diff --git a/lib/algebra.gi b/lib/algebra.gi index 5cf73c4..e61f2b0 100644 --- a/lib/algebra.gi +++ b/lib/algebra.gi @@ -2,7 +2,7 @@ ## #W algebra.gi The XMODALG package Zekeriya Arvasi #W & Alper Odabas -#Y Copyright (C) 2014-2022, Zekeriya Arvasi & Alper Odabas, +#Y Copyright (C) 2014-2024, Zekeriya Arvasi & Alper Odabas, ## ############################ algebra operations ########################### @@ -134,7 +134,7 @@ InstallMethod( MultiplierAlgebraByGenerators, [ IsAlgebra, IsList ], 0, function ( A, L ) local I, ok, domA, M; - ok := ForAll( L, m -> IsAlgebraMultiplier( m ) ); + ok := ForAll( L, IsAlgebraMultiplier ); if not ok then Info( InfoXModAlg, 1, "L is not a list of multipliers" ); return fail; @@ -164,7 +164,7 @@ function( G, H ) if ( "IsGroupAlgebra" in KnownPropertiesOfObject(G) ) then H_G := UnderlyingGroup(G); L := MinimalGeneratingSet(H_G); - genG := List( L , g -> g^Embedding(H_G,G) ); + genG := List( L, g -> g^Embedding(H_G,G) ); else genG := GeneratorsOfAlgebra(G); fi; @@ -244,7 +244,7 @@ function( G, H ) if ( "IsGroupAlgebra" in KnownPropertiesOfObject(G) ) then H_G := UnderlyingGroup(G); L := MinimalGeneratingSet(H_G); - genG := List( L , g -> g^Embedding(H_G,G) ); + genG := List( L, g -> g^Embedding(H_G,G) ); else genG := GeneratorsOfAlgebra(G); fi; @@ -325,7 +325,7 @@ local A,B,a,b,h,f,i,sonuc,mler,j,k,eH,l,L,g,H_G,genG; eH := Elements(H); H_G := UnderlyingGroup(G); L := MinimalGeneratingSet(H_G); - genG := List( L , g -> g^Embedding(H_G,G) ); + genG := List( L, g -> g^Embedding(H_G,G) ); if ( Length(genG) = 0 ) then genG := GeneratorsOfAlgebra(G); fi; @@ -451,7 +451,7 @@ function( hom, U ) fi; gens:=GeneratorsOfAlgebra(U); - imgs:=List(gens,i->ImageElm(hom,i)); + imgs:=List( gens, i->ImageElm(hom,i) ); if HasImagesSource(hom) then imgp:=ImagesSource(hom); @@ -578,7 +578,7 @@ function( arg ) nargs := Length( arg ); # Algebra, Ideal, and Subalgebra - if ( ( nargs = 3 ) and ForAll( arg, a -> IsAlgebra(a) ) ) then + if ( ( nargs = 3 ) and ForAll( arg, IsAlgebra ) ) then return AlgebraActionByMultipliers( arg[1], arg[2], arg[3] ); # Multiplier Action elif ( ( nargs = 1 ) and IsAlgebra( arg[1] ) ) then