# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import random import unittest import numpy as np import torch from monai.apps.detection.metrics.coco import COCOMetric from monai.apps.detection.metrics.matching import matching_batch from monai.data.box_utils import box_iou class TestCOCOMetrics(unittest.TestCase): def test_coco_run(self): coco_metric = COCOMetric(classes=["c0", "c1", "c2"], iou_list=[0.1], max_detection=[10]) num_images = 10 val_outputs_all = [] val_targets_all = [] for _ in range(num_images): # randomly generate gt boxes and pred boxes num_gt_boxes = random.randint(1, 3) num_pred_boxes = random.randint(0, 3) box_start = torch.randint(3, (num_pred_boxes, 3)) box_stop = box_start + torch.randint(1, 32, (num_pred_boxes, 3)) boxes = torch.cat((box_start, box_stop), dim=1).to(torch.float16) val_outputs_all.append( { "boxes": boxes, "labels": torch.randint(3, (num_pred_boxes,)), "scores": torch.randn((num_pred_boxes,)).absolute(), } ) box_start = torch.randint(3, (num_gt_boxes, 3)) box_stop = box_start + torch.randint(1, 32, (num_gt_boxes, 3)) boxes = torch.cat((box_start, box_stop), dim=1).to(torch.float16) val_targets_all.append({"boxes": boxes, "labels": torch.randint(3, (num_gt_boxes,))}) results_metric = matching_batch( iou_fn=box_iou, iou_thresholds=coco_metric.iou_thresholds, pred_boxes=[val_data_i["boxes"].numpy() for val_data_i in val_outputs_all], pred_classes=[val_data_i["labels"].numpy() for val_data_i in val_outputs_all], pred_scores=[val_data_i["scores"].numpy() for val_data_i in val_outputs_all], gt_boxes=[val_data_i["boxes"].numpy() for val_data_i in val_targets_all], gt_classes=[val_data_i["labels"].numpy() for val_data_i in val_targets_all], ) val_epoch_metric_dict = coco_metric(results_metric)[0] np.testing.assert_array_less([-16.01], [sum(val_epoch_metric_dict.values())]) if __name__ == "__main__": unittest.main()