-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlibrary.py
327 lines (276 loc) · 11.8 KB
/
library.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import warnings
from sklearn.cluster import KMeans
import numpy as np
import tqdm
import os
import glob
import xarray as xr
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import func
import scipy.stats
from scipy.linalg import qr, solve, lstsq
from scipy.stats import multivariate_normal
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from numpy import *
import library as lib
import random as rd
def replace_nan(X, to_print=False):
X_new= reshape(X,X.shape[0]*X.shape[1])
is_nan = np.where(isnan(X_new))[0]
if len(is_nan)!=0:
for index in is_nan:
if to_print:
print("indexNan=",index)
neighbors = concatenate((X_new[index-2:index-1],X_new[index+1:index+2]))
neighbors_not_nan = neighbors[[not isnan(neighbors)[k] for k in range(len(neighbors))]]
X_new[is_nan]=mean(neighbors_not_nan)
X_filled =X_new.reshape((X.shape[0],X.shape[1]))
return(X_filled)
def is_square(arr):
"""
Determines whether an array is square or not.
:param ndarray arr: numpy array
:return: condition
:rtype: bool
"""
shape = arr.shape
if len(shape) == 2 and (shape[0] == shape[1]):
return True
return False
def least_squares_covariance(A, B, W):
"""
Least squares solution in the presence of known covariance.
This function is known as lscov() in MATLAB.
:param ndarray A: Design matrix
:param ndarray b: Observations (vector of phase values)
:param ndarray v: Covariances (vector of weights)
:return: solution
:rtype: ndarray
"""
W = np.sqrt(np.diag(W.squeeze()))
Aw = np.dot(W,A)
Bw = np.dot(W,B)
X = np.linalg.lstsq(Aw, Bw)
#print("Lscov.shape=",X[0].shape)
return(array(X[0]))
def init_EM_latent_class_regression(X,Y,K,method,clust1=[0]):
# size
n=size(Y,0)
nb_features = X.shape[1]
depth = Y.shape[1]
# clustering method
if method == "kmeans":
clust = KMeans(n_clusters=K, random_state=0).fit_predict(hstack((X[:,1:X.shape[1]],Y))) # see why its better than hstack((X[:,1:X.shape[1]],Y))
#hstack((array([X[:,1]]).T,Y))
elif method == "random":
if len(clust1)>1:
clust=clust1
else:
clust=np.array([np.random.randint(0,K) for i in range(n)]);
elif method== "init_weight":
clust=clust1
# initialize lambda
hist_k = plt.hist(clust,K,density=True);
plt.close()
width_bins = hist_k[1][1] -hist_k[1][0]
nb_k = hist_k[0]*width_bins * len(X)
lambda_init=zeros(K)
for k in range(K):
lambda_init[k]=nb_k[k]/n
Beta_init =array(zeros((K,nb_features,depth)))
Sigma_init =array(zeros((K,depth,depth)))
# initialize Beta and Sigma
for k in range(0,K):
Beta_init[k,:,:] = np.linalg.lstsq(X[np.where(clust==k)[0],:],Y[np.where(clust==k)[0],:])[0]
Sigma_init[k,:,:] = cov((Y[np.where(clust==k)[0],:]-X[np.where(clust==k)[0],:]@(Beta_init[k,:,:].reshape((nb_features,depth)))).T)
return(lambda_init,Beta_init,Sigma_init)
def EM_with_init(inputs):
X_orth,Y_orth,K,method,iter_EM,clust = inputs
lambda_init,Beta_init,Sigma_init = init_EM_latent_class_regression(X_orth,Y_orth,K,method,clust)
log_lik,lambda_hat,Beta_hat,Sigma_hat,Y_hat,pi_hat,Z_hat=EM_latent_class_regression(X_orth,Y_orth,lambda_init,Beta_init,Sigma_init,iter_EM)
return(pi_hat,log_lik)
def stop_condition_EM(l_new,l_old,epsilon):
return(abs(l_new-l_old)<epsilon)
def latent_class_regression(X_test,Y_test,lambda_hat,Beta_hat,Sigma_hat,reg_type,K):
# parameters
n = X_test.shape[0]
p = Y_test.shape[1];
# compute pi_test
sum_prob_tmp=zeros((n,1));
pi_hat=zeros((n,K));
Z_hat=zeros((n,1));
for k in range(K):
sum_prob_tmp[:,0] = [sum_prob_tmp[j]+lambda_hat[k]*multivariate_normal.pdf(Y_test[j,:],mean=X_test[j,:]@Beta_hat[k,:,:],cov=Sigma_hat[k,:,:]) for j in range(n)]
#sum_prob_tmp = sum_prob_tmp + array([lambda_hat[k]*multi.pdf(Y_test)]).T
for k in range(K):
pi_hat[:,k]=[lambda_hat[k]*multivariate_normal.pdf(Y_test[j,:],mean=X_test[j,:]@Beta_hat[k,:],cov=Sigma_hat[k,:,:]) for j in range(n)]/sum_prob_tmp[:,0]
for i_n in range(n):
Z_hat[i_n,:]=np.where(pi_hat[i_n,:]==max(pi_hat[i_n,:]))[0]
# compute Y hat
Y_hat=zeros((n,p));
if reg_type == 'fuzzy':
for i_n in range(n):
for k in range(K):
Y_hat[i_n,:]=Y_hat[i_n,:]+pi_hat[i_n,k]*X_test[i_n,:]@Beta_hat[k,:,:]
elif reg_type == 'natural':
for i_n in range(n):
for k in range(K):
Y_hat[i_n,:]=X_test[i_n,:]@Beta_hat[int(Z_hat[i_n]),:,:]
return(Y_hat,pi_hat,Z_hat)
def EM_latent_class_regression(X,Y,lambda_init,Beta_init,Sigma_init,iter_EM,print_=False):
if print_:
print("Beta_init.shape=",Beta_init[0].shape)
# Dimensions
K = len(Beta_init)
n,p = Y.shape
nb_features = X.shape[1]
depth = Y.shape[1]
# Initialization
lambda_hat = lambda_init
Beta_hat = Beta_init
Sigma_hat = Sigma_init
# if condition=0, we stop the EM
stop_cound = 0
j = 0
log_lik =[]
pi_hat = zeros((n,K))
Z_hat = zeros((1,n))
if print_:
print("X.shape=",X.shape)
print("Y.shape=",Y.shape)
# loop
for j in range(iter_EM):
# display
if print_:
display(["***EM ITERATION:",j,"***"]);
# E-step
sum_prob=zeros((n,1))
if print_:
print("compute multivariate")
print("lambda_hat",lambda_hat)
for k in range(K):
sum_prob[:,0] = [sum_prob[j,0]+ lambda_hat[k]*multivariate_normal.pdf(Y[j,:],mean=X[j,:]@Beta_hat[k,:,:],cov=Sigma_hat[k,:,:]) for j in range(n)]
for k in range(K):
pi_hat[:,k]= [lambda_hat[k]*multivariate_normal.pdf(Y[j,:],mean=X[j,:]@Beta_hat[k,:],cov=Sigma_hat[k,:,:]) for j in range(n)]/sum_prob[:,0]
for i_n in range(n):
most_likely = np.where(pi_hat[i_n,:]==max(pi_hat[i_n,:]))[0]
Z_hat[:,i_n]= most_likely
lambda_hat = sum(pi_hat,0)/n
# M-step
for k in range(K):
#print("compute lscov")
Beta_hat[k,:,:]=least_squares_covariance(X,Y,pi_hat[:,k].T)
Sigma_tmp=array(zeros((depth,depth)))
for i_n in range(n):
Sigma_tmp=Sigma_tmp+pi_hat[i_n,k]*reshape((Y[i_n,:]-X[i_n,:]@Beta_hat[k,:,:]),(depth,1))@reshape(((Y[i_n,:]-X[i_n,:]@Beta_hat[k,:,:]).T),(1,depth))
Sigma_hat[k,:,:]=Sigma_tmp/sum(pi_hat[:,k],0)
#print("Sigma_hat=",Sigma_hat)
# log-likelihood
log_lik_tmp=0
for i_n in range(n):
sum_tmp=0
for k in range(K):
MU = X[i_n,:]@Beta_hat[k,:,:]
SIGMA=Sigma_hat[k,:,:];
#print("SIGMA",SIGMA)
sum_tmp = sum_tmp+lambda_hat[k]*multivariate_normal.pdf(Y[i_n,:],mean=MU,cov=SIGMA)
#print("sum_tmp =", sum_tmp )
log_lik_tmp=log_lik_tmp+log(sum_tmp)
# stock log_likelihood
log_lik.append(log_lik_tmp)
# compute stop condition
if j>0:
stop_cound=stop_condition_EM(log_lik[j],log_lik[j-1],10^(-1))
j=j+1
# generate Y_hat
Y_hat=zeros((n,p));
for i_n in range(n):
for k in range(K):
Y_hat[i_n,:]=Y_hat[i_n,:]+pi_hat[i_n,k]*array(X[i_n,:]@Beta_hat[k,:,:]);
return(log_lik,lambda_hat,Beta_hat,Sigma_hat,Y_hat,pi_hat,Z_hat)
def double_acp_target_feature(X,Y,to_plot=False,nb_factor_max =15,nb_factor_max_target = 5):
#nombre d'observations
n = X.shape[0]
#nombre de variables
p = X.shape[1]
# Instanciation
sc_features = StandardScaler()
sc_target = StandardScaler()
# Transformation – centrage-réduction
Z = sc_features.fit_transform(X)
YY = sc_target.fit_transform(Y)
#instanciation
acp = PCA(svd_solver='full')
print(acp)
acp_target = PCA(svd_solver='full')
coord = acp.fit_transform(Z)
target = acp_target.fit_transform(YY)
#nb of component computed
print("Number of acp components features= ", acp.n_components_)
print("Number of acp components target= ", acp_target.n_components_)
#variance explained
eigval = (n-1)/n*acp.explained_variance_
eigval_target = (n-1)/n*acp_target.explained_variance_
#percentage of variance explained
cumsum_var_explained= cumsum(acp.explained_variance_ratio_)
cumsum_var_explained_target= cumsum(acp_target.explained_variance_ratio_)
print("cumsum variance explained= ",cumsum_var_explained[0:nb_factor_max-1])
print("cumsum variance explained target= ",cumsum_var_explained_target[0:nb_factor_max_target-1])
if to_plot :
#scree plot
plt.figure(figsize=(15,10))
plt.subplot(221)
plt.plot(np.arange(1,nb_factor_max),eigval[0:nb_factor_max-1])
plt.scatter(np.arange(1,nb_factor_max),eigval[0:nb_factor_max-1])
plt.title("Scree plot")
plt.ylabel("Eigen values")
plt.xlabel("Factor number")
plt.subplot(222)
plt.plot(np.arange(1,nb_factor_max),cumsum_var_explained[0:nb_factor_max-1])
plt.scatter(np.arange(1,nb_factor_max),cumsum_var_explained[0:nb_factor_max-1])
plt.title("Variance plot")
plt.ylabel("Total Variance explained")
plt.xlabel("Factor number")
plt.subplot(223)
plt.plot(np.arange(1,nb_factor_max_target),eigval_target[0:nb_factor_max_target-1])
plt.scatter(np.arange(1,nb_factor_max_target),eigval_target[0:nb_factor_max_target-1])
plt.title("Scree plot")
plt.ylabel("Eigen values target")
plt.xlabel("Factor number")
plt.subplot(224)
plt.plot(np.arange(1,nb_factor_max_target),cumsum_var_explained_target[0:nb_factor_max_target-1])
plt.scatter(np.arange(1,nb_factor_max_target),cumsum_var_explained_target[0:nb_factor_max_target-1])
plt.title("Variance plot")
plt.ylabel("Total Variance explained")
plt.xlabel("Factor number")
plt.show()
return(cumsum_var_explained,cumsum_var_explained_target)
def BIC_calculation(inputs_):
X,Y,K,method,iter_EM,cumsum_var_explained_target,cumsum_var_explained,var_feature,var_target,clust = inputs_
sc_features = StandardScaler()
sc_target = StandardScaler()
# Transformation – centrage-réduction
X = sc_features.fit_transform(X)
Y = sc_target.fit_transform(Y)
nb_component_target = np.where(cumsum_var_explained_target>var_target)[0][0]
nb_component_features = np.where(cumsum_var_explained>var_feature)[0][0]
acp_features = PCA(svd_solver='full',n_components =nb_component_features+1)
acp_target = PCA(svd_solver='full',n_components =nb_component_target+1)
X_orth = acp_features.fit_transform(X)
Y_orth = acp_target.fit_transform(Y)
BIC_,nb_parameters=BIC_calculation_orth(X_orth,Y_orth,K,method,iter_EM,clust)
return(BIC_,nb_parameters)
def BIC_calculation_orth(X_orth,Y_orth,K,method,iter_EM,clust):
lambda_init,Beta_init,Sigma_init = init_EM_latent_class_regression(X_orth,Y_orth,K,method,clust)
log_lik,lambda_hat,Beta_hat,Sigma_hat,Y_hat,pi_hat,Z_hat=EM_latent_class_regression(X_orth,Y_orth,lambda_init,Beta_init,Sigma_init,iter_EM)
sample_size = X_orth.shape[0]
nb_parameters =Sigma_init.shape[0]*Sigma_init.shape[1]*Sigma_init.shape[2] + Beta_hat.shape[0]*Beta_hat.shape[1]*Beta_hat.shape[2]
BIC_ = -2*log_lik[-1] + nb_parameters*log(sample_size)
return(BIC_,nb_parameters)
#def EM_with_init(inputs):
# X_orth,Y_orth,K,method,iter_EM = inputs
# lambda_init,Beta_init,Sigma_init = init_EM_latent_class_regression(X_orth,Y_orth,K,method)
# #log_lik,lambda_hat,Beta_hat,Sigma_hat,Y_hat,pi_hat,Z_hat=EM_latent_class_regression(X_orth,Y_orth,lambda_init,Beta_init,Sigma_init,iter_EM#)
return(pi_hat)