in test_right_img:
# f.write(i+'\n')
#
#with open('/data/gengshay/PWC-Net/Caffe/sintel_testout.txt','w') as f:
# for i in test_left_img:
# f.write('/data/ptmodel/pwcnet-1/sintel/%s.flo'%(i.split('/')[-1].split('.')[0])+'\n')
#exit()
if args.dataset == 'chairs':
with open('FlyingChairs_train_val.txt', 'r') as f:
split = [int(i) for i in f.readlines()]
test_left_img = [test_left_img[i] for i,flag in enumerate(split) if flag==2]
test_right_img = [test_right_img[i] for i,flag in enumerate(split) if flag==2]
flow_paths = [flow_paths[i] for i,flag in enumerate(split) if flag==2]
#pdb.set_trace()
#test_left_img = [i for i in test_left_img if 'clean' in i]
#test_right_img = [i for i in test_right_img if 'clean' in i]
#flow_paths = [i for i in flow_paths if 'clean' in i]
#for i,gtflow_path in enumerate(sorted(flow_paths)):
for i,gtflow_path in enumerate(flow_paths):
#if not 'Sintel_clean_cave_4_10' in gtflow_path:
# continue
#if i%10!=1:
# continue
num = gtflow_path.split('/')[-1].strip().replace('flow.flo','img1.png')
if not 'test' in args.dataset and not 'clip' in args.dataset:
gtflow = read_flow(gtflow_path)
num = num.replace('jpg','png')
flow = read_flow('%s/%s/%s'%(args.path,args.dataset,num))
if args.vis == 'yes':
#flowimg = flow_to_image(flow)
flowimg = flow_to_image(flow)*np.linalg.norm(flow[:,:,:2],2,2)[:,:,np.newaxis]/100./255.
#gtflowimg = compute_color(gtflow[:,:,0]/20, gtflow[:,:,1]/20)/255.
#flowimg = compute_color(flow[:,:,0]/20, flow[:,:,1]/20)/255.
mkdir_p('%s/%s/flowimg'%(args.path,args.dataset))
plt.imsave('%s/%s/flowimg/%s'%(args.path,args.dataset,num), flowimg)
if 'test' in args.dataset or 'clip' in args.dataset:
continue
gtflowimg = flow_to_image(gtflow)
mkdir_p('%s/%s/gtimg'%(args.path,args.dataset))
plt.imsave('%s/%s/gtimg/%s'%(args.path,args.dataset,num), gtflowimg)
mask = gtflow[:,:,2]==1
## occlusion
#H,W,_ = gtflow.shape
#xx = np.tile(np.asarray(range(0, W))[np.newaxis:],(H,1))
#yy = np.tile(np.asarray(range(0, H))[:,np.newaxis],(1,W))
#occmask = np.logical_or( np.logical_or(xx + gtflow[:,:,0] <0, xx + gtflow[:,:,0]>W-1),
# np.logical_or(yy + gtflow[:,:,1] <0, yy + gtflow[:,:,1]>H-1))
#mask = np.logical_and(mask,~occmask)
# if args.dataset == 'mb':
# ##TODO
# mask = np.logical_and(np.logical_and(np.abs(gtflow[:,:,0]) < 16,np.abs(gtflow[:,:,1]) < 16), mask)
gtflow = gtflow[:,:,:2]
flow = flow[:,:,:2]
epe = np.sqrt(np.power(gtflow - flow,2).sum(-1))[mask]
gt_mag = np.sqrt(np.power(gtflow,2).sum(-1))[mask]
#aepe_s.append( epe.mean() )
#fall_s.append( np.sum(np.logical_and(epe > 3, epe/gt_mag > 0.05)) / float(epe.size) )
clippx = [0,1000]
inrangepx = np.logical_and((np.abs(gtflow)>=clippx[0]).sum(-1), (np.abs(gtflow)<clippx[1]).prod(-1))[mask]
if os.path.isfile('%s/%s/%s'%(args.path,args.dataset,num.replace('png','npy'))):
isoor = np.load('%s/%s/%s'%(args.path,args.dataset,num.replace('png','npy')))
gtoortp = mask*((np.abs(gtflow)>clippx).sum(-1)>0)
gtoorfp = mask*((np.abs(gtflow)>clippx).sum(-1)==0)
oor_tp.append(isoor[gtoortp])
oor_fp.append(isoor[gtoorfp])
if args.vis == 'yes' and 'test' not in args.dataset:
epeimg = np.sqrt(np.power(gtflow - flow,2).sum(-1))*(mask*(np.logical_and((np.abs(gtflow)>=clippx[0]).sum(-1), (np.abs(gtflow)<clippx[1]).prod(-1))).astype(float))
mkdir_p('%s/%s/epeimg'%(args.path,args.dataset))
plt.imsave('%s/%s/epeimg/%s'%(args.path,args.dataset,num), epeimg, vmax=32)
aepe_s.append( epe[inrangepx] )
fall_s64.append( (epe > 64)[inrangepx])
fall_s32.append( (epe > 32)[inrangepx])
fall_s16.append( (epe > 16)[inrangepx])
fall_s8.append( (epe > 8)[inrangepx])
fall_s.append( np.logical_and(epe > 3, epe/gt_mag > 0.05)[inrangepx])
# aepe_s.append( epe )
#fall_s.append( epe[gt_mag<32] > 8)
# fall_s.append( np.logical_and(epe > 3, epe/gt_mag > 0.05))
# print(gtflow_path)
#for i in [np.mean(i) for i in aepe_s]:
# print('%f'%i)
#for i in [np.mean(i) for i in fall_s]:
# print('%f'%i)
#print('\t%.1f/%.1f/%.1f/%.1f/%.1f/%.3f'%(
# np.mean( 100*np.concatenate(fall_s64,0)),
# np.mean( 100*np.concatenate(fall_s32,0)),
# np.mean( 100*np.concatenate(fall_s16,0)),
# np.mean( 100*np.concatenate(fall_s8,0)),
# np.mean( 100*np.concatenate(fall_s,0)),
# np.mean( np.concatenate(aepe_s,0))) )
print('\t%.1f/%.3f'%(
np.mean( 100*np.concatenate(fall_s,0)),
np.mean( np.concatenate(aepe_s,0))) )
#print('\t%.1f/%.1f'%(100*np.mean( np.concatenate(oor_tp,0) ), 100*np.mean( np.concatenate(oor_fp,0) )) )