-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMAIN_triangle.m
233 lines (190 loc) · 8.35 KB
/
MAIN_triangle.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
% Main program for designing generalized triangle (kagome) kirigami patterns
%
% If you use this code in your work, please cite:
%
% G. P. T. Choi, L. H. Dudte, and L. Mahadevan,
% "Programming shape using kirigami tessellations."
% Nature Materials, 18(9), 999-1004, 2019.
%
% Copyright (c) 2019-2022, Gary Pui-Tung Choi, Levi H. Dudte, L. Mahadevan
clearvars
addpath(genpath('.'))
% Set the kirigami pattern size
width = 3;
height = 4;
% Choose the 2D target deployed shape from a library of pre-defined shapes
shapes = {'circle','egg','rainbow','anvil','shear','wedge','star','wavy','rect'};
% shape_name = shapes{1};
shape_name = shapes{2};
% shape_name = shapes{3};
% shape_name = shapes{4};
% shape_name = shapes{5};
% shape_name = shapes{6};
% shape_name = shapes{7};
% shape_name = shapes{8};
% shape_name = shapes{9};
% Set the type of the initial map for the optimization in the deployed space
% 1: standard deployed configuration
% 2: standard deployed configuration with rescaling (with optional parameter scale_factor)
% 3: conformal map (Schwarz-Christoffel mapping)
% 4: Teichmuller map (Meng et al., SIIMS 2016)
% initial_map_type = 1;
% initial_map_type = 2; scale_factor = 1.25; % or other positive number
% initial_map_type = 3;
initial_map_type = 4;
if ~exist('scale_factor','var')
scale_factor = [];
end
% Require the contracted pattern to be rectangular? 0 (no) / 1 (yes)
fix_contracted_boundary_shape = 0;
% fix_contracted_boundary_shape = 1;
% Further specify the width-to-height ratio if the pattern is required to
% be rectangular? 0 (no/not applicable) / other positive number (the prescribed ratio)
rectangular_ratio = 0; % not specified / not applicable
% rectangular_ratio = 1; % desired to be a square
% rectangular_ratio = 2; % 2 means desired width-to-height ratio = 2:1, can be changed to other values
%% construct the tessellation and the initial guess
% load the tessellation unit cell
unit_dir = 'unit_cell_scripts/triangle/';
% construct the tessellation, i.e. use one seed pattern to generate a large shape
% convention: xxxxxD = deployed space, xxxx0 = initial space
% Dto0: keep track of the indices (since the vertices aren't bijective)
[pointsD_standard, edgesD, edge_pairsD, anglesD, ringsD, face_setsD, free, ...
path_adjs, intervals, Dto0, unitfacesD, cornersD, overlapD, points0] ...
= make_tessellation_generic(unit_dir, width, height, false);
% make the initial face sets, keep track of the vertices of each seed pattern
face_sets0 = {};
for i = 1:length(face_setsD)
face_sets0{i} = Dto0(face_setsD{i});
end
% identify points and angles on the boundaries, divide the rectangular boundary into 4 segments
[boundR, boundT, boundL, boundB] = find_boundary_points(pointsD_standard, free);
if fix_contracted_boundary_shape
boundary_rings = find_boundary_rings_kagome(pointsD_standard, anglesD, Dto0, free, cornersD);
else
boundary_rings = []; % for free boundary
rectangular_ratio = 0;
end
% find the actual boundary
ymin = min(points0(:,2));
ymax = max(points0(:,2));
xval = sort(unique(points0(:,1)));
xmin1 = xval(1);
xmin2 = xval(2);
xmax1 = xval(end);
xmax2 = xval(end-1);
boundLD = find(points0(Dto0,1) == xmin1 | points0(Dto0,1) == xmin2);
boundRD = find(points0(Dto0,1) == xmax1 | points0(Dto0,1) == xmax2);
boundTD = find(points0(Dto0,2) == ymax);
boundBD = find(points0(Dto0,2) == ymin);
% find the boundary edges in edgesD
edges_bottom = edgesD(find(ismember(edgesD(:,1),boundBD).*ismember(edgesD(:,2),boundBD)),:);
edges_right = edgesD(find(ismember(edgesD(:,1),boundRD).*ismember(edgesD(:,2),boundRD)),:);
edges_top = edgesD(find(ismember(edgesD(:,1),boundTD).*ismember(edgesD(:,2),boundTD)),:);
edges_left = edgesD(find(ismember(edgesD(:,1),boundLD).*ismember(edgesD(:,2),boundLD)),:);
% Load the target shape
shape = str2func(shape_name);
[spline_boundR, spline_boundT, spline_boundL, spline_boundB] = shape();
% construct the initial guess in the deployed space
pointsD = compute_initial_map(pointsD_standard, shape_name, initial_map_type, ...
scale_factor, boundR, boundT, boundL, boundB);
% plot the initial guess
figure(4)
clf
axis equal
axis off
hold on
plot_faces_generic(pointsD, face_setsD, 4)
plot(pointsD(boundR,1), pointsD(boundR,2), 'or')
plot(pointsD(boundT,1), pointsD(boundT,2), 'og')
plot(pointsD(boundL,1), pointsD(boundL,2), 'ob')
plot(pointsD(boundB,1), pointsD(boundB,2), 'oy')
fnplt(spline_boundR, [0 1], 'r', .5)
fnplt(spline_boundT, [0 1], 'g', .5)
fnplt(spline_boundL, [0 1], 'b', .5)
fnplt(spline_boundB, [0 1], 'y', .5)
%% Constrained optimization
% optimization setup
% for the objective function
same_face_adjs = find_smoothing_faces(unitfacesD, width, height);
boundary_nodes_cell = {boundR, boundT, boundL, boundB};
boundary_target_splines_cell = {spline_boundR, spline_boundT, spline_boundL, spline_boundB};
options = optimoptions(@fmincon, ...
'Display', 'iter-detailed', ...
'Algorithm', 'sqp', ... % 'sqp' or 'interior-point'
'SpecifyObjectiveGradient', true, ...
'SpecifyConstraintGradient', true, ...
'MaxFunctionEvaluations', 10000, ...
'MaxIterations', 250, ...
'ConstraintTolerance', 1e-6, ...
'StepTolerance', 1e-6, ...
'ScaleProblem', 'obj-and-constr', ...
'PlotFcn', {@optimplotfval, @optimplotconstrviolation,@optimplotfirstorderopt});
% main optimization procedure
tic;
[solved_pointsD, ~, ~, ~] = fmincon(@(x)OBJ_regularization( ...
decompose_v(x), face_setsD, same_face_adjs), ... objective function
compose_v(pointsD), ... initial point
[], [], [], [], [], [], ... linear constraints
@(x)all_constraint_residual_and_jacobian( ...
decompose_v(x), ... initial point
edgesD, edge_pairsD, anglesD, ringsD, boundary_rings, ... stencils
boundary_nodes_cell, ... boundary nodes
boundary_target_splines_cell, ... target shape
overlapD, [], ... non-overlap
sqrt(3)/2*rectangular_ratio, edges_bottom, edges_right, edges_top, edges_left), ... contracted boundary shape control
options ... optimization options
);
toc;
% decompose the solved deployed structure
solved_pointsD = decompose_v(solved_pointsD);
% get the final contracted structure
solved_points0 = get_contracted_shape_v2(solved_pointsD, face_setsD, intervals, path_adjs, Dto0);
% further rotate the contracted structure optimally
solved_pointsD_temp = [solved_pointsD(:,1) - mean(solved_pointsD(:,1)), solved_pointsD(:,2) - mean(solved_pointsD(:,2))];
solved_points0 = [solved_points0(:,1) - mean(solved_points0(:,1)), solved_points0(:,2) - mean(solved_points0(:,2))];
corners = [boundB(1), boundB(end), boundT(1), boundT(end)];
[U, ~, ~] = Kabsch(solved_points0(Dto0(corners),:)', solved_pointsD_temp(corners,:)');
solved_points0 = (U*solved_points0')';
if fix_contracted_boundary_shape
boundB_vec = solved_points0(Dto0(boundB(end)),:) - solved_points0(Dto0(boundB(1)),:);
R = twoD_rotation(-angle(complex(boundB_vec(1),boundB_vec(2))));
solved_points0 = (R*solved_points0')';
end
%% plot the results
% plot the optimized deployed structure
h = figure(5);
clf
hold on
axis off
axis equal
plot_faces_generic(solved_pointsD, face_setsD, h)
before = findall(gca);
fnplt(spline_boundR, [0 1], 'k', 2)
added = setdiff(findall(gca), before);
set(added, 'Color', [201 0 22 200]/255);
before = findall(gca);
fnplt(spline_boundT, [0 1], 'k', 2)
added = setdiff(findall(gca), before);
set(added, 'Color', [201 0 22 200]/255);
before = findall(gca);
fnplt(spline_boundL, [0 1], 'k', 2)
added = setdiff(findall(gca), before);
set(added, 'Color', [201 0 22 200]/255);
before = findall(gca);
fnplt(spline_boundB, [0 1], 'k', 2)
added = setdiff(findall(gca), before);
set(added, 'Color', [201 0 22 200]/255);
% plot the optimized contracted structure
figure(6)
clf
hold on
axis equal
axis off
plot_faces_generic(solved_points0, face_sets0, 6)
%% save the results as obj mesh files
name = strcat('results/triangle_',shape_name, '_w', num2str(width), '_h', num2str(height),...
'_i', num2str(initial_map_type), '_f', num2str(fix_contracted_boundary_shape),...
'_r',num2str(rectangular_ratio));
write_mesh_generic([name, '_contracted.obj'], solved_points0(Dto0,:), face_setsD);
write_mesh_generic([name, '_deployed.obj'], solved_pointsD, face_setsD);