diff --git a/PackageInfo.g b/PackageInfo.g index 238288f5..c355191a 100644 --- a/PackageInfo.g +++ b/PackageInfo.g @@ -8,8 +8,8 @@ SetPackageInfo( rec( PackageName := "HAP", Subtitle := "Homological Algebra Programming", - Version := "1.61", - Date := "02/01/2024", + Version := "1.62", + Date := "01/02/2024", License := "GPL-2.0-or-later", SourceRepository := rec( diff --git a/README.md b/README.md index 6bde485c..d5799fad 100644 --- a/README.md +++ b/README.md @@ -32,12 +32,12 @@ Please send your bug reports to graham.ellis(at)nuigalway.ie . On a Linux machine with GAP (and optionally Polymake) installed, the HAP library can be loaded as follows: -* First download the file hap1.61.tar.gz to the subdirectory "pkg/" of GAP. (If +* First download the file hap1.62.tar.gz to the subdirectory "pkg/" of GAP. (If you don't have access to this, then create a directory "pkg" in your home directory and download the file there.) -* Change to directory "pkg/" and type "gunzip hap1.61.tar.gz" followed by -"tar -xvf hap1.61.tar" . +* Change to directory "pkg/" and type "gunzip hap1.62.tar.gz" followed by +"tar -xvf hap1.62.tar" . * Start GAP. (If you have created "pkg" in your home directory then start GAP with the command "gap -l 'path/homedir;' " where path/homedir is the path to @@ -46,12 +46,12 @@ your home directory.) * In GAP type " LoadPackage("HAP"); " . * Help on HAP can be found on the HAP home page (a version of which is -included in directory "pkg/Hap1.61/www" of this distribution). +included in directory "pkg/Hap1.62/www" of this distribution). * Performance can be significantly improved by using a compiled version of the HAP library. A compiled version can be created by the following steps. -1. Change to the directory "pkg/Hap1.61/" . +1. Change to the directory "pkg/Hap1.62/" . 2. Edit the file "compile" so that: PKGDIR is equal to the path to the directory "pkg" where your GAP packages are stored; GACDIR is equal to the path to the directory where the GAP compiler "gac" is stored. @@ -60,4 +60,4 @@ path to the directory where the GAP compiler "gac" is stored. The next time HAP is loaded a compiled version will be loaded. * Should you want to return to an uncompiled version, change to the directory -"pkg/Hap1.61/" and type "./uncompile". +"pkg/Hap1.62/" and type "./uncompile". diff --git a/_data/package.yml b/_data/package.yml index 5999130d..770ac2ed 100644 --- a/_data/package.yml +++ b/_data/package.yml @@ -1,7 +1,7 @@ name: HAP -version: "1.61" +version: "1.62" license: "GPL-2.0-or-later" -date: 2024-01-02 +date: 2024-02-01 description: | Homological Algebra Programming @@ -66,7 +66,7 @@ packageinfo: https://gap-packages.github.io/hap/PackageInfo.g downloads: - name: .tar.gz - url: https://github.com/gap-packages/hap/releases/download/v1.61/hap-1.61.tar.gz + url: https://github.com/gap-packages/hap/releases/download/v1.62/hap-1.62.tar.gz abstract: | This package provides some functions for group cohomology and algebraic topology. @@ -80,7 +80,7 @@ citeas: |
[Ell24] Ellis, G.,
HAP, Homological Algebra Programming,
- Version 1.61
+ Version 1.62
(2024)
(Refereed GAP package),
https://gap-packages.github.io/hap.
@@ -88,10 +88,10 @@ citeas: |
bibtex: |
- @misc{ HAP1.61,
+ @misc{ HAP1.62,
author = {Ellis, G.},
- title = {{HAP}, Homological Algebra Programming, {V}ersion 1.61},
- month = {Jan},
+ title = {{HAP}, Homological Algebra Programming, {V}ersion 1.62},
+ month = {Feb},
year = {2024},
note = {Refereed GAP package},
howpublished = {\href {https://gap-packages.github.io/hap}
diff --git a/doc/chap0.html b/doc/chap0.html
index a0ca971c..1b47ccb9 100644
--- a/doc/chap0.html
+++ b/doc/chap0.html
@@ -28,9 +28,9 @@
Version 1.61
+Version 1.62
-02 Jan 2024 +
01 Feb 2024
@@ -44,7 +44,7 @@HAP is a homological algebra library for use with the GAP computer algebra system, and is still under development. The current version 1.61 was released on 02 Jan 2024 .
The initial focus of the library was on computations related to the cohomology of finite and infinite groups, with particular emphasis on integral coefficients. The focus has since broadened to include Steenrod algebras of finite groups, Bredon homology, cohomology of simplicial groups, and general computations in algebraic topology relating to finite CW-complexes, covering spaces, knots, knotted surfaces, and topics such as persitent homology arising in topological data analysis.
This document describes the functions available in HAP. Examples illustrating these functions are available in the HAP tutorial.
HAP is a homological algebra library for use with the GAP computer algebra system, and is still under development. The current version 1.62 was released on 01 Feb 2024 .
The initial focus of the library was on computations related to the cohomology of finite and infinite groups, with particular emphasis on integral coefficients. The focus has since broadened to include Steenrod algebras of finite groups, Bredon homology, cohomology of simplicial groups, and general computations in algebraic topology relating to finite CW-complexes, covering spaces, knots, knotted surfaces, and topics such as persitent homology arising in topological data analysis.
This document describes the functions available in HAP. Examples illustrating these functions are available in the HAP tutorial.
Version 1.61
+Version 1.62
-02 Jan 2024 +
01 Feb 2024
HAP is a homological algebra library for use with the GAP computer algebra system, and is still under development. The current version 1.61 was released on 02 Jan 2024 .
The initial focus of the library was on computations related to the cohomology of finite and infinite groups, with particular emphasis on integral coefficients. The focus has since broadened to include Steenrod algebras of finite groups, Bredon homology, cohomology of simplicial groups, and general computations in algebraic topology relating to finite CW-complexes, covering spaces, knots, knotted surfaces, and topics such as persitent homology arising in topological data analysis.
This document describes the functions available in HAP. Examples illustrating these functions are available in the HAP tutorial.
HAP is a homological algebra library for use with the GAP computer algebra system, and is still under development. The current version 1.62 was released on 01 Feb 2024 .
The initial focus of the library was on computations related to the cohomology of finite and infinite groups, with particular emphasis on integral coefficients. The focus has since broadened to include Steenrod algebras of finite groups, Bredon homology, cohomology of simplicial groups, and general computations in algebraic topology relating to finite CW-complexes, covering spaces, knots, knotted surfaces, and topics such as persitent homology arising in topological data analysis.
This document describes the functions available in HAP. Examples illustrating these functions are available in the HAP tutorial.
‣ PurePermutahedralComplex ( A ) | ( function ) |
Inputs a binary array A and returns the pure permutahedral complex represented by A.
- + @@ -323,7 +323,7 @@‣ ReadImageAsPureCubicalComplex ( str, t ) | ( function ) |
Reads an image file identified by a string str such as "file.bmp", "file.eps", "file.jpg", "path/file.png" etc., together with an integer t between 0 and 765. It returns a 2-dimensional pure cubical complex corresponding to a black/white version of the image determined by the threshold t. The 2-cells of the pure cubical complex correspond to pixels with RGB value R+G+B ≤ t.
- + @@ -683,7 +683,7 @@‣ PureComplexBoundary ( M ) | ( function ) |
Inputs a d-dimensional pure cubical or pure permutahedral complex M and returns a d-dimensional complex consisting of the closure of those d-cells whose boundaries contains some cell with coboundary of size less than the maximal possible size.
-Examples:
+Examples: 1
@@ -703,7 +703,7 @@‣ PureComplexDifference ( M, N ) | ( function ) |
Inputs two pure cubical complexes or two pure permutahedral complexes and returns the difference M - N.
-Examples:
+Examples: 1
@@ -733,7 +733,7 @@‣ PureComplexUnion ( M, N ) | ( function ) |
Inputs two pure cubical complexes or two pure permutahedral complexes and returns their union.
-Examples:
+Examples: 1
@@ -843,7 +843,7 @@Inputs a regular CW map F and returns the induced homomorphism of fundamental groups. If the number of some zero cell in the domain of F is entered as an optional second variable then the fundamental group is based at this zero cell.
-Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12
+Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13
@@ -1162,7 +1162,7 @@‣ Display ( M ) | ( function ) |
Displays a graph G; a 2- or 3-dimensional pure cubical complex M; a 3-dimensional pure permutahedral complex M.
-Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21
+Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22
diff --git a/doc/chap1.txt b/doc/chap1.txt index bf8dd28c..e79376bd 100644 --- a/doc/chap1.txt +++ b/doc/chap1.txt @@ -101,8 +101,8 @@ [33X[0;0YInputs a binary array [22XA[122X and returns the pure permutahedral complex represented by [22XA[122X.[133X - [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap2.html[107X) , 2 - ([7X../www/SideLinks/About/aboutPeripheral.html[107X) , 3 + [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap2.html[107X) , 2 ([7X../tutorial/chap5.html[107X) , 3 + ([7X../www/SideLinks/About/aboutPeripheral.html[107X) , 4 ([7X../www/SideLinks/About/aboutCubical.html[107X) [133X [1X1.1-7 CayleyGraphOfGroup[101X @@ -224,9 +224,9 @@ threshold [22Xt[122X. The [22X2[122X-cells of the pure cubical complex correspond to pixels with RGB value [22XR+G+B ≤ t[122X.[133X - [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap10.html[107X) , 2 - ([7X../www/SideLinks/About/aboutPersistent.html[107X) , 3 - ([7X../www/SideLinks/About/aboutCubical.html[107X) , 4 + [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap5.html[107X) , 2 ([7X../tutorial/chap10.html[107X) , 3 + ([7X../www/SideLinks/About/aboutPersistent.html[107X) , 4 + ([7X../www/SideLinks/About/aboutCubical.html[107X) , 5 ([7X../www/SideLinks/About/aboutTDA.html[107X) [133X [1X1.1-17 ReadImageAsFilteredPureCubicalComplex[101X @@ -700,7 +700,7 @@ whose boundaries contains some cell with coboundary of size less than the maximal possible size.[133X - [33X[0;0Y[12XExamples:[112X[133X + [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap5.html[107X) [133X [1X1.4-8 PureComplexComplement[101X @@ -724,7 +724,7 @@ [33X[0;0YInputs two pure cubical complexes or two pure permutahedral complexes and returns the difference [22XM - N[122X.[133X - [33X[0;0Y[12XExamples:[112X[133X + [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap5.html[107X) [133X [1X1.4-10 PureComplexInterstection[101X @@ -754,7 +754,7 @@ [33X[0;0YInputs two pure cubical complexes or two pure permutahedral complexes and returns their union.[133X - [33X[0;0Y[12XExamples:[112X[133X + [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap5.html[107X) [133X [1X1.4-13 SimplifiedComplex[101X @@ -883,12 +883,13 @@ [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap1.html[107X) , 2 ([7X../tutorial/chap2.html[107X) , 3 ([7X../tutorial/chap3.html[107X) , 4 ([7X../tutorial/chap4.html[107X) , 5 - ([7X../tutorial/chap5.html[107X) , 6 ([7X../www/SideLinks/About/aboutLinks.html[107X) , 7 - ([7X../www/SideLinks/About/aboutPeripheral.html[107X) , 8 - ([7X../www/SideLinks/About/aboutCoveringSpaces.html[107X) , 9 - ([7X../www/SideLinks/About/aboutCoverinSpaces.html[107X) , 10 - ([7X../www/SideLinks/About/aboutQuandles.html[107X) , 11 - ([7X../www/SideLinks/About/aboutRandomComplexes.html[107X) , 12 + ([7X../tutorial/chap5.html[107X) , 6 ([7X../tutorial/chap11.html[107X) , 7 + ([7X../www/SideLinks/About/aboutLinks.html[107X) , 8 + ([7X../www/SideLinks/About/aboutPeripheral.html[107X) , 9 + ([7X../www/SideLinks/About/aboutCoveringSpaces.html[107X) , 10 + ([7X../www/SideLinks/About/aboutCoverinSpaces.html[107X) , 11 + ([7X../www/SideLinks/About/aboutQuandles.html[107X) , 12 + ([7X../www/SideLinks/About/aboutRandomComplexes.html[107X) , 13 ([7X../www/SideLinks/About/aboutKnots.html[107X) [133X [1X1.5-6 FundamentalGroupOfQuotient[101X @@ -1377,20 +1378,20 @@ [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap1.html[107X) , 2 ([7X../tutorial/chap2.html[107X) , 3 ([7X../tutorial/chap4.html[107X) , 4 ([7X../tutorial/chap5.html[107X) , 5 - ([7X../tutorial/chap7.html[107X) , 6 ([7X../tutorial/chap9.html[107X) , 7 - ([7X../tutorial/chap10.html[107X) , 8 ([7X../tutorial/chap11.html[107X) , 9 - ([7X../www/SideLinks/About/aboutMetrics.html[107X) , 10 - ([7X../www/SideLinks/About/aboutArtinGroups.html[107X) , 11 - ([7X../www/SideLinks/About/aboutNoncrossing.html[107X) , 12 - ([7X../www/SideLinks/About/aboutPeriodic.html[107X) , 13 - ([7X../www/SideLinks/About/aboutPersistent.html[107X) , 14 - ([7X../www/SideLinks/About/aboutPolytopes.html[107X) , 15 - ([7X../www/SideLinks/About/aboutQuandles2.html[107X) , 16 - ([7X../www/SideLinks/About/aboutQuandles.html[107X) , 17 - ([7X../www/SideLinks/About/aboutSuperperfect.html[107X) , 18 - ([7X../www/SideLinks/About/aboutGraphsOfGroups.html[107X) , 19 - ([7X../www/SideLinks/About/aboutIntro.html[107X) , 20 - ([7X../www/SideLinks/About/aboutKnotsQuandles.html[107X) , 21 + ([7X../tutorial/chap6.html[107X) , 6 ([7X../tutorial/chap7.html[107X) , 7 + ([7X../tutorial/chap9.html[107X) , 8 ([7X../tutorial/chap10.html[107X) , 9 + ([7X../tutorial/chap11.html[107X) , 10 ([7X../www/SideLinks/About/aboutMetrics.html[107X) , + 11 ([7X../www/SideLinks/About/aboutArtinGroups.html[107X) , 12 + ([7X../www/SideLinks/About/aboutNoncrossing.html[107X) , 13 + ([7X../www/SideLinks/About/aboutPeriodic.html[107X) , 14 + ([7X../www/SideLinks/About/aboutPersistent.html[107X) , 15 + ([7X../www/SideLinks/About/aboutPolytopes.html[107X) , 16 + ([7X../www/SideLinks/About/aboutQuandles2.html[107X) , 17 + ([7X../www/SideLinks/About/aboutQuandles.html[107X) , 18 + ([7X../www/SideLinks/About/aboutSuperperfect.html[107X) , 19 + ([7X../www/SideLinks/About/aboutGraphsOfGroups.html[107X) , 20 + ([7X../www/SideLinks/About/aboutIntro.html[107X) , 21 + ([7X../www/SideLinks/About/aboutKnotsQuandles.html[107X) , 22 ([7X../www/SideLinks/About/aboutTopology.html[107X) [133X [1X1.10-5 DisplayArcPresentation[101X diff --git a/doc/chap17.html b/doc/chap17.html index 9de30de4..86c7e010 100644 --- a/doc/chap17.html +++ b/doc/chap17.html @@ -63,7 +63,7 @@This function uses GraphViz software.
- + @@ -101,7 +101,7 @@where G is isomorphic to F modulo the normal closure of S. This presentation for G corresponds to the 2-skeleton of the classifying CW-space from which R was constructed. The resolution R requires no contracting homotopy.
- + diff --git a/doc/chap17.txt b/doc/chap17.txt index 901bab76..69fa66ae 100644 --- a/doc/chap17.txt +++ b/doc/chap17.txt @@ -37,7 +37,8 @@ [33X[0;0YThis function uses GraphViz software.[133X - [33X[0;0Y[12XExamples:[112X 1 ([7X../www/SideLinks/About/aboutPeriodic.html[107X) , 2 + [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap6.html[107X) , 2 + ([7X../www/SideLinks/About/aboutPeriodic.html[107X) , 3 ([7X../www/SideLinks/About/aboutTopology.html[107X) [133X [1X17.1-3 IsAspherical[101X @@ -80,8 +81,9 @@ for [22XG[122X corresponds to the 2-skeleton of the classifying CW-space from which [22XR[122X was constructed. The resolution [22XR[122X requires no contracting homotopy.[133X - [33X[0;0Y[12XExamples:[112X 1 ([7X../www/SideLinks/About/aboutPolytopes.html[107X) , 2 - ([7X../www/SideLinks/About/aboutSpaceGroup.html[107X) , 3 + [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap6.html[107X) , 2 + ([7X../www/SideLinks/About/aboutPolytopes.html[107X) , 3 + ([7X../www/SideLinks/About/aboutSpaceGroup.html[107X) , 4 ([7X../www/SideLinks/About/aboutTopology.html[107X) [133X [1X17.1-5 TorsionGeneratorsAbelianGroup[101X diff --git a/doc/chap17_mj.html b/doc/chap17_mj.html index 1ce73592..77f35896 100644 --- a/doc/chap17_mj.html +++ b/doc/chap17_mj.html @@ -66,7 +66,7 @@This function uses GraphViz software.
- + @@ -104,7 +104,7 @@where \(G\) is isomorphic to \(F\) modulo the normal closure of \(S\). This presentation for \(G\) corresponds to the 2-skeleton of the classifying CW-space from which \(R\) was constructed. The resolution \(R\) requires no contracting homotopy.
- + diff --git a/doc/chap1_mj.html b/doc/chap1_mj.html index a6a022ef..701d21ba 100644 --- a/doc/chap1_mj.html +++ b/doc/chap1_mj.html @@ -229,7 +229,7 @@‣ PurePermutahedralComplex ( A ) | ( function ) |
Inputs a binary array \(A\) and returns the pure permutahedral complex represented by \(A\).
- + @@ -326,7 +326,7 @@‣ ReadImageAsPureCubicalComplex ( str, t ) | ( function ) |
Reads an image file identified by a string str such as "file.bmp", "file.eps", "file.jpg", "path/file.png" etc., together with an integer \(t\) between \(0\) and \(765\). It returns a \(2\)-dimensional pure cubical complex corresponding to a black/white version of the image determined by the threshold \(t\). The \(2\)-cells of the pure cubical complex correspond to pixels with RGB value \(R+G+B \le t\).
- + @@ -686,7 +686,7 @@‣ PureComplexBoundary ( M ) | ( function ) |
Inputs a \(d\)-dimensional pure cubical or pure permutahedral complex \(M\) and returns a \(d\)-dimensional complex consisting of the closure of those \(d\)-cells whose boundaries contains some cell with coboundary of size less than the maximal possible size.
-Examples:
+Examples: 1
@@ -706,7 +706,7 @@‣ PureComplexDifference ( M, N ) | ( function ) |
Inputs two pure cubical complexes or two pure permutahedral complexes and returns the difference \( M - N\).
-Examples:
+Examples: 1
@@ -736,7 +736,7 @@‣ PureComplexUnion ( M, N ) | ( function ) |
Inputs two pure cubical complexes or two pure permutahedral complexes and returns their union.
-Examples:
+Examples: 1
@@ -846,7 +846,7 @@Inputs a regular CW map \(F\) and returns the induced homomorphism of fundamental groups. If the number of some zero cell in the domain of \(F\) is entered as an optional second variable then the fundamental group is based at this zero cell.
-Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12
+Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13
@@ -1165,7 +1165,7 @@‣ Display ( M ) | ( function ) |
Displays a graph \(G\); a \(2\)- or \(3\)-dimensional pure cubical complex \(M\); a \(3\)-dimensional pure permutahedral complex \(M\).
-Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21
+Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22
diff --git a/doc/chap2.html b/doc/chap2.html index c61245e3..ea8b7db4 100644 --- a/doc/chap2.html +++ b/doc/chap2.html @@ -152,7 +152,7 @@‣ ResolutionNilpotentGroup ( G, k ) | ( function ) |
Inputs a nilpotent group G (which can be infinite) and an integer k ≥ 1. It returns k+1 terms of a free ZG-resolution of Z.
- + diff --git a/doc/chap2.txt b/doc/chap2.txt index b5c3b1a2..17798e30 100644 --- a/doc/chap2.txt +++ b/doc/chap2.txt @@ -107,9 +107,9 @@ [33X[0;0YInputs a nilpotent group [22XG[122X (which can be infinite) and an integer [22Xk ≥ 1[122X. It returns [22Xk+1[122X terms of a free [22XZG[122X-resolution of [22XZ[122X.[133X - [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap11.html[107X) , 2 - ([7X../www/SideLinks/About/aboutCohomologyRings.html[107X) , 3 - ([7X../www/SideLinks/About/aboutRosenbergerMonster.html[107X) , 4 + [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap6.html[107X) , 2 ([7X../tutorial/chap11.html[107X) , 3 + ([7X../www/SideLinks/About/aboutCohomologyRings.html[107X) , 4 + ([7X../www/SideLinks/About/aboutRosenbergerMonster.html[107X) , 5 ([7X../www/SideLinks/About/aboutExtensions.html[107X) [133X [1X2.1-7 ResolutionNormalSeries[101X diff --git a/doc/chap29.html b/doc/chap29.html index e4d2e85d..87bc1b47 100644 --- a/doc/chap29.html +++ b/doc/chap29.html @@ -154,7 +154,7 @@‣ ReadImageAsPureCubicalComplex ( str, n ) | ( function ) |
Reads an image file str (= "file.png", "file.eps", "file.bmp" etc) and an integer n between 0 and 765. It returns a 2-dimensional pure cubical complex based on the black/white version of the image determined by the threshold n.
- + @@ -407,7 +407,7 @@‣ HomotopyEquivalentMinimalPureCubicalSubcomplex ( T, S ) | ( function ) |
Inputs a pure cubical complex T together with a pure cubical subcomplex S. It returns a pure cubical subcomplex H of T which contains S and is minimal with respect to the property that it is homotopy equivalent to T.
-Examples:
+Examples: 1
@@ -537,7 +537,7 @@‣ ComplementOfFilteredPureCubicalComplex ( M ) | ( function ) |
Inputs a filtered pure cubical complex M and returns the complement as a filtered pure cubical complex.
-Examples:
+Examples: 1
diff --git a/doc/chap29.txt b/doc/chap29.txt index 24dc9e29..310881e9 100644 --- a/doc/chap29.txt +++ b/doc/chap29.txt @@ -97,9 +97,9 @@ integer [22Xn[122X between 0 and 765. It returns a 2-dimensional pure cubical complex based on the black/white version of the image determined by the threshold [22Xn[122X.[133X - [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap10.html[107X) , 2 - ([7X../www/SideLinks/About/aboutPersistent.html[107X) , 3 - ([7X../www/SideLinks/About/aboutCubical.html[107X) , 4 + [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap5.html[107X) , 2 ([7X../tutorial/chap10.html[107X) , 3 + ([7X../www/SideLinks/About/aboutPersistent.html[107X) , 4 + ([7X../www/SideLinks/About/aboutCubical.html[107X) , 5 ([7X../www/SideLinks/About/aboutTDA.html[107X) [133X [1X29.1-9 ReadLinkImageAsPureCubicalComplex[101X @@ -463,7 +463,7 @@ It returns a pure cubical subcomplex [22XH[122X of [22XT[122X which contains [22XS[122X and is minimal with respect to the property that it is homotopy equivalent to [22XT[122X.[133X - [33X[0;0Y[12XExamples:[112X[133X + [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap5.html[107X) [133X [1X29.1-36 BoundaryOfPureCubicalComplex[101X @@ -618,7 +618,7 @@ [33X[0;0YInputs a filtered pure cubical complex [22XM[122X and returns the complement as a filtered pure cubical complex.[133X - [33X[0;0Y[12XExamples:[112X[133X + [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap5.html[107X) [133X [1X29.1-50 PersistentHomologyOfFilteredPureCubicalComplex[101X diff --git a/doc/chap29_mj.html b/doc/chap29_mj.html index e0c2b233..94c8a95a 100644 --- a/doc/chap29_mj.html +++ b/doc/chap29_mj.html @@ -157,7 +157,7 @@‣ ReadImageAsPureCubicalComplex ( str, n ) | ( function ) |
Reads an image file \(str\) (= "file.png", "file.eps", "file.bmp" etc) and an integer \(n\) between 0 and 765. It returns a 2-dimensional pure cubical complex based on the black/white version of the image determined by the threshold \(n\).
- + @@ -410,7 +410,7 @@‣ HomotopyEquivalentMinimalPureCubicalSubcomplex ( T, S ) | ( function ) |
Inputs a pure cubical complex \(T\) together with a pure cubical subcomplex \(S\). It returns a pure cubical subcomplex \(H\) of \(T\) which contains \(S\) and is minimal with respect to the property that it is homotopy equivalent to \(T\).
-Examples:
+Examples: 1
@@ -540,7 +540,7 @@‣ ComplementOfFilteredPureCubicalComplex ( M ) | ( function ) |
Inputs a filtered pure cubical complex \(M\) and returns the complement as a filtered pure cubical complex.
-Examples:
+Examples: 1
diff --git a/doc/chap2_mj.html b/doc/chap2_mj.html index 368f4287..0354a5ea 100644 --- a/doc/chap2_mj.html +++ b/doc/chap2_mj.html @@ -155,7 +155,7 @@‣ ResolutionNilpotentGroup ( G, k ) | ( function ) |
Inputs a nilpotent group \(G\) (which can be infinite) and an integer \(k \ge 1\). It returns \(k+1\) terms of a free \(\mathbb ZG\)-resolution of \(\mathbb Z\).
- + diff --git a/doc/chap30.html b/doc/chap30.html index ac14cc50..4ed145d3 100644 --- a/doc/chap30.html +++ b/doc/chap30.html @@ -99,7 +99,7 @@‣ FundamentalGroup ( Y, n ) | ( function ) |
Inputs a regular CW-complex Y and, optionally, the number of some 0-cell. It returns the fundamental group of Y based at the 0-cell n. The group is returned as a finitely presented group. If n is not specified then it is set n=1. The algorithm requires a discrete vector field on Y. If Y does not initially have a discrete vector field then one is constructed.
-Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12
+Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13
diff --git a/doc/chap30.txt b/doc/chap30.txt index c14cca4e..eac30b12 100644 --- a/doc/chap30.txt +++ b/doc/chap30.txt @@ -88,11 +88,12 @@ [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap1.html[107X) , 2 ([7X../tutorial/chap2.html[107X) , 3 ([7X../tutorial/chap3.html[107X) , 4 ([7X../tutorial/chap4.html[107X) , 5 - ([7X../tutorial/chap5.html[107X) , 6 ([7X../www/SideLinks/About/aboutLinks.html[107X) , 7 - ([7X../www/SideLinks/About/aboutPeripheral.html[107X) , 8 - ([7X../www/SideLinks/About/aboutCoveringSpaces.html[107X) , 9 - ([7X../www/SideLinks/About/aboutCoverinSpaces.html[107X) , 10 - ([7X../www/SideLinks/About/aboutQuandles.html[107X) , 11 - ([7X../www/SideLinks/About/aboutRandomComplexes.html[107X) , 12 + ([7X../tutorial/chap5.html[107X) , 6 ([7X../tutorial/chap11.html[107X) , 7 + ([7X../www/SideLinks/About/aboutLinks.html[107X) , 8 + ([7X../www/SideLinks/About/aboutPeripheral.html[107X) , 9 + ([7X../www/SideLinks/About/aboutCoveringSpaces.html[107X) , 10 + ([7X../www/SideLinks/About/aboutCoverinSpaces.html[107X) , 11 + ([7X../www/SideLinks/About/aboutQuandles.html[107X) , 12 + ([7X../www/SideLinks/About/aboutRandomComplexes.html[107X) , 13 ([7X../www/SideLinks/About/aboutKnots.html[107X) [133X diff --git a/doc/chap30_mj.html b/doc/chap30_mj.html index 36e57254..29c31ec1 100644 --- a/doc/chap30_mj.html +++ b/doc/chap30_mj.html @@ -102,7 +102,7 @@‣ FundamentalGroup ( Y, n ) | ( function ) |
Inputs a regular CW-complex \(Y\) and, optionally, the number of some 0-cell. It returns the fundamental group of \(Y\) based at the 0-cell \(n\). The group is returned as a finitely presented group. If \(n\) is not specified then it is set \(n=1\). The algorithm requires a discrete vector field on \(Y\). If \(Y\) does not initially have a discrete vector field then one is constructed.
-Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12
+Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13
diff --git a/doc/chap34.html b/doc/chap34.html index 86d20d0c..24be535c 100644 --- a/doc/chap34.html +++ b/doc/chap34.html @@ -38,14 +38,16 @@Examples: 1
+ + +‣ HasInitialObject ( Name ) | ( function ) |
Inputs the name of a category and returns true or false depending on whether the category has an initial object.
+ +Examples: 1
+ + + +‣ HasTerminalObject ( Name ) | ( function ) |
Inputs the name of a category and returns true or false depending on whether the category has a terminal object.
+ +Examples:
+ -‣ Source ( f ) | ( function ) |
Inputs an arrow f in some category, and returns its source.
@@ -164,7 +184,7 @@‣ Target ( f ) | ( function ) |
Inputs an arrow f in some category, and returns its target.
@@ -173,7 +193,7 @@‣ CategoryName ( X ) | ( function ) |
Inputs an object or arrow X in some category, and returns the name of the category.
@@ -182,7 +202,7 @@‣ CompositionEqualityAdditionMinus | ( global variable ) |
Composition of suitable arrows f,g is given by f*g when the source of f equals the target of g. (Warning: this differes to the standard GAP convention.)
@@ -195,7 +215,7 @@‣ Object ( X ) | ( function ) |
Inputs an object X in some category, and returns the GAP structure Y such that X=CategoricalEnrichment(Y,CategoryName(X)).
@@ -204,7 +224,7 @@‣ Mapping ( X ) | ( function ) |
Inputs an arrow f in some category, and returns the GAP structure Y such that f=CategoricalEnrichment(Y,CategoryName(X)).
@@ -213,7 +233,7 @@‣ IsCategoryObject ( X ) | ( function ) |
Inputs X and returns true if X is an object in some category.
@@ -222,7 +242,7 @@‣ IsCategoryArrow ( X ) | ( function ) |
Inputs X and returns true if X is an arrow in some category.
diff --git a/doc/chap34.txt b/doc/chap34.txt index a7d1bd2e..738f4082 100644 --- a/doc/chap34.txt +++ b/doc/chap34.txt @@ -115,7 +115,25 @@ [33X[0;0Y[12XExamples:[112X 1 ([7X../www/SideLinks/About/aboutAbelianCategories.html[107X) [133X - [1X34.2-5 Source[101X + [1X34.2-5 HasInitialObject[101X + + [33X[1;0Y[29X[2XHasInitialObject[102X( [3XName[103X ) [32X function[133X + + [33X[0;0YInputs the name of a category and returns true or false depending on whether + the category has an initial object.[133X + + [33X[0;0Y[12XExamples:[112X 1 ([7X../www/SideLinks/About/aboutAbelianCategories.html[107X) [133X + + [1X34.2-6 HasTerminalObject[101X + + [33X[1;0Y[29X[2XHasTerminalObject[102X( [3XName[103X ) [32X function[133X + + [33X[0;0YInputs the name of a category and returns true or false depending on whether + the category has a terminal object.[133X + + [33X[0;0Y[12XExamples:[112X[133X + + [1X34.2-7 Source[101X [33X[1;0Y[29X[2XSource[102X( [3Xf[103X ) [32X function[133X @@ -131,7 +149,7 @@ ([7X../www/SideLinks/About/aboutFunctorial.html[107X) , 11 ([7X../www/SideLinks/About/aboutLieCovers.html[107X) [133X - [1X34.2-6 Target[101X + [1X34.2-8 Target[101X [33X[1;0Y[29X[2XTarget[102X( [3Xf[103X ) [32X function[133X @@ -144,7 +162,7 @@ ([7X../www/SideLinks/About/aboutCoveringSpaces.html[107X) , 8 ([7X../www/SideLinks/About/aboutCoverinSpaces.html[107X) [133X - [1X34.2-7 CategoryName[101X + [1X34.2-9 CategoryName[101X [33X[1;0Y[29X[2XCategoryName[102X( [3XX[103X ) [32X function[133X @@ -153,7 +171,7 @@ [33X[0;0Y[12XExamples:[112X 1 ([7X../www/SideLinks/About/aboutAbelianCategories.html[107X) [133X - [1X34.2-8 CompositionEqualityAdditionMinus[101X + [1X34.2-10 CompositionEqualityAdditionMinus[101X [33X[1;0Y[29X[2XCompositionEqualityAdditionMinus[102X [32X global variable[133X @@ -168,7 +186,7 @@ [33X[0;0Y[12XExamples:[112X[133X - [1X34.2-9 Object[101X + [1X34.2-11 Object[101X [33X[1;0Y[29X[2XObject[102X( [3XX[103X ) [32X function[133X @@ -178,7 +196,7 @@ [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap10.html[107X) , 2 ([7X../www/SideLinks/About/aboutAbelianCategories.html[107X) [133X - [1X34.2-10 Mapping[101X + [1X34.2-12 Mapping[101X [33X[1;0Y[29X[2XMapping[102X( [3XX[103X ) [32X function[133X @@ -190,7 +208,7 @@ ([7X../www/SideLinks/About/aboutCoefficientSequence.html[107X) , 5 ([7X../www/SideLinks/About/aboutGouter.html[107X) [133X - [1X34.2-11 IsCategoryObject[101X + [1X34.2-13 IsCategoryObject[101X [33X[1;0Y[29X[2XIsCategoryObject[102X( [3XX[103X ) [32X function[133X @@ -198,7 +216,7 @@ [33X[0;0Y[12XExamples:[112X[133X - [1X34.2-12 IsCategoryArrow[101X + [1X34.2-14 IsCategoryArrow[101X [33X[1;0Y[29X[2XIsCategoryArrow[102X( [3XX[103X ) [32X function[133X diff --git a/doc/chap34_mj.html b/doc/chap34_mj.html index cbf39336..18fae7b2 100644 --- a/doc/chap34_mj.html +++ b/doc/chap34_mj.html @@ -41,14 +41,16 @@Examples: 1
+ + +‣ HasInitialObject ( Name ) | ( function ) |
Inputs the name of a category and returns true or false depending on whether the category has an initial object.
+ +Examples: 1
+ + + +‣ HasTerminalObject ( Name ) | ( function ) |
Inputs the name of a category and returns true or false depending on whether the category has a terminal object.
+ +Examples:
+ -‣ Source ( f ) | ( function ) |
Inputs an arrow \(f\) in some category, and returns its source.
@@ -167,7 +187,7 @@‣ Target ( f ) | ( function ) |
Inputs an arrow \(f\) in some category, and returns its target.
@@ -176,7 +196,7 @@‣ CategoryName ( X ) | ( function ) |
Inputs an object or arrow \(X\) in some category, and returns the name of the category.
@@ -185,7 +205,7 @@‣ CompositionEqualityAdditionMinus | ( global variable ) |
Composition of suitable arrows \(f,g\) is given by \(f*g\) when the source of \(f\) equals the target of \(g\). (Warning: this differes to the standard GAP convention.)
@@ -198,7 +218,7 @@‣ Object ( X ) | ( function ) |
Inputs an object \(X\) in some category, and returns the GAP structure \(Y\) such that \(X=CategoricalEnrichment(Y,CategoryName(X))\).
@@ -207,7 +227,7 @@‣ Mapping ( X ) | ( function ) |
Inputs an arrow \(f\) in some category, and returns the GAP structure \(Y\) such that \(f=CategoricalEnrichment(Y,CategoryName(X))\).
@@ -216,7 +236,7 @@‣ IsCategoryObject ( X ) | ( function ) |
Inputs \(X\) and returns true if \(X\) is an object in some category.
@@ -225,7 +245,7 @@‣ IsCategoryArrow ( X ) | ( function ) |
Inputs \(X\) and returns true if \(X\) is an arrow in some category.
diff --git a/doc/chap40.html b/doc/chap40.html index a6f3dd75..512988aa 100644 --- a/doc/chap40.html +++ b/doc/chap40.html @@ -33,7 +33,7 @@2CoreducedChainComplex
Examples:
AbelianGOuterGroupToCatOneGroup
Examples:
AbelianInvariantsToTorsionCoefficients
Examples:
AcyclicSubcomplexOfPureCubicalComplex
Examples: 1
AddFirst
Examples:
AdjointGroupOfQuandle
Examples: 1
AlgebraicReduction_alt
Examples:
AppendFreeWord
Examples:
ArcDiagramToTubularSurface
Examples:
ArcPresentation
Examples: 1 , 2 , 3 , 4
ArcPresentationToKnottedOneComplex
Examples:
AreIsoclinic
Examples:
ArrayIterateBreak
Examples:
ArrayValueKD
Examples:
AsWordInSL2Z
Examples:
AutomorphismGroupQuandleAsPerm_nonconnected
Examples:
AverageInnerProduct
Examples:
BarCodeOfFilteredPureCubicalComplex
Examples:
BarCodeOfSymmetricMatrix
Examples:
BarComplexOfMonoid
Examples: 1
BarycentricallySimplifiedComplex
Examples: 1
BarycentricallySubdivideCell
Examples:
BettinumbersOfPureCubicalComplex_dim_2
Examples:
BocksteinHomology
Examples:
BogomolovMultiplier_viaTensorSquare
Examples:
BoundariesOfFilteredChainComplex
Examples:
BoundaryOfPureComplex
Examples: 1
BoundaryOfPureRegularCWComplex
Examples: 1
BoundaryOfRegularCWCell
Examples:
BoundaryPairOfPureRegularCWComplex
Examples:
BoundingPureComplex
Examples:
CR_ChainMapFromCocycle
Examples:
CR_CocyclesAndCoboundaries
Examples:
CR_IntegralClassToCocycle
Examples:
CR_IntegralCocycleToClass
Examples:
CR_IntegralCohomology
Examples:
CR_IntegralCycleToClass
Examples:
CWMap2ChainMap
Examples:
CWSubcomplexToRegularCWMap
Examples: 1
CanonicalRightCountableCosetElement
Examples:
CatOneGroupByCrossedModule
Examples:
CatOneGroupsByGroup
Examples:
CcElement
Examples:
Cedric_CheckThirdAxiomRow
Examples:
Cedric_ConjugateQuandleElement
Examples:
Cedric_FromAutGeReToAutQe
Examples:
Cedric_IsHomomorphism
Examples:
Cedric_Permute
Examples:
Cedric_Quandle1
Examples:
Cedric_Quandle2
Examples:
Cedric_Quandle3
Examples:
Cedric_Quandle4
Examples:
Cedric_Quandle5
Examples:
Cedric_Quandle6
Examples:
CellComplexBoundaryCheck
Examples:
ChainComplexEquivalenceOfRegularCWComplex
Examples: 1
ChainComplexHomeomorphismEquivalenceOfRegularCWComplex
Examples:
ChainComplexOfCubicalComplex
Examples:
ChainComplexOfCubicalPair
Examples:
ChainComplexOfRegularCWComplexWithVectorField
Examples:
ChainComplexOfSimplicialComplex
Examples:
ChainComplexOfSimplicialPair
Examples:
ChainComplexOfUniversalCover
Examples: 1 , 2 , 3 , 4
ChainComplexToSparseChainComplex
Examples:
ChainComplexWithChainHomotopy
Examples:
ChainMapOfCubicalPairs
Examples:
ChainMapOfRegularCWMap
Examples:
ChildRestart
Examples:
ClosureCWCell
Examples:
CoClass
Examples:
CocriticalCellsOfRegularCWComplex
Examples:
CocyclicHadamardMatrices
Examples: 1
CocyclicMatrices
Examples:
CohomologicalData
Examples: 1
CohomologyHomomorphism
Examples: 1 , 2
CohomologyHomomorphismOfRepresentation
Examples:
CohomologyModule_AsAutModule
Examples:
CohomologyModule_Gmap
Examples:
CohomologyRingOfSimplicialComplex
Examples:
CohomologySimplicialFreeAbelianGroup
Examples:
CombinationDisjointSets
Examples:
CommonEndomorphisms
Examples:
ComplementOfPureComplex
Examples: 1
ComplementaryBasis
Examples:
ComposeCWMaps
Examples:
CompositionOfFpGModuleHomomorphisms
Examples:
CompositionSeriesOfFpGModule
Examples:
ConcentricallyFilteredPureCubicalComplex
Examples: 1
CongruenceSubgroup
Examples: 1 , 2
ConjugateSL2ZGroup
Examples:
ConnectingCohomologyHomomorphism
Examples: 1 , 2
ContractArray
Examples:
ContractCubicalComplex_dim2
Examples:
ContractCubicalComplex_dim3
Examples:
ContractMatrix
Examples:
ContractPermArray
Examples:
ContractPermMatrix
Examples:
ContractPureComplex
Examples:
ContractSimplicialComplex
Examples:
ContractSimplicialComplex_alt
Examples:
ContractedFilteredPureCubicalComplex
Examples: 1
ContractedFilteredRegularCWComplex
Examples:
ContractedRegularCWComplex
Examples:
ContractibleSL2ZComplex
Examples:
ContractibleSL2ZComplex_alt
Examples:
ContractibleSubArray
Examples:
ContractibleSubMatrix
Examples:
ContractibleSubcomplexOfPureCubicalComplex
Examples: 1
ConvertTorsionComplexToGcomplex
Examples:
CosetsQuandle
Examples:
CountingCellsOfBaryCentricSubdivision
Examples:
CountingNumberOfCellsInBaryCentricSubdivision
Examples:
CoxeterComplex_alt
Examples: 1
CoxeterDiagramMatCoxeterGroup
Examples:
CoxeterWythoffComplex
Examples:
CreateCoxeterMatrix
Examples: 1
CriticalBoundaryCells
Examples: 1
CropPureComplex
Examples:
CrossedInvariant
Examples:
CrossedModuleByAutomorphismGroup
Examples:
CrossedModuleByCatOneGroup
Examples:
CrossedModuleByNormalSubgroup
Examples: 1
CrystCubicalTiling
Examples:
CrystFinitePartOfMatrix
Examples:
CrystGFullBasis
Examples: 1 , 2
CrystGcomplex
Examples: 1 , 2
CrystMatrix
Examples:
CrystTranslationMatrixToVector
Examples:
CrystallographicComplex
Examples:
CubicalToPermutahedralArray
Examples:
CupProductMatrix
Examples:
CupProductOfRegularCWComplex
Examples: 1
CupProductOfRegularCWComplex_alt
Examples: 1
CuspidalCohomologyHomomorphism
Examples:
CyclesOfFilteredChainComplex
Examples:
DavisComplex
Examples: 1 , 2 , 3 , 4
DeformationRetract
Examples:
DensityMat
Examples:
DerivedGroupOfQuandle
Examples: 1
DiagonalChainMap
Examples:
DijkgraafWittenInvariant
Examples: 1
DirectProductOfGroupHomomorphisms
Examples:
DirectProductOfRegularCWComplexes
Examples:
DirectProductOfRegularCWComplexesLazy
Examples:
DirectProductOfSimplicialComplexes
Examples:
DisplayCSVknotFile
Examples:
DisplayVectorField
Examples:
E1CohomologyPage
Examples:
E1HomologyPage
Examples:
EilenbergMacLaneSimplicialFreeAbelianGroup
Examples:
ElementsLazy
Examples:
EquivariantCWComplexToRegularCWComplex
Examples: 1 , 2 , 3 , 4
EquivariantCWComplexToRegularCWMap
Examples: 1 , 2 , 3
EquivariantCWComplexToResolution
Examples:
ExcisedPureCubicalPair_dim_2
Examples:
ExtractTorsionSubcomplex
Examples:
FactorizationNParts
Examples:
FilteredChainComplexToFilteredSparseChainComplex
Examples:
FilteredCubicalComplexToFilteredRegularCWComplex
Examples: 1
FilteredPureCubicalComplexToCubicalComplex
Examples: 1
FiltrationTermOfGraph
Examples:
FiltrationTermOfPureCubicalComplex
Examples:
FiltrationTermOfRegularCWComplex
Examples:
FirstHomologyCoveringCokernels
Examples: 1 , 2
FirstHomologySimplicialTwoComplex
Examples:
FourthHomotopyGroupOfDoubleSuspensionB
Examples:
Fp2PcpAbelianGroupHomomorphism
Examples:
FpGModuleSection
Examples:
FreeZGResolution
Examples:
FundamentalGroupOfRegularCWComplex
Examples: 1
FundamentalGroupOfRegularCWMap
Examples:
FundamentalGroupSimplicialTwoComplex
Examples:
FundamentalMultiplesOfStiefelWhitneyClasses
Examples:
GChainComplex
Examples: 1
GModuleAsCatOneGroup
Examples:
GammaSubgroupInSL3Z
Examples:
GaussCodeOfPureCubicalKnot
Examples: 1 , 2 , 3 , 4
GetTorsionPowerSubcomplex
Examples:
GetTorsionSubcomplex
Examples:
GraphOfRegularCWComplex
Examples:
GraphOfResolutionsTest
Examples:
GraphOfResolutionsToGroups
Examples:
GroupHomomorphismToMatrix
Examples:
HAPCocontractRegularCWComplex
Examples:
HAPContractFilteredRegularCWComplex
Examples:
HAPContractRegularCWComplex
Examples:
HAPContractRegularCWComplex_Alt
Examples:
HAPPRIME_Algebra2Polynomial
Examples:
HAPPRIME_CohomologyRingWithoutResolution
Examples:
HAPPRIME_CombineIndeterminateMaps
Examples:
HAPPRIME_GradedAlgebraPresentationAvoidingIndeterminates
Examples:
HAPPRIME_LHSSpectralSequence
Examples:
HAPPRIME_MakeEliminationOrdering
Examples:
HAPPRIME_MapPolynomialIndeterminates
Examples:
HAPPRIME_Polynomial2Algebra
Examples:
HAPPRIME_RingHomomorphismsAreComposable
Examples:
HAPPRIME_SModule
Examples:
HAPPRIME_SingularGroebnerBasis
Examples:
HAPPRIME_SingularReducedGroebnerBasis
Examples:
HAPPRIME_SwitchGradedAlgebraRing
Examples:
HAPPRIME_SwitchPolynomialIndeterminates
Examples:
HAPPRIME_VersionWithSVN
Examples:
HAPRegularCWComplex
Examples:
HAPRegularCWPolytope
Examples:
HAPRemoveCellFromRegularCWComplex
Examples:
HAPRemoveVectorField
Examples:
HAPRingModIdeal
Examples:
HAPRingModIdealObj
Examples:
HAPTietzeReduction_Inf
Examples:
HAPTietzeReduction_OneLevel
Examples:
HAPTietzeReduction_OneStep
Examples:
HAP_4x4MatTo2x2Mat
Examples:
HAP_AddGenerator
Examples:
HAP_AllHomomorphisms
Examples:
HAP_AppendTo
Examples:
HAP_AssociahedronBoundaries
Examples:
HAP_AssociahedronCells
Examples:
HAP_BaryCentricSubdivisionGComplex
Examples:
HAP_BaryCentricSubdivisionRegularCWComplex
Examples:
HAP_Binlisttoint
Examples:
HAP_ChainComplexToEquivariantChainComplex
Examples:
HAP_CocyclesAndCoboundaries
Examples:
HAP_CongruenceSubgroupGamma0
Examples: 1
HAP_CongruenceSubgroupGamma0Ideal
Examples:
HAP_ConjugatedCongruenceSubgroup
Examples:
HAP_ConjugatedCongruenceSubgroupGamma0
Examples:
HAP_CriticalCellsDirected
Examples:
HAP_CupProductOfPresentation
Examples:
HAP_CupProductOfSimplicialComplex
Examples:
HAP_DisplayPlanarTree
Examples:
HAP_DisplayVectorField
Examples:
HAP_ElementsSL2Zfn
Examples:
HAP_FunctorialModPCohomologyRing
Examples:
HAP_GenericSL2OSubgroup
Examples:
HAP_GenericSL2ZConjugatedSubgroup
Examples:
HAP_GenericSL2ZSubgroup
Examples:
HAP_HomToIntModP_ChainComplex
Examples:
HAP_HomToIntModP_ChainMap
Examples:
HAP_HomToIntModP_CochainComplex
Examples:
HAP_HomToIntModP_CochainMap
Examples:
HAP_HomeoLinkingForm
Examples:
HAP_Hurewicz1Cycles
Examples:
HAP_IntegralClassToCocycle
Examples:
HAP_IntegralCocycleToClass
Examples:
HAP_IntegralCohomology
Examples:
HAP_KK_AddCell
Examples:
HAP_KnotGroupInv
Examples:
HAP_MyIsBieberbachFpGroup
Examples:
HAP_MyIsFiniteFpGroup
Examples:
HAP_MyIsInfiniteFpGroup
Examples:
HAP_PHI
Examples:
HAP_PermBinlisttoint
Examples:
HAP_PlanarBinaryTrees
Examples:
HAP_PlanarTreeGraft
Examples:
HAP_PlanarTreeJoin
Examples:
HAP_PlanarTreeLeaves
Examples:
HAP_PlanarTreeRemovableEdge
Examples:
HAP_PlanarTreeRemoveEdge
Examples:
HAP_PrimePartModified
Examples:
HAP_PrincipalCongruenceSubgroup
Examples:
HAP_PrincipalCongruenceSubgroupIdeal
Examples:
HAP_PrintTo
Examples:
HAP_PureComplexSubcomplex
Examples:
HAP_PureCubicalPairToCWMap
Examples:
HAP_ResolutionAbelianGroupFromInvariants
Examples:
HAP_RightTransversalSL2ZSubgroups
Examples:
HAP_SL2OSubgroupTree_slow
Examples:
HAP_SL2SubgroupTree
Examples:
HAP_SL2TreeDisplay
Examples:
HAP_SL2ZSubgroupTree_fast
Examples:
HAP_SL2ZSubgroupTree_slow
Examples:
HAP_Sequence2Boundaries
Examples:
HAP_SimplicialPairToCWMap
Examples:
HAP_SimplicialProjectivePlane
Examples:
HAP_SimplicialTorus
Examples:
HAP_SimplifiedGaussCode
Examples:
HAP_StiefelWhitney
Examples:
HAP_SylowSubgroups
Examples:
HAP_Tensor
Examples:
HAP_TransversalCongruenceSubgroups
Examples:
HAP_TransversalCongruenceSubgroupsIdeal
Examples:
HAP_TransversalCongruenceSubgroupsIdeal_alt
Examples:
HAP_TransversalGamma0SubgroupsIdeal
Examples:
HAP_Triangulation
Examples:
HAP_TzPair
Examples:
HAP_WedgeSumOfSimplicialComplexes
Examples:
HAP_bockstein
Examples:
HAP_chain_bockstein
Examples:
HAP_coho_isoms
Examples:
HAP_nxnMatTo2nx2nMat
Examples:
HadamardGraph
Examples:
HapExample
Examples:
HapFile
Examples: 1 , 2 , 3 , 4
HasTrivialPostnikovInvariant
Examples:
HeckeOperator
Examples:
HeckeOperatorWeight2
Examples:
HenonOrbit
Examples: 1
HomToGModule_hom
Examples:
HomToInt_ChainComplex
Examples:
HomToInt_ChainMap
Examples:
HomToInt_CochainComplex
Examples:
HomToModPModule
Examples: 1
HomogeneousPolynomials
Examples:
HomogeneousPolynomials_Bianchi
Examples:
HomologicalGroupDecomposition
Examples: 1
HomologyOfPureCubicalComplex
Examples:
HomologyPbs
Examples:
HomologySimplicialFreeAbelianGroup
Examples:
HomomorphismAsMatrix
Examples:
HomotopyCatOneGroup
Examples:
HomotopyCrossedModule
Examples:
HomotopyEquivalentLargerSubArray
Examples:
HomotopyEquivalentLargerSubArray3D
Examples:
HomotopyEquivalentLargerSubMatrix
Examples:
HomotopyEquivalentLargerSubPermArray
Examples:
HomotopyEquivalentLargerSubPermArray3D
Examples:
HomotopyEquivalentLargerSubPermMatrix
Examples:
HomotopyEquivalentMaximalPureSubcomplex
Examples:
HomotopyEquivalentMinimalPureSubcomplex
Examples:
HomotopyEquivalentSmallerSubArray
Examples:
HomotopyEquivalentSmallerSubArray3D
Examples:
HomotopyEquivalentSmallerSubMatrix
Examples:
HomotopyEquivalentSmallerSubPermArray
Examples:
HomotopyEquivalentSmallerSubPermArray3D
Examples:
HomotopyEquivalentSmallerSubPermMatrix
Examples:
HomotopyLowerCentralSeries
Examples:
HomotopyLowerCentralSeriesOfCrossedModule
Examples:
HomotopyTruncation
Examples:
HopfSatohSurface
Examples: 1 , 2
HybridSubdivision
Examples:
IdCatOneGroup
Examples: 1
IdCrossedModule
Examples:
IdQuasiCatOneGroup
Examples:
IdQuasiCrossedModule
Examples:
IdentifyKnot
Examples: 1
IdentityAmongRelators
Examples: 1 , 2
ImageOfGOuterGroupHomomorphism
Examples: 1 , 2
ImageOfMap
Examples:
InducedSteenrodHomomorphisms
Examples:
IntegerSimplicialComplex
Examples: 1
IntegralCellularHomology
Examples:
IntegralCohomology
Examples:
IntegralCohomologyOfCochainComplex
Examples:
IntegralHomology
Examples: 1
IntegralHomologyOfChainComplex
Examples:
IntersectionCWSubcomplex
Examples:
IsClosedManifold
Examples: 1
IsContractibleCube_higherdims
Examples:
IsCrystSameOrbit
Examples:
IsCrystSufficientLattice
Examples:
IsHadamardMatrix
Examples:
IsIntList
Examples:
IsIsomorphismOfAbelianFpGroups
Examples: 1
IsMetricMatrix
Examples:
IsPeriodicSpaceGroup
Examples: 1
IsPureComplex
Examples:
IsPureRegularCWComplex
Examples:
IsRigid
Examples: 1
IsRigidOnRight
Examples:
IsSphericalCoxeterGroup
Examples:
IsoclinismClasses
Examples: 1 , 2
IsomorphismCatOneGroups
Examples: 1
IsomorphismCrossedModules
Examples:
KernelOfGOuterGroupHomomorphism
Examples: 1 , 2
KernelOfMap
Examples:
KernelWG
Examples:
KinkArc2Presentation
Examples:
KnotComplement
Examples: 1 , 2 , 3
KnotComplementWithBoundary
Examples: 1 , 2 , 3
LazyList
Examples:
LefschetzNumberOfChainMap
Examples:
Lfunction
Examples:
LiftColouredSurface
Examples:
LiftedRegularCWMap
Examples:
LinearHomomorphismsZZPersistenceMat
Examples:
LinkingForm
Examples: 1
LinkingFormHomeomorphismInvariant
Examples: 1
LinkingFormHomotopyInvariant
Examples: 1
ListsOfCellsToRegularCWComplex
Examples:
LowDimensionalCupProduct
Examples: 1
MakeHAPprimeDoc
Examples:
ManifoldType
Examples: 1
Mapper
Examples: 1
Mapper_alt
Examples:
MatrixSize
Examples:
MaximalSimplicesOfSimplicialComplex
Examples: 1
MaximalSphericalCoxeterSubgroupsFromAbove
Examples:
MinimizeRingRelations
Examples:
Mod2SteenrodAlgebra
Examples: 1
ModPCohomologyRing_alt
Examples:
ModPCohomologyRing_part_1
Examples:
ModPCohomologyRing_part_2
Examples:
ModPRingGeneratorsAlt
Examples:
ModPSteenrodAlgebra
Examples: 1 , 2
ModularCohomology
Examples:
ModularEquivariantChainMap
Examples:
ModularHomology
Examples:
Nil3TensorSquare
Examples:
NonFreeResolutionFiniteSubgroup
Examples:
NonManifoldVertices
Examples:
NonRegularCWBoundary
Examples:
NonabelianSymmetricKernel_alt
Examples: 1
NonabelianSymmetricSquare_inf
Examples:
NonabelianTensorProduct_Inf
Examples:
NonabelianTensorProduct_alt
Examples:
NonabelianTensorSquareAsCatOneGroup
Examples:
NonabelianTensorSquareAsCrossedModule
Examples:
NonabelianTensorSquare_inf
Examples:
NoncrossingPartitionsLatticeDisplay
Examples: 1
NullspaceSparseMatDestructive
Examples:
NumberConnectedQuandles
Examples:
NumberGeneratorsOfGroupHomology
Examples:
NumberOfCrossingsInArc2Presentation
Examples:
NumberOfHomomorphisms_connected
Examples:
NumberOfHomomorphisms_groups
Examples:
NumberOfPrimeKnots
Examples: 1 , 2
NumberSmallCatOneGroups
Examples:
NumberSmallCrossedModules
Examples:
NumberSmallQuasiCatOneGroups
Examples:
NumberSmallQuasiCrossedModules
Examples:
OppositeGroup
Examples:
OrthogonalizeBasisByAverageInnerProduct
Examples:
PCentre
Examples:
PSubgroupGChainComplex
Examples:
PSubgroupSimplicialComplex
Examples:
PUpperCentralSeries
Examples:
PartialIsoclinismClasses
Examples: 1
PartsOfQuadraticInteger
Examples:
PathComponentOfPureComplex
Examples: 1
PathComponentsCWSubcomplex
Examples:
PathComponentsOfSimplicialComplex_alt
Examples:
PathObjectForChainComplex
Examples: 1
PermutahedralComplexToRegularCWComplex
Examples: 1
PermutahedralToCubicalArray
Examples:
PersistentBettiNumbersViaContractions
Examples:
PersistentHomologyOfCrossedModule
Examples:
PersistentHomologyOfFilteredPureCubicalComplex_alt
Examples:
PersistentHomologyOfFilteredSparseChainComplex
Examples: 1 , 2
PersistentHomologyOfPureCubicalComplex_Alt
Examples:
PersistentHomologyOfQuotientGroupSeries_Int
Examples:
PiZeroOfRegularCWComplex
Examples:
PoincareBipyramidCWComplex
Examples: 1
PoincareCubeCWComplex
Examples: 1
PoincareCubeCWComplexNS
Examples: 1
PoincareDodecahedronCWComplex
Examples: 1
PoincareOctahedronCWComplex
Examples: 1
PoincarePrismCWComplex
Examples: 1
PoincareSeriesApproximation
Examples:
PoincareSeries_alt
Examples:
PolymakeFaceLattice
Examples:
PolytopalRepresentationComplex
Examples:
PrankAlt
Examples:
PresentationOfResolution_alt
Examples:
PrimePartDerivedFunctorHomomorphism
Examples:
PrimePartDerivedFunctorViaSubgroupChain
Examples:
PrimePartDerivedTwistedFunctor
Examples:
PrintAlgebraWordAsPolynomial
Examples:
PrintTorsionSubcomplex
Examples:
PureComplex
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
PureCubicalComplexToCubicalComplex
Examples: 1 , 2
PureCubicalLink
Examples: 1 , 2
PushoutOfFpGroups
Examples:
QuadraticCharacter
Examples:
QuadraticNumberField
Examples: 1
QuandleIsomorphismRepresentatives
Examples:
QuotientByTorsionSubcomplex
Examples:
QuotientChainMap
Examples:
QuotientGroup
Examples:
QuotientQuasiIsomorph
Examples:
RadicalSeriesOfResolution
Examples:
RandomArc2Presentation
Examples:
RandomCellOfPureComplex
Examples:
ReadLinkImageAsGaussCode
Examples: 1
ReadMatrixAsPureCubicalComplex
Examples:
ReduceGenerators
Examples:
ReduceGenerators_alt
Examples:
ReflectedCubicalKnot
Examples: 1 , 2 , 3 , 4
RegularCWAssociahedron
Examples:
RegularCWComplexComplement
Examples: 1
RegularCWComplexWithRemovedCell
Examples: 1
RegularCWComplex_AttachCellDestructive
Examples: 1
RegularCWCube
Examples:
RegularCWMapToCWSubcomplex
Examples:
RegularCWOrbitPolytope
Examples:
RegularCWPermutahedron
Examples:
RegularCWPolygon
Examples:
RegularCWSimplex
Examples:
RelativeCentralQuotientSpaceGroup
Examples:
RelativeGroupHomology
Examples:
RelativeRightTransversal
Examples:
RemoveStar
Examples:
ResolutionAbelianGroup_alt
Examples:
ResolutionAbelianPcpGroup
Examples:
ResolutionAffineCrystGroup
Examples:
ResolutionBoundaryOfWordOnRight
Examples:
ResolutionDirectProductLazy
Examples:
ResolutionFiniteCyclicGroup
Examples:
ResolutionGL2QuadraticIntegers
Examples:
ResolutionGL3QuadraticIntegers
Examples:
ResolutionGenericGroup
Examples:
ResolutionInfiniteCyclicGroup
Examples:
ResolutionPGL2QuadraticIntegers
Examples:
ResolutionPGL3QuadraticIntegers
Examples:
ResolutionPSL2QuadraticIntegers
Examples: 1
ResolutionPrimePowerGroupSparse
Examples:
ResolutionSL2QuadraticIntegers
Examples: 1
ResolutionSL2ZConjugated
Examples:
ResolutionSL2Z_alt
Examples:
ResolutionSpaceGroup
Examples: 1
ResolutionToEquivariantCWComplex
Examples:
ResolutionToResolutionOfFpGroup
Examples: 1
SL2QuadraticIntegers
Examples: 1
SL2ZResolution
Examples:
SL2ZResolution_alt
Examples:
SL2ZTree
Examples:
SL2ZmElementsDecomposition
Examples:
SequentialRegularCWComplexComplement
Examples:
SignatureOfSymmetricMatrix
Examples: 1
SignedPermutationGroup
Examples: 1
SimplicesToSimplicialComplex
Examples: 1 , 2 , 3 , 4
SimplicialComplexToRegularCWComplex_alt
Examples:
SimplicialK3Surface
Examples: 1
SimplicialNerveOfFilteredGraph
Examples: 1 , 2
SimplicialNerveOfTwoComplex
Examples:
SimplifiedQuandlePresentation
Examples:
SimplifiedRegularCWComplex
Examples: 1
SimplifiedSparseChainComplex
Examples:
SmallCatOneGroup
Examples: 1
SmallCrossedModule
Examples:
SmallQuasiCatOneGroup
Examples:
SmallQuasiCrossedModule
Examples:
SmoothedFpGroup
Examples:
SparseChainComplexOfCubicalComplex
Examples:
SparseChainComplexOfCubicalPair
Examples:
SparseChainComplexOfFilteredRegularCWComplex
Examples:
SparseChainComplexOfRegularCWComplexWithVectorField
Examples:
SparseChainComplexOfSimplicialComplex
Examples:
SparseChainComplexToChainComplex
Examples:
SparseChainMapOfCubicalPairs
Examples:
SparseFilteredChainComplexOfFilteredCubicalComplex
Examples:
SparseFilteredChainComplexOfFilteredSimplicialComplex
Examples: 1 , 2
SparseMattoMat
Examples: 1
SparseRowReduce
Examples:
SphericalKnotComplement
Examples: 1
Spin
Examples:
SpunAboutHyperplane
Examples:
SpunKnotComplement
Examples: 1
SpunLinkComplement
Examples:
StrongGeneratorsOfDerivedSubgroup
Examples:
StrongGeneratorsOfDerivedSubgroup_alt
Examples:
StructuralCopyOfFilteredRegularCWComplex
Examples:
SubQuasiIsomorph
Examples:
SubdivideCell
Examples:
Suspension_alt
Examples:
SylowSubgroupOfCatOneGroup
Examples:
SymmetricCentre
Examples:
SymmetricCommutativityGroup
Examples:
TensorNonFreeResolutionWithRationals
Examples:
TensorWithBurnsideRing
Examples: 1 , 2
TensorWithComplexRepresentationRing
Examples: 1 , 2
TensorWithComplexRepresentationRingOnRight
Examples:
TensorWithIntegersModPSparse
Examples:
TensorWithIntegersOverSubgroup
Examples: 1 , 2 , 3 , 4
TensorWithIntegersSparse
Examples:
TensorWithModPModule
Examples: 1
TestHapBook
Examples:
TestHapQuick
Examples:
ThickenedHEPureCubicalComplex
Examples:
ThickenedPureComplex
Examples: 1
ThickenedPureCubicalComplex_dim2
Examples:
ThirdHomotopyGroupOfSuspensionB_alt
Examples: 1
ThreeManifoldViaDehnSurgery
Examples: 1
ThreeManifoldWithBoundary
Examples: 1
TransferChainMap
Examples: 1
TransferCochainMap
Examples: 1
TranslationSubGroup
Examples:
TreeOfResolutionsToSL2Zcomplex
Examples:
TruncatedRegularCWComplex
Examples:
Tube
Examples:
TupleOrbitReps
Examples:
TupleOrbitReps_perm
Examples:
TwistedResolution
Examples:
UnboundedArrayAssign
Examples:
UnitBall
Examples:
UnitCubicalBall
Examples:
UnitPermutahedralBall
Examples:
UniversalBarCodeEval
Examples:
UniversalCover
Examples: 1 , 2 , 3 , 4
VectorToCrystMatrix
Examples:
VectorsToOneSkeleton
Examples: 1
VerticesOfRegularCWCell
Examples:
View3dPureComplex
Examples:
ViewArc2Presentation
Examples:
ViewPureComplex
Examples:
VirtuallySimplicialSubdivision
Examples:
WeakCommutativityGroup
Examples:
WirtingerGroup
Examples: 1
WirtingerGroup_gc
Examples:
WordModP
Examples:
ZigZagContractedFilteredPureCubicalComplex
Examples:
ZigZagContractedPureComplex
Examples: 1
Sq
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10
Category_Of_Groups
Examples: 1
ElementsSL2Z
Examples:
HAP_knot_census
Examples:
PathComponentOfSimplicialComplex
Examples:
ResolutionSL2ZInvertedInteger
Examples:
ViewGraph
Examples:
AsFpGroup
Examples:
BarycentricSubdivision
Examples: 1 , 2
Bockstein
Examples: 1 , 2 , 3
CategoryArrow
Examples:
CategoryObject
Examples:
ClosedSurface
Examples: 1
CoboundaryMatrix
Examples:
CoefficientsOfPoincareSeries
Examples:
CohomologyClass
Examples: 1 , 2
CohomologyRing
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
ComplexProjectiveSpace
Examples: 1
CompositionRingHomomorphism
Examples:
ConnectedComponentsQuandle
Examples:
ConnectedSum
Examples: 1 , 2
DegreeOfRepresentative
Examples:
Dimensions
Examples:
ExcisedPair
Examples:
FilteredRegularCWComplex
Examples: 1
FundamentalGroupWithPathReps
Examples: 1 , 2
GDerivedSubgroup
Examples:
GModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
GOuterGroupHomomorphism
Examples: 1 , 2
GOuterGroupHomomorphism
Examples: 1 , 2
GradedAlgebraPresentation
Examples:
GradedAlgebraPresentationNC
Examples:
HAPDerivationNC
Examples:
HAPRingHomomorphismByIndeterminateMap
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingToSubringHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPZeroRingHomomorphism
Examples:
HAP_EquivalenceClasses
Examples:
HomomorphismsImages
Examples:
ImageOfDerivation
Examples:
ImageOfRingHomomorphism
Examples:
IsAssociatedGradedRing
Examples:
KernelOfDerivation
Examples:
LowerGCentralSeries
Examples:
PathComponents
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentHomology
Examples: 1 , 2
PersistentHomology
Examples: 1 , 2
PersistentHomology
Examples: 1 , 2
PoincareSeriesAutoMem
Examples:
PoincareSeriesAutoMem
Examples:
PoincareSeriesAutoMemStop
Examples:
PolynomialToRModuleRep
Examples:
PreimageOfRingHomomorphism
Examples:
PureComplexMeet
Examples:
PureComplexRandomCell
Examples:
PureComplexSubcomplex
Examples:
Pushout
Examples:
QuadraticIdeal
Examples: 1
ReduceIdeal
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentationMap
Examples:
RefinedColouring
Examples:
Resolution
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34
RightTransversal_alt
Examples:
RingOfIntegers
Examples: 1
SingularPolynomialNormalForm
Examples:
SingularSetNormalFormIdeal
Examples:
SingularSetNormalFormIdealNC
Examples:
SparseChainComplexOfPair
Examples:
Sphere
Examples: 1
Sq
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10
Standard2Cocycle
Examples:
Standard2Cocycle
Examples:
StandardNCocycle
Examples:
StandardNCocycle
Examples:
StarGraph
Examples:
SubspaceBasisRepsByDegree
Examples:
SubspaceDimensionDegree
Examples:
Suspension
Examples: 1 , 2 , 3 , 4 , 5
TrivialGModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
VertexLink
Examples:
VertexStar
Examples:
WedgeSum
Examples: 1
TensorProductOp
Examples:
Arity
Examples:
AssociatedNumberField
Examples:
AssociatedRing
Examples:
Base
Examples: 1
BaseElement
Examples:
BaseRing
Examples:
Cocycle
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7
CoefficientModule
Examples:
CohomologicalPeriod
Examples: 1
CoxeterMatrix
Examples: 1
DerivationImages
Examples:
DerivationRelations
Examples:
DerivationRing
Examples:
Fibre
Examples:
FibreElement
Examples:
Generators
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
GeneratorsOfPresentationIdeal
Examples:
GradedAlgebraPresentationFamily
Examples:
HAPDerivationFamily
Examples:
HAPPRIME_HilbertSeries
Examples:
HAPRingHomomorphismFamily
Examples:
HAP_MultiplicativeGenerators
Examples:
IdentityMap
Examples:
ImageGenerators
Examples:
ImagePolynomialRing
Examples:
ImageRelations
Examples:
InCcGroup
Examples:
IndeterminateAndExponentOfUnivariateMonomial
Examples:
IndeterminateDegrees
Examples:
IndeterminatesOfGradedAlgebraPresentation
Examples:
IndeterminatesOfPolynomial
Examples:
IndexInSL2O
Examples: 1
InnerAutomorphismGroupQuandle
Examples:
InnerAutomorphismGroupQuandleAsPerm
Examples:
InverseRingHomomorphism
Examples:
IsConnected
Examples: 1 , 2 , 3
IsHomogeneousQuandle
Examples:
IsLatinQuandle
Examples: 1
MaximumDegreeForPresentation
Examples:
ModPRingBasisAsPolynomials
Examples:
ModPRingGeneratorDegrees
Examples:
ModPRingNiceBasis
Examples:
ModPRingNiceBasisAsPolynomials
Examples:
Module
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12
NormOfIdeal
Examples:
OuterAction
Examples:
OuterGroup
Examples: 1 , 2 , 3 , 4
PresentationIdeal
Examples:
PresentationOfGradedStructureConstantAlgebra
Examples: 1
Pullbacks
Examples:
Pushouts
Examples:
RightMultiplicationGroupOfQuandle
Examples: 1 , 2 , 3
RightMultiplicationGroupOfQuandleAsPerm
Examples: 1
SingularGroebnerBasis
Examples:
SingularReducedGroebnerBasis
Examples:
SourceGenerators
Examples:
SourcePolynomialRing
Examples:
SourceRelations
Examples:
StarGraphAttr
Examples:
TermsOfPolynomial
Examples:
UnivariateMonomialsOfMonomial
Examples:
CoefficientsRing
Examples:
ElementsFamily
Examples:
IndexInSL2Z
Examples:
Name
Examples: 1 , 2 , 3 , 4 , 5 , 6
Order
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
IsAbelianCategory
Examples:
IsAdditiveCategory
Examples:
IsCategoryName
Examples:
IsCcGroup
Examples:
IsCrystTranslationSubGroup
Examples:
IsGOuterGroup
Examples:
IsGOuterGroupHomomorphism
Examples:
IsGammaSubgroupInSL3Z
Examples:
IsHAPRationalMatrixGroup
Examples:
IsHAPRationalSpecialLinearGroup
Examples:
IsIdealOfQuadraticIntegers
Examples:
IsPeriodic
Examples: 1 , 2
IsPseudoListWithFunction
Examples:
IsQuadraticNumberField
Examples:
IsRingOfQuadraticIntegers
Examples:
IsStandard2Cocycle
Examples:
IsStandardNCocycle
Examples:
IsCcElement
Examples:
IsGradedAlgebraPresentation
Examples:
IsHAPDerivation
Examples:
IsHAPRingHomomorphism
Examples:
IsHAPRingModIdealObj
Examples:
IsHapCatOneGroup
Examples:
IsHapCatOneGroupMorphism
Examples:
IsHapChainComplex
Examples:
IsHapChainMap
Examples:
IsHapCochainComplex
Examples:
IsHapCochainMap
Examples:
IsHapCommutativeDiagram
Examples:
IsHapConjQuandElt
Examples:
IsHapCrossedModule
Examples:
IsHapCrossedModuleMorphism
Examples:
IsHapCubicalComplex
Examples:
IsHapEquivariantCWComplex
Examples:
IsHapEquivariantChainComplex
Examples:
IsHapEquivariantChainMap
Examples:
IsHapEquivariantNonFreeChainComplex
Examples:
IsHapEquivariantSpectralSequencePage
Examples:
IsHapFilteredChainComplex
Examples:
IsHapFilteredCubicalComplex
Examples:
IsHapFilteredGraph
Examples:
IsHapFilteredPureCubicalComplex
Examples:
IsHapFilteredRegularCWComplex
Examples:
IsHapFilteredSimplicialComplex
Examples:
IsHapFilteredSparseChainComplex
Examples:
IsHapGCocomplex
Examples:
IsHapGComplex
Examples:
IsHapGComplexMap
Examples:
IsHapGraph
Examples:
IsHapOppositeElement
Examples:
IsHapPureCubicalComplex
Examples:
IsHapPureCubicalLink
Examples:
IsHapPurePermutahedralComplex
Examples:
IsHapQuandlePresentation
Examples:
IsHapQuotientElement
Examples:
IsHapRegularCWComplex
Examples:
IsHapRegularCWMap
Examples:
IsHapResolution
Examples:
IsHapSimplicialComplex
Examples:
IsHapSimplicialFreeAbelianGroup
Examples:
IsHapSimplicialGroup
Examples:
IsHapSimplicialGroupMorphism
Examples:
IsHapSimplicialMap
Examples:
IsHapSparseChainComplex
Examples:
IsHapSparseChainMap
Examples:
IsHapSparseMat
Examples:
IsHapTorsionSubcomplex
Examples:
IsPseudoList
Examples:
IsCcElementRep
Examples:
IsGradedAlgebraPresentationRep
Examples:
IsHAPDerivationRep
Examples:
IsHAPIdealRep
Examples:
IsHAPRingHomomorphismIndeterminateMapRep
Examples:
IsHAPRingReductionHomomorphismRep
Examples:
IsHAPRingToSubringHomomorphismRep
Examples:
IsHAPSubringToRingHomomorphismRep
Examples:
IsHAPZeroRingHomomorphismRep
Examples:
IsHapCatOneGroupMorphismRep
Examples:
IsHapCatOneGroupRep
Examples:
IsHapChainComplexRep
Examples:
IsHapChainMapRep
Examples:
IsHapCochainComplexRep
Examples:
IsHapCochainMapRep
Examples:
IsHapCommutativeDiagramRep
Examples:
IsHapConjQuandEltRep
Examples:
IsHapCrossedModuleMorphismRep
Examples:
IsHapCrossedModuleRep
Examples:
IsHapCubicalComplexRep
Examples:
IsHapEquivariantCWComplexRep
Examples:
IsHapEquivariantChainComplexRep
Examples:
IsHapEquivariantChainMapRep
Examples:
IsHapEquivariantNonFreeChainComplexRep
Examples:
IsHapEquivariantSpectralSequencePageRep
Examples:
IsHapFilteredChainComplexRep
Examples:
IsHapFilteredCubicalComplexRep
Examples:
IsHapFilteredGraphRep
Examples:
IsHapFilteredPureCubicalComplexRep
Examples:
IsHapFilteredRegularCWComplexRep
Examples:
IsHapFilteredSimplicialComplexRep
Examples:
IsHapFilteredSparseChainComplexRep
Examples:
IsHapGCocomplexRep
Examples:
IsHapGComplexMapRep
Examples:
IsHapGComplexRep
Examples:
IsHapGraphRep
Examples:
IsHapOppositeElementRep
Examples:
IsHapPureCubicalComplexRep
Examples:
IsHapPureCubicalLinkRep
Examples:
IsHapPurePermutahedralComplexRep
Examples:
IsHapQuandlePresentationRep
Examples:
IsHapQuotientElementRep
Examples:
IsHapRegularCWComplexRep
Examples:
IsHapRegularCWMapRep
Examples:
IsHapResolutionRep
Examples:
IsHapSimplicialComplexRep
Examples:
IsHapSimplicialFreeAbelianGroupRep
Examples:
IsHapSimplicialGroupMorphismRep
Examples:
IsHapSimplicialGroupRep
Examples:
IsHapSimplicialMapRep
Examples:
IsHapSparseChainComplexRep
Examples:
IsHapSparseChainMapRep
Examples:
IsHapSparseMatRep
Examples:
IsHapTorsionSubcomplexRep
Examples:
IsPseudoListRep
Examples:
IdealOfQuadraticIntegers
Examples:
QuadraticNF
Examples:
RingOfQuadraticIntegers
Examples:
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
Examples:
Examples:
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
AdditiveInverseMutable
Examples:
AsFpGroup
Examples:
AsList
Examples:
AsSSortedList
Examples:
BarycentricSubdivision
Examples: 1 , 2
BaseRing
Examples:
Bockstein
Examples: 1 , 2 , 3
CategoryArrow
Examples:
CategoryObject
Examples:
CoboundaryMatrix
Examples:
CoefficientsOfPoincareSeries
Examples:
CoefficientsRing
Examples:
CohomologicalPeriod
Examples: 1
CohomologyClass
Examples: 1 , 2
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
ConnectedComponentsQuandle
Examples:
ConnectedSum
Examples: 1 , 2
CoxeterMatrix
Examples: 1
DefaultFieldOfMatrixGroup
Examples:
DegreeOfRepresentative
Examples:
DerivationImages
Examples:
DerivationRelations
Examples:
DerivationRing
Examples:
Dimensions
Examples:
Enumerator
Examples:
ExcisedPair
Examples:
FilteredRegularCWComplex
Examples: 1
FundamentalGroupWithPathReps
Examples: 1 , 2
GModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
GOuterGroupHomomorphism
Examples: 1 , 2
GOuterGroupHomomorphism
Examples: 1 , 2
Generators
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
GeneratorsOfMagmaWithInverses
Examples:
GeneratorsOfMagmaWithInverses
Examples:
GeneratorsOfPresentationIdeal
Examples:
GradedAlgebraPresentation
Examples:
GradedAlgebraPresentationNC
Examples:
HAPDerivationNC
Examples:
HAPPRIME_HilbertSeries
Examples:
HAPRingHomomorphismByIndeterminateMap
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingToSubringHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPZeroRingHomomorphism
Examples:
HAP_MultiplicativeGenerators
Examples:
HomomorphismsImages
Examples:
IdGroup
Examples: 1 , 2 , 3 , 4 , 5 , 6
IdentityMap
Examples:
ImageOfDerivation
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
IndeterminateAndExponentOfUnivariateMonomial
Examples:
IndeterminateDegrees
Examples:
IndeterminatesOfGradedAlgebraPresentation
Examples:
IndeterminatesOfPolynomial
Examples:
IndexInSL2O
Examples: 1
IndexInSL2Z
Examples:
InnerAutomorphismGroupQuandle
Examples:
InnerAutomorphismGroupQuandleAsPerm
Examples:
Int
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37
InverseMutable
Examples:
InverseMutable
Examples:
InverseMutable
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseSameMutability
Examples:
IsAssociatedGradedRing
Examples:
IsConnected
Examples: 1 , 2 , 3
IsHomogeneousQuandle
Examples:
IsLatinQuandle
Examples: 1
IsMonomial
Examples:
IsOne
Examples:
IsPeriodic
Examples: 1 , 2
Kernel
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
KernelOfDerivation
Examples:
MaximumDegreeForPresentation
Examples:
ModPRingBasisAsPolynomials
Examples:
ModPRingGeneratorDegrees
Examples:
ModPRingNiceBasis
Examples:
ModPRingNiceBasisAsPolynomials
Examples:
OneImmutable
Examples:
OneMutable
Examples:
PathComponents
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PreimageOfRingHomomorphism
Examples:
PresentationIdeal
Examples:
PresentationOfGradedStructureConstantAlgebra
Examples: 1
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
Projection
Examples:
PureComplexMeet
Examples:
PureComplexRandomCell
Examples:
PureComplexSubcomplex
Examples:
Pushout
Examples:
QuadraticIdeal
Examples: 1
Random
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16
ReduceIdeal
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentationMap
Examples:
RefinedColouring
Examples:
Resolution
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34
RightMultiplicationGroupOfQuandle
Examples: 1 , 2 , 3
RightMultiplicationGroupOfQuandleAsPerm
Examples: 1
RightTransversal
Examples:
RingOfIntegers
Examples: 1
SingularGroebnerBasis
Examples:
SingularPolynomialNormalForm
Examples:
SingularReducedGroebnerBasis
Examples:
SingularSetNormalFormIdeal
Examples:
SingularSetNormalFormIdealNC
Examples:
SparseChainComplexOfPair
Examples:
Sq
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10
Standard2Cocycle
Examples:
Standard2Cocycle
Examples:
StandardNCocycle
Examples:
StandardNCocycle
Examples:
StarGraph
Examples:
StarGraphAttr
Examples:
SubspaceBasisRepsByDegree
Examples:
SubspaceDimensionDegree
Examples:
Suspension
Examples: 1 , 2 , 3 , 4 , 5
TensorProductOp
Examples:
TermsOfPolynomial
Examples:
TrivialGModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
Units
Examples:
Units
Examples:
UnivariateMonomialsOfMonomial
Examples:
VertexLink
Examples:
VertexStar
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
WedgeSum
Examples: 1
ZeroMutable
Examples:
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
mod
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
-
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
-
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
/
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
Examples:
Examples:
Examples:
Examples:
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
AbelianInvariants
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
AbelianInvariants
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
BarycentricSubdivision
Examples: 1 , 2
Bockstein
Examples: 1 , 2 , 3
CanonicalRightCosetElement
Examples:
ClosedSurface
Examples: 1
CohomologyRing
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
CohomologyRing
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
ComplexProjectiveSpace
Examples: 1
ConnectedSum
Examples: 1 , 2
ConnectedSum
Examples: 1 , 2
ConnectedSum
Examples: 1 , 2
Dimensions
Examples:
DirectProductOp
Examples:
DirectProductOp
Examples:
DirectProductOp
Examples:
DirectProductOp
Examples:
Discriminant
Examples:
Discriminant
Examples:
Embedding
Examples:
GDerivedSubgroup
Examples:
Generators
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
HAPRingReductionHomomorphism
Examples:
HAPRingReductionHomomorphism
Examples:
HAP_EquivalenceClasses
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
IndexNC
Examples:
IndexNC
Examples:
InverseMutable
Examples:
InverseMutable
Examples:
InverseMutable
Examples:
InverseSameMutability
Examples:
IsEmpty
Examples:
IsEmpty
Examples:
IsPrime
Examples: 1 , 2
IsomorphismFpGroup
Examples: 1 , 2
Iterator
Examples:
KernelOfDerivation
Examples:
ListOp
Examples:
ListOp
Examples:
LowerGCentralSeries
Examples:
NaturalHomomorphism
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7
Norm
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16
Norm
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16
OneImmutable
Examples:
OneImmutable
Examples:
Order
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
Order
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentHomology
Examples: 1 , 2
PersistentHomology
Examples: 1 , 2
Position
Examples: 1 , 2
Position
Examples: 1 , 2
Position
Examples: 1 , 2
PositionCanonical
Examples:
PreimageOfRingHomomorphism
Examples:
Projection
Examples:
PureComplexMeet
Examples:
PureComplexRandomCell
Examples:
PureComplexSubcomplex
Examples:
QuadraticIdeal
Examples: 1
Range
Examples: 1 , 2
RankMatrixDestructive
Examples:
ReduceIdeal
Examples:
ReduceIdeal
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentationMap
Examples:
ReducedPolynomialRingPresentationMap
Examples:
ReducedPolynomialRingPresentationMap
Examples:
RefinedColouring
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal_alt
Examples:
SingularPolynomialNormalForm
Examples:
SparseChainComplexOfPair
Examples:
Sphere
Examples: 1
SubspaceBasisRepsByDegree
Examples:
SubspaceDimensionDegree
Examples:
Suspension
Examples: 1 , 2 , 3 , 4 , 5
TensorProductOp
Examples:
TensorProductOp
Examples:
TensorProductOp
Examples:
Trace
Examples:
Units
Examples:
WedgeSum
Examples: 1
WedgeSum
Examples: 1
WedgeSum
Examples: 1
[]
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
[]
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
[]
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
mod
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39
InfoHAPprime
Examples:
ASY_PATH
Examples:
AutomorphismGroupAsCrossedModule
Examples:
BROWSER_PATH
Examples:
CATONEGROUP_DATA_PERM
Examples:
CATONEGROUP_DATA_SIZE
Examples:
Cedric_PlanarDiagram
Examples:
ChildKill
Examples:
DISPLAY_PATH
Examples:
DOT_PATH
Examples:
FilteredSimplicialComplexToFilteredCWComplex
Examples:
GradedAlgebraPresentationType
Examples:
HAPTEMPORARYFUNCTION
Examples:
HAP_Knots
Examples:
HAP_ROOT
Examples:
HapCatOneGroup
Examples:
HapCatOneGroupFamily
Examples:
HapCatOneGroupMorphism
Examples:
HapCatOneGroupMorphismFamily
Examples:
HapChainComplex
Examples:
HapChainComplexFamily
Examples:
HapChainMap
Examples:
HapChainMapFamily
Examples:
HapCochainComplex
Examples:
HapCochainComplexFamily
Examples:
HapCochainMap
Examples:
HapCochainMapFamily
Examples:
HapCommutativeDiagram
Examples:
HapCommutativeDiagramFamily
Examples:
HapCrossedModule
Examples:
HapCrossedModuleFamily
Examples:
HapCrossedModuleMorphism
Examples:
HapCrossedModuleMorphismFamily
Examples:
HapCubicalComplex
Examples:
HapCubicalComplexFamily
Examples:
HapEquivariantCWComplex
Examples:
HapEquivariantCWComplexFamily
Examples:
HapEquivariantChainMap
Examples:
HapEquivariantChainMapFamily
Examples:
HapFPGModule
Examples:
HapFPGModuleHomomorphism
Examples:
HapFilteredChainComplex
Examples:
HapFilteredChainComplexFamily
Examples:
HapFilteredCubicalComplex
Examples:
HapFilteredCubicalComplexFamily
Examples:
HapFilteredGraph
Examples:
HapFilteredGraphFamily
Examples:
HapFilteredPureCubicalComplex
Examples:
HapFilteredPureCubicalComplexFamily
Examples:
HapFilteredRegularCWComplex
Examples:
HapFilteredRegularCWComplexFamily
Examples:
HapFilteredSimplicialComplex
Examples:
HapFilteredSimplicialComplexFamily
Examples:
HapFilteredSparseChainComplex
Examples:
HapFilteredSparseChainComplexFamily
Examples:
HapGChainComplex
Examples:
HapGCocomplex
Examples:
HapGCocomplexFamily
Examples:
HapGComplex
Examples:
HapGComplexFamily
Examples:
HapGlobalDeclarationsAreAlreadyLoaded
Examples:
HapGraph
Examples:
HapGraphFamily
Examples:
HapNonFreeResolution
Examples:
HapOppositeElement
Examples:
HapOppositeElementFamily
Examples:
HapPureCubicalComplex
Examples:
HapPureCubicalComplexFamily
Examples:
HapPureCubicalLink
Examples:
HapPureCubicalLinkFamily
Examples:
HapPurePermutahedralComplex
Examples:
HapPurePermutahedralComplexFamily
Examples:
HapQuotientElement
Examples:
HapQuotientElementFamily
Examples:
HapRegularCWComplex
Examples:
HapRegularCWComplexFamily
Examples:
HapRegularCWMap
Examples:
HapRegularCWMapFamily
Examples:
HapResolution
Examples:
HapResolutionFamily
Examples:
HapSimplicialComplex
Examples:
HapSimplicialComplexFamily
Examples:
HapSimplicialGroup
Examples:
HapSimplicialGroupFamily
Examples:
HapSimplicialGroupMorphism
Examples:
HapSimplicialGroupMorphismFamily
Examples:
HapSimplicialMap
Examples:
HapSimplicialMapFamily
Examples:
HapSparseChainComplex
Examples:
HapSparseChainComplexFamily
Examples:
HapSparseChainMap
Examples:
HapSparseChainMapFamily
Examples:
HapSparseMat
Examples:
HapSparseMatFamily
Examples:
HomomorphismOfDirectProduct
Examples:
IDQUASICATONEGROUP_DATA
Examples:
IsHapChain
Examples:
IsHapCochain
Examples:
IsHapComplex
Examples:
IsHapFPGModule
Examples:
IsHapFPGModuleHomomorphism
Examples:
IsHapGChainComplex
Examples:
IsHapMap
Examples:
IsHapNonFreeResolution
Examples:
NEATO_PATH
Examples:
NerveOfCover
Examples:
POLYMAKE_PATH
Examples:
PseudoList
Examples:
PseudoListFamily
Examples:
QUASICATONEGROUP_DATA_NOT
Examples:
QUASICATONEGROUP_DATA_SIZE
Examples:
ReadBioData
Examples:
SMALLQUASICATONEGROUP_DATA
Examples:
CATONEGROUP_DATA
Examples:
COMPILED
Examples:
Cedric_XYXYConnQuan
Examples:
Cedric_XYXYQuandles
Examples:
CommutingProbability
Examples:
GroupIsomorphismRepresentatives
Examples:
HAPAAA
Examples:
HAPBARCODE
Examples:
HAPDerivationType
Examples:
HAPPRIME_LastLHSBicomplexSize
Examples:
HAPPRIME_ShuffleRandomSource
Examples:
HAPRIGXXX
Examples:
HAP_GCOMPLEX_LIST
Examples:
HAP_GCOMPLEX_SETUP
Examples:
HAP_MOVES_DIM_2
Examples:
HAP_MOVES_DIM_3
Examples:
HAP_PERMMOVES_DIM_2
Examples:
HAP_PERMMOVES_DIM_3
Examples:
HAP_PoincareCubeManifoldEdgeDegrees
Examples:
HAP_Test
Examples:
HAP_XYXYXYXY
Examples:
HAPchildFunctionToggle
Examples:
HAPchildToggle
Examples:
HAPchildren
Examples:
HapConjQuandElt
Examples:
HapConjQuandEltFamily
Examples:
HapConstantPolRing
Examples:
HapEquivariantChainComplex
Examples:
HapEquivariantChainComplexFamily
Examples:
HapEquivariantNonFreeChainComplex
Examples:
HapEquivariantNonFreeChainComplexFamily
Examples:
HapEquivariantSpectralSequencePage
Examples:
HapEquivariantSpectralSequencePageFamily
Examples:
HapGComplexMap
Examples:
HapGComplexMapFamily
Examples:
HapQuandlePresentation
Examples:
HapQuandlePresentationFamily
Examples:
HapRightTransversalSL2ZSubgroup
Examples:
HapSL2ZConjugatedSubgroup
Examples:
HapSL2ZSubgroup
Examples:
HapSimplicialFreeAbelianGroup
Examples:
HapSimplicialFreeAbelianGroupFamily
Examples:
HapTorsionSubcomplex
Examples:
HapTorsionSubcomplexFamily
Examples:
IntersectionForm
Examples: 1 , 2
IsHapRightTransversalSL2ZSubgroup
Examples:
IsHapSL2ConjugatedSubgroup
Examples:
IsHapSL2OSubgroup
Examples:
IsHapSL2Subgroup
Examples:
IsHapSL2ZConjugatedSubgroup
Examples:
IsHapSL2ZSubgroup
Examples:
RefinedColouring_gc
Examples:
RefinedColouring_group
Examples:
RegularCWAssociahedronWithDiscreteVectorField
Examples:
RegularCWClosedSurface
Examples:
RegularCWComplexWithAttachedRelatorCells
Examples: 1
RegularCWComplex_DisjointUnion
Examples:
RegularCWComplex_WedgeSum
Examples:
RegularCWDiscreteSpace
Examples: 1
RegularCWSphere
Examples: 1
SimplicialComplexConnectedSum
Examples:
SphericalKnotComplementWithBoundary
Examples:
StemGroups
Examples:
cat
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28
cnt
Examples:
hap_cr
Examples:
2CoreducedChainComplex
Examples:
AbelianGOuterGroupToCatOneGroup
Examples:
AbelianInvariantsToTorsionCoefficients
Examples:
AcyclicSubcomplexOfPureCubicalComplex
Examples: 1
AddFirst
Examples:
AdjointGroupOfQuandle
Examples: 1
AlgebraicReduction_alt
Examples:
AppendFreeWord
Examples:
ArcDiagramToTubularSurface
Examples:
ArcPresentation
Examples: 1 , 2 , 3 , 4
ArcPresentationToKnottedOneComplex
Examples:
AreIsoclinic
Examples:
ArrayIterateBreak
Examples:
ArrayValueKD
Examples:
AsWordInSL2Z
Examples:
AutomorphismGroupQuandleAsPerm_nonconnected
Examples:
AverageInnerProduct
Examples:
BarCodeOfFilteredPureCubicalComplex
Examples:
BarCodeOfSymmetricMatrix
Examples:
BarComplexOfMonoid
Examples: 1
BarycentricallySimplifiedComplex
Examples: 1
BarycentricallySubdivideCell
Examples:
BettinumbersOfPureCubicalComplex_dim_2
Examples:
BocksteinHomology
Examples:
BogomolovMultiplier_viaTensorSquare
Examples:
BoundariesOfFilteredChainComplex
Examples:
BoundaryOfPureComplex
Examples: 1
BoundaryOfPureRegularCWComplex
Examples: 1
BoundaryOfRegularCWCell
Examples:
BoundaryPairOfPureRegularCWComplex
Examples:
BoundingPureComplex
Examples:
CR_ChainMapFromCocycle
Examples:
CR_CocyclesAndCoboundaries
Examples:
CR_IntegralClassToCocycle
Examples:
CR_IntegralCocycleToClass
Examples:
CR_IntegralCohomology
Examples:
CR_IntegralCycleToClass
Examples:
CWMap2ChainMap
Examples:
CWSubcomplexToRegularCWMap
Examples: 1
CanonicalRightCountableCosetElement
Examples:
CatOneGroupByCrossedModule
Examples:
CatOneGroupsByGroup
Examples:
CcElement
Examples:
Cedric_CheckThirdAxiomRow
Examples:
Cedric_ConjugateQuandleElement
Examples:
Cedric_FromAutGeReToAutQe
Examples:
Cedric_IsHomomorphism
Examples:
Cedric_Permute
Examples:
Cedric_Quandle1
Examples:
Cedric_Quandle2
Examples:
Cedric_Quandle3
Examples:
Cedric_Quandle4
Examples:
Cedric_Quandle5
Examples:
Cedric_Quandle6
Examples:
CellComplexBoundaryCheck
Examples:
ChainComplexEquivalenceOfRegularCWComplex
Examples: 1
ChainComplexHomeomorphismEquivalenceOfRegularCWComplex
Examples:
ChainComplexOfCubicalComplex
Examples:
ChainComplexOfCubicalPair
Examples:
ChainComplexOfRegularCWComplexWithVectorField
Examples:
ChainComplexOfSimplicialComplex
Examples:
ChainComplexOfSimplicialPair
Examples:
ChainComplexOfUniversalCover
Examples: 1 , 2 , 3 , 4
ChainComplexToSparseChainComplex
Examples:
ChainComplexWithChainHomotopy
Examples:
ChainMapOfCubicalPairs
Examples:
ChainMapOfRegularCWMap
Examples:
ChevalleyEilenbergComplexOfModule
Examples:
ChildRestart
Examples:
ClosureCWCell
Examples:
CoClass
Examples:
CocriticalCellsOfRegularCWComplex
Examples:
CocyclicHadamardMatrices
Examples: 1
CocyclicMatrices
Examples:
CohomologicalData
Examples: 1
CohomologyHomomorphism
Examples: 1 , 2
CohomologyHomomorphismOfRepresentation
Examples:
CohomologyModule_AsAutModule
Examples:
CohomologyModule_Gmap
Examples:
CohomologyRingOfSimplicialComplex
Examples:
CohomologySimplicialFreeAbelianGroup
Examples:
CombinationDisjointSets
Examples:
CommonEndomorphisms
Examples:
ComplementOfPureComplex
Examples: 1
ComplementaryBasis
Examples:
ComposeCWMaps
Examples:
CompositionOfFpGModuleHomomorphisms
Examples:
CompositionSeriesOfFpGModule
Examples:
ConcentricallyFilteredPureCubicalComplex
Examples: 1
CongruenceSubgroup
Examples: 1 , 2
ConjugateSL2ZGroup
Examples:
ConnectingCohomologyHomomorphism
Examples: 1 , 2
ContractArray
Examples:
ContractCubicalComplex_dim2
Examples:
ContractCubicalComplex_dim3
Examples:
ContractMatrix
Examples:
ContractPermArray
Examples:
ContractPermMatrix
Examples:
ContractPureComplex
Examples:
ContractSimplicialComplex
Examples:
ContractSimplicialComplex_alt
Examples:
ContractedFilteredPureCubicalComplex
Examples: 1
ContractedFilteredRegularCWComplex
Examples:
ContractedRegularCWComplex
Examples:
ContractibleSL2ZComplex
Examples:
ContractibleSL2ZComplex_alt
Examples:
ContractibleSubArray
Examples:
ContractibleSubMatrix
Examples:
ContractibleSubcomplexOfPureCubicalComplex
Examples: 1
ConvertTorsionComplexToGcomplex
Examples:
CosetsQuandle
Examples:
CountingCellsOfBaryCentricSubdivision
Examples:
CountingNumberOfCellsInBaryCentricSubdivision
Examples:
CoxeterComplex_alt
Examples: 1
CoxeterDiagramMatCoxeterGroup
Examples:
CoxeterWythoffComplex
Examples:
CreateCoxeterMatrix
Examples: 1
CriticalBoundaryCells
Examples: 1
CropPureComplex
Examples:
CrossedInvariant
Examples:
CrossedModuleByAutomorphismGroup
Examples:
CrossedModuleByCatOneGroup
Examples:
CrossedModuleByNormalSubgroup
Examples: 1
CrystCubicalTiling
Examples:
CrystFinitePartOfMatrix
Examples:
CrystGFullBasis
Examples: 1 , 2
CrystGcomplex
Examples: 1 , 2
CrystMatrix
Examples:
CrystTranslationMatrixToVector
Examples:
CrystallographicComplex
Examples:
CubicalToPermutahedralArray
Examples:
CupProductMatrix
Examples:
CupProductOfRegularCWComplex
Examples: 1
CupProductOfRegularCWComplex_alt
Examples: 1
CuspidalCohomologyHomomorphism
Examples:
CyclesOfFilteredChainComplex
Examples:
DavisComplex
Examples: 1 , 2 , 3 , 4
DeformationRetract
Examples:
DensityMat
Examples:
DerivedGroupOfQuandle
Examples: 1
DiagonalChainMap
Examples:
DijkgraafWittenInvariant
Examples: 1
DirectProductOfGroupHomomorphisms
Examples:
DirectProductOfRegularCWComplexes
Examples:
DirectProductOfRegularCWComplexesLazy
Examples:
DirectProductOfSimplicialComplexes
Examples:
DisplayCSVknotFile
Examples:
DisplayVectorField
Examples:
E1CohomologyPage
Examples:
E1HomologyPage
Examples:
EilenbergMacLaneSimplicialFreeAbelianGroup
Examples:
ElementsLazy
Examples:
EquivariantCWComplexToRegularCWComplex
Examples: 1 , 2 , 3 , 4
EquivariantCWComplexToRegularCWMap
Examples: 1 , 2 , 3
EquivariantCWComplexToResolution
Examples:
ExcisedPureCubicalPair_dim_2
Examples:
ExtractTorsionSubcomplex
Examples:
FactorizationNParts
Examples:
FilteredChainComplexToFilteredSparseChainComplex
Examples:
FilteredCubicalComplexToFilteredRegularCWComplex
Examples: 1
FilteredPureCubicalComplexToCubicalComplex
Examples: 1
FiltrationTermOfGraph
Examples:
FiltrationTermOfPureCubicalComplex
Examples:
FiltrationTermOfRegularCWComplex
Examples:
FiltrationTerms
Examples: 1
FirstHomologyCoveringCokernels
Examples: 1 , 2
FirstHomologySimplicialTwoComplex
Examples:
FourthHomotopyGroupOfDoubleSuspensionB
Examples:
Fp2PcpAbelianGroupHomomorphism
Examples:
FpGModuleSection
Examples:
FreeZGResolution
Examples:
FundamentalGroupOfRegularCWComplex
Examples: 1
FundamentalGroupOfRegularCWMap
Examples:
FundamentalGroupSimplicialTwoComplex
Examples:
FundamentalMultiplesOfStiefelWhitneyClasses
Examples:
GChainComplex
Examples: 1
GModuleAsCatOneGroup
Examples:
GammaSubgroupInSL3Z
Examples:
GaussCodeOfPureCubicalKnot
Examples: 1 , 2 , 3 , 4
GetTorsionPowerSubcomplex
Examples:
GetTorsionSubcomplex
Examples:
GraphOfRegularCWComplex
Examples:
GraphOfResolutionsTest
Examples:
GraphOfResolutionsToGroups
Examples:
GroupHomomorphismToMatrix
Examples:
HAPCocontractRegularCWComplex
Examples:
HAPContractFilteredRegularCWComplex
Examples:
HAPContractRegularCWComplex
Examples:
HAPContractRegularCWComplex_Alt
Examples:
HAPPRIME_Algebra2Polynomial
Examples:
HAPPRIME_CohomologyRingWithoutResolution
Examples:
HAPPRIME_CombineIndeterminateMaps
Examples:
HAPPRIME_GradedAlgebraPresentationAvoidingIndeterminates
Examples:
HAPPRIME_LHSSpectralSequence
Examples:
HAPPRIME_MakeEliminationOrdering
Examples:
HAPPRIME_MapPolynomialIndeterminates
Examples:
HAPPRIME_Polynomial2Algebra
Examples:
HAPPRIME_RingHomomorphismsAreComposable
Examples:
HAPPRIME_SModule
Examples:
HAPPRIME_SingularGroebnerBasis
Examples:
HAPPRIME_SingularReducedGroebnerBasis
Examples:
HAPPRIME_SwitchGradedAlgebraRing
Examples:
HAPPRIME_SwitchPolynomialIndeterminates
Examples:
HAPPRIME_VersionWithSVN
Examples:
HAPRegularCWComplex
Examples:
HAPRegularCWPolytope
Examples:
HAPRemoveCellFromRegularCWComplex
Examples:
HAPRemoveVectorField
Examples:
HAPRingModIdeal
Examples:
HAPRingModIdealObj
Examples:
HAPTietzeReduction_Inf
Examples:
HAPTietzeReduction_OneLevel
Examples:
HAPTietzeReduction_OneStep
Examples:
HAP_4x4MatTo2x2Mat
Examples:
HAP_AddGenerator
Examples:
HAP_AllHomomorphisms
Examples:
HAP_AppendTo
Examples:
HAP_AssociahedronBoundaries
Examples:
HAP_AssociahedronCells
Examples:
HAP_BaryCentricSubdivisionGComplex
Examples:
HAP_BaryCentricSubdivisionRegularCWComplex
Examples:
HAP_Binlisttoint
Examples:
HAP_ChainComplexToEquivariantChainComplex
Examples:
HAP_CocyclesAndCoboundaries
Examples:
HAP_CongruenceSubgroupGamma0
Examples: 1
HAP_CongruenceSubgroupGamma0Ideal
Examples:
HAP_ConjugatedCongruenceSubgroup
Examples:
HAP_ConjugatedCongruenceSubgroupGamma0
Examples:
HAP_CriticalCellsDirected
Examples:
HAP_CupProductOfPresentation
Examples:
HAP_CupProductOfSimplicialComplex
Examples:
HAP_DisplayPlanarTree
Examples:
HAP_DisplayVectorField
Examples:
HAP_ElementsSL2Zfn
Examples:
HAP_FunctorialModPCohomologyRing
Examples:
HAP_GenericSL2OSubgroup
Examples:
HAP_GenericSL2ZConjugatedSubgroup
Examples:
HAP_GenericSL2ZSubgroup
Examples:
HAP_HomToIntModP_ChainComplex
Examples:
HAP_HomToIntModP_ChainMap
Examples:
HAP_HomToIntModP_CochainComplex
Examples:
HAP_HomToIntModP_CochainMap
Examples:
HAP_HomeoLinkingForm
Examples:
HAP_Hurewicz1Cycles
Examples:
HAP_IntegralClassToCocycle
Examples:
HAP_IntegralCocycleToClass
Examples:
HAP_IntegralCohomology
Examples:
HAP_KK_AddCell
Examples:
HAP_KnotGroupInv
Examples:
HAP_MyIsBieberbachFpGroup
Examples:
HAP_MyIsFiniteFpGroup
Examples:
HAP_MyIsInfiniteFpGroup
Examples:
HAP_PHI
Examples:
HAP_PermBinlisttoint
Examples:
HAP_PlanarBinaryTrees
Examples:
HAP_PlanarTreeGraft
Examples:
HAP_PlanarTreeJoin
Examples:
HAP_PlanarTreeLeaves
Examples:
HAP_PlanarTreeRemovableEdge
Examples:
HAP_PlanarTreeRemoveEdge
Examples:
HAP_PrimePartModified
Examples:
HAP_PrincipalCongruenceSubgroup
Examples:
HAP_PrincipalCongruenceSubgroupIdeal
Examples:
HAP_PrintTo
Examples:
HAP_PureComplexSubcomplex
Examples:
HAP_PureCubicalPairToCWMap
Examples:
HAP_ResolutionAbelianGroupFromInvariants
Examples:
HAP_RightTransversalSL2ZSubgroups
Examples:
HAP_SL2OSubgroupTree_slow
Examples:
HAP_SL2SubgroupTree
Examples:
HAP_SL2TreeDisplay
Examples:
HAP_SL2ZSubgroupTree_fast
Examples:
HAP_SL2ZSubgroupTree_slow
Examples:
HAP_Sequence2Boundaries
Examples:
HAP_SimplicialPairToCWMap
Examples:
HAP_SimplicialProjectivePlane
Examples:
HAP_SimplicialTorus
Examples:
HAP_SimplifiedGaussCode
Examples:
HAP_StiefelWhitney
Examples:
HAP_SylowSubgroups
Examples:
HAP_Tensor
Examples:
HAP_TransversalCongruenceSubgroups
Examples:
HAP_TransversalCongruenceSubgroupsIdeal
Examples:
HAP_TransversalCongruenceSubgroupsIdeal_alt
Examples:
HAP_TransversalGamma0SubgroupsIdeal
Examples:
HAP_Triangulation
Examples:
HAP_TzPair
Examples:
HAP_WedgeSumOfSimplicialComplexes
Examples:
HAP_bockstein
Examples:
HAP_chain_bockstein
Examples:
HAP_coho_isoms
Examples:
HAP_nxnMatTo2nx2nMat
Examples:
HadamardGraph
Examples:
HapExample
Examples:
HapFile
Examples: 1 , 2 , 3 , 4
HasTrivialPostnikovInvariant
Examples:
HeckeOperator
Examples:
HeckeOperatorWeight2
Examples:
HenonOrbit
Examples: 1
HomToGModule_hom
Examples:
HomToInt_ChainComplex
Examples:
HomToInt_ChainMap
Examples:
HomToInt_CochainComplex
Examples:
HomToModPModule
Examples: 1
HomogeneousPolynomials
Examples:
HomogeneousPolynomials_Bianchi
Examples:
HomologicalGroupDecomposition
Examples: 1
HomologyOfPureCubicalComplex
Examples:
HomologyPbs
Examples:
HomologySimplicialFreeAbelianGroup
Examples:
HomomorphismAsMatrix
Examples:
HomotopyCatOneGroup
Examples:
HomotopyCrossedModule
Examples:
HomotopyEquivalentLargerSubArray
Examples:
HomotopyEquivalentLargerSubArray3D
Examples:
HomotopyEquivalentLargerSubMatrix
Examples:
HomotopyEquivalentLargerSubPermArray
Examples:
HomotopyEquivalentLargerSubPermArray3D
Examples:
HomotopyEquivalentLargerSubPermMatrix
Examples:
HomotopyEquivalentMaximalPureSubcomplex
Examples:
HomotopyEquivalentMinimalPureSubcomplex
Examples:
HomotopyEquivalentSmallerSubArray
Examples:
HomotopyEquivalentSmallerSubArray3D
Examples:
HomotopyEquivalentSmallerSubMatrix
Examples:
HomotopyEquivalentSmallerSubPermArray
Examples:
HomotopyEquivalentSmallerSubPermArray3D
Examples:
HomotopyEquivalentSmallerSubPermMatrix
Examples:
HomotopyLowerCentralSeries
Examples:
HomotopyLowerCentralSeriesOfCrossedModule
Examples:
HomotopyTruncation
Examples:
HopfSatohSurface
Examples: 1 , 2
HybridSubdivision
Examples:
IdCatOneGroup
Examples: 1
IdCrossedModule
Examples:
IdQuasiCatOneGroup
Examples:
IdQuasiCrossedModule
Examples:
IdentifyKnot
Examples: 1
IdentityAmongRelators
Examples: 1 , 2 , 3
ImageOfGOuterGroupHomomorphism
Examples: 1 , 2
ImageOfMap
Examples:
InducedSteenrodHomomorphisms
Examples:
IntegerSimplicialComplex
Examples: 1
IntegralCellularHomology
Examples:
IntegralCohomology
Examples:
IntegralCohomologyOfCochainComplex
Examples:
IntegralHomology
Examples: 1
IntegralHomologyOfChainComplex
Examples:
IntersectionCWSubcomplex
Examples:
IsClosedManifold
Examples: 1
IsContractibleCube_higherdims
Examples:
IsCrystSameOrbit
Examples:
IsCrystSufficientLattice
Examples:
IsHadamardMatrix
Examples:
IsIntList
Examples:
IsIsomorphismOfAbelianFpGroups
Examples: 1
IsMetricMatrix
Examples:
IsPeriodicSpaceGroup
Examples: 1
IsPureComplex
Examples:
IsPureRegularCWComplex
Examples:
IsRigid
Examples: 1
IsRigidOnRight
Examples:
IsSphericalCoxeterGroup
Examples:
IsoclinismClasses
Examples: 1 , 2
IsomorphismCatOneGroups
Examples: 1
IsomorphismCrossedModules
Examples:
KernelOfGOuterGroupHomomorphism
Examples: 1 , 2
KernelOfMap
Examples:
KernelWG
Examples:
KinkArc2Presentation
Examples:
KnotComplement
Examples: 1 , 2 , 3
KnotComplementWithBoundary
Examples: 1 , 2 , 3
LazyList
Examples:
LefschetzNumberOfChainMap
Examples:
Lfunction
Examples:
LiftColouredSurface
Examples:
LiftedRegularCWMap
Examples:
LinearHomomorphismsZZPersistenceMat
Examples:
LinkingForm
Examples: 1
LinkingFormHomeomorphismInvariant
Examples: 1
LinkingFormHomotopyInvariant
Examples: 1
ListsOfCellsToRegularCWComplex
Examples:
LowDimensionalCupProduct
Examples: 1
MakeHAPprimeDoc
Examples:
ManifoldType
Examples: 1
Mapper
Examples: 1
Mapper_alt
Examples:
MatrixSize
Examples:
MaximalSimplicesOfSimplicialComplex
Examples: 1
MaximalSphericalCoxeterSubgroupsFromAbove
Examples:
MinimizeRingRelations
Examples:
Mod2SteenrodAlgebra
Examples: 1
ModPCohomologyRing_alt
Examples:
ModPCohomologyRing_part_1
Examples:
ModPCohomologyRing_part_2
Examples:
ModPRingGeneratorsAlt
Examples:
ModPSteenrodAlgebra
Examples: 1 , 2
ModularCohomology
Examples:
ModularEquivariantChainMap
Examples:
ModularHomology
Examples:
Nil3TensorSquare
Examples:
NonFreeResolutionFiniteSubgroup
Examples:
NonManifoldVertices
Examples:
NonRegularCWBoundary
Examples:
NonabelianSymmetricKernel_alt
Examples: 1
NonabelianSymmetricSquare_inf
Examples:
NonabelianTensorProduct_Inf
Examples:
NonabelianTensorProduct_alt
Examples:
NonabelianTensorSquareAsCatOneGroup
Examples:
NonabelianTensorSquareAsCrossedModule
Examples:
NonabelianTensorSquare_inf
Examples:
NoncrossingPartitionsLatticeDisplay
Examples: 1
NullspaceSparseMatDestructive
Examples:
NumberConnectedQuandles
Examples:
NumberGeneratorsOfGroupHomology
Examples:
NumberOfCrossingsInArc2Presentation
Examples:
NumberOfHomomorphisms_connected
Examples:
NumberOfHomomorphisms_groups
Examples:
NumberOfPrimeKnots
Examples: 1 , 2
NumberSmallCatOneGroups
Examples:
NumberSmallCrossedModules
Examples:
NumberSmallQuasiCatOneGroups
Examples:
NumberSmallQuasiCrossedModules
Examples:
OppositeGroup
Examples:
OrthogonalizeBasisByAverageInnerProduct
Examples:
PCentre
Examples:
PSubgroupGChainComplex
Examples:
PSubgroupSimplicialComplex
Examples:
PUpperCentralSeries
Examples:
PartialIsoclinismClasses
Examples: 1
PartsOfQuadraticInteger
Examples:
PathComponentOfPureComplex
Examples: 1
PathComponentsCWSubcomplex
Examples:
PathComponentsOfSimplicialComplex_alt
Examples:
PathObjectForChainComplex
Examples: 1
PermutahedralComplexToRegularCWComplex
Examples: 1
PermutahedralToCubicalArray
Examples:
PersistentBettiNumbersViaContractions
Examples:
PersistentHomologyOfCrossedModule
Examples:
PersistentHomologyOfFilteredPureCubicalComplex_alt
Examples:
PersistentHomologyOfFilteredSparseChainComplex
Examples: 1 , 2
PersistentHomologyOfPureCubicalComplex_Alt
Examples:
PersistentHomologyOfQuotientGroupSeries_Int
Examples:
PiZeroOfRegularCWComplex
Examples:
PoincareBipyramidCWComplex
Examples: 1
PoincareCubeCWComplex
Examples: 1
PoincareCubeCWComplexNS
Examples: 1
PoincareDodecahedronCWComplex
Examples: 1 , 2
PoincareOctahedronCWComplex
Examples: 1
PoincarePrismCWComplex
Examples: 1
PoincareSeriesApproximation
Examples:
PoincareSeries_alt
Examples:
PolymakeFaceLattice
Examples:
PolytopalRepresentationComplex
Examples:
PrankAlt
Examples:
PresentationOfResolution_alt
Examples:
PrimePartDerivedFunctorHomomorphism
Examples:
PrimePartDerivedFunctorViaSubgroupChain
Examples:
PrimePartDerivedTwistedFunctor
Examples:
PrintAlgebraWordAsPolynomial
Examples:
PrintTorsionSubcomplex
Examples:
PureComplex
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
PureCubicalComplexToCubicalComplex
Examples: 1 , 2
PureCubicalLink
Examples: 1 , 2
PushoutOfFpGroups
Examples:
QuadraticCharacter
Examples:
QuadraticNumberField
Examples: 1
QuandleIsomorphismRepresentatives
Examples:
QuotientByTorsionSubcomplex
Examples:
QuotientChainMap
Examples:
QuotientGroup
Examples:
QuotientQuasiIsomorph
Examples:
RadicalSeriesOfResolution
Examples:
RandomArc2Presentation
Examples:
RandomCellOfPureComplex
Examples:
ReadLinkImageAsGaussCode
Examples: 1
ReadMatrixAsPureCubicalComplex
Examples:
ReduceGenerators
Examples:
ReduceGenerators_alt
Examples:
ReflectedCubicalKnot
Examples: 1 , 2 , 3 , 4
RegularCWAssociahedron
Examples:
RegularCWComplexComplement
Examples: 1
RegularCWComplexWithRemovedCell
Examples: 1
RegularCWComplex_AttachCellDestructive
Examples: 1
RegularCWCube
Examples:
RegularCWMapToCWSubcomplex
Examples:
RegularCWOrbitPolytope
Examples:
RegularCWPermutahedron
Examples:
RegularCWPolygon
Examples:
RegularCWSimplex
Examples:
RelativeCentralQuotientSpaceGroup
Examples:
RelativeGroupHomology
Examples:
RelativeRightTransversal
Examples:
RemoveStar
Examples:
ResolutionAbelianGroup_alt
Examples:
ResolutionAbelianPcpGroup
Examples:
ResolutionAffineCrystGroup
Examples:
ResolutionBoundaryOfWordOnRight
Examples:
ResolutionDirectProductLazy
Examples:
ResolutionFiniteCyclicGroup
Examples:
ResolutionGL2QuadraticIntegers
Examples:
ResolutionGL3QuadraticIntegers
Examples:
ResolutionGenericGroup
Examples:
ResolutionInfiniteCyclicGroup
Examples:
ResolutionPGL2QuadraticIntegers
Examples:
ResolutionPGL3QuadraticIntegers
Examples:
ResolutionPSL2QuadraticIntegers
Examples: 1
ResolutionPrimePowerGroupSparse
Examples:
ResolutionSL2QuadraticIntegers
Examples: 1
ResolutionSL2ZConjugated
Examples:
ResolutionSL2Z_alt
Examples:
ResolutionSpaceGroup
Examples: 1
ResolutionToEquivariantCWComplex
Examples:
ResolutionToResolutionOfFpGroup
Examples: 1
SL2QuadraticIntegers
Examples: 1
SL2ZResolution
Examples:
SL2ZResolution_alt
Examples:
SL2ZTree
Examples:
SL2ZmElementsDecomposition
Examples:
SequentialRegularCWComplexComplement
Examples:
SignatureOfSymmetricMatrix
Examples: 1
SignedPermutationGroup
Examples: 1
SimplicesToSimplicialComplex
Examples: 1 , 2 , 3 , 4
SimplicialComplexToRegularCWComplex_alt
Examples:
SimplicialK3Surface
Examples: 1
SimplicialNerveOfFilteredGraph
Examples: 1 , 2
SimplicialNerveOfTwoComplex
Examples:
SimplifiedQuandlePresentation
Examples:
SimplifiedRegularCWComplex
Examples: 1
SimplifiedSparseChainComplex
Examples:
SmallCatOneGroup
Examples: 1
SmallCrossedModule
Examples:
SmallQuasiCatOneGroup
Examples:
SmallQuasiCrossedModule
Examples:
SmoothedFpGroup
Examples:
SparseChainComplexOfCubicalComplex
Examples:
SparseChainComplexOfCubicalPair
Examples:
SparseChainComplexOfFilteredRegularCWComplex
Examples:
SparseChainComplexOfRegularCWComplexWithVectorField
Examples:
SparseChainComplexOfSimplicialComplex
Examples:
SparseChainComplexToChainComplex
Examples:
SparseChainMapOfCubicalPairs
Examples:
SparseFilteredChainComplexOfFilteredCubicalComplex
Examples:
SparseFilteredChainComplexOfFilteredSimplicialComplex
Examples: 1 , 2
SparseMattoMat
Examples: 1
SparseRowReduce
Examples:
SphericalKnotComplement
Examples: 1
Spin
Examples:
SpunAboutHyperplane
Examples:
SpunKnotComplement
Examples: 1
SpunLinkComplement
Examples:
StrongGeneratorsOfDerivedSubgroup
Examples:
StrongGeneratorsOfDerivedSubgroup_alt
Examples:
StructuralCopyOfFilteredRegularCWComplex
Examples:
SubQuasiIsomorph
Examples:
SubdivideCell
Examples:
Suspension_alt
Examples:
SylowSubgroupOfCatOneGroup
Examples:
SymmetricCentre
Examples:
SymmetricCommutativityGroup
Examples:
TensorNonFreeResolutionWithRationals
Examples:
TensorWithBurnsideRing
Examples: 1 , 2
TensorWithComplexRepresentationRing
Examples: 1 , 2
TensorWithComplexRepresentationRingOnRight
Examples:
TensorWithIntegersModPSparse
Examples:
TensorWithIntegersOverSubgroup
Examples: 1 , 2 , 3 , 4
TensorWithIntegersSparse
Examples:
TensorWithModPModule
Examples: 1
TestHapBook
Examples:
TestHapQuick
Examples:
ThickenedHEPureCubicalComplex
Examples:
ThickenedPureComplex
Examples: 1
ThickenedPureCubicalComplex_dim2
Examples:
ThirdHomotopyGroupOfSuspensionB_alt
Examples: 1
ThreeManifoldViaDehnSurgery
Examples: 1
ThreeManifoldWithBoundary
Examples: 1
TransferChainMap
Examples: 1
TransferCochainMap
Examples: 1
TranslationSubGroup
Examples:
TreeOfResolutionsToSL2Zcomplex
Examples:
TruncatedRegularCWComplex
Examples:
Tube
Examples:
TupleOrbitReps
Examples:
TupleOrbitReps_perm
Examples:
TwistedResolution
Examples:
UnboundedArrayAssign
Examples:
UnitBall
Examples:
UnitCubicalBall
Examples:
UnitPermutahedralBall
Examples:
UniversalBarCodeEval
Examples:
UniversalCover
Examples: 1 , 2 , 3 , 4
VectorToCrystMatrix
Examples:
VectorsToOneSkeleton
Examples: 1
VerticesOfRegularCWCell
Examples:
View3dPureComplex
Examples:
ViewArc2Presentation
Examples:
ViewPureComplex
Examples:
VirtuallySimplicialSubdivision
Examples:
WeakCommutativityGroup
Examples:
WirtingerGroup
Examples: 1
WirtingerGroup_gc
Examples:
WordModP
Examples:
ZigZagContractedFilteredPureCubicalComplex
Examples:
ZigZagContractedPureComplex
Examples: 1
Sq
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
Category_Of_Groups
Examples: 1
PreImagesElmNC
Examples:
PreImagesNC
Examples:
PreImagesSetNC
Examples:
AsFpGroup
Examples:
BarycentricSubdivision
Examples: 1 , 2
Bockstein
Examples: 1 , 2 , 3
CategoryArrow
Examples:
CategoryObject
Examples:
ClosedSurface
Examples: 1
CoboundaryMatrix
Examples:
CoefficientsOfPoincareSeries
Examples:
CohomologyClass
Examples: 1 , 2
CohomologyRing
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
ComplexProjectiveSpace
Examples: 1
CompositionRingHomomorphism
Examples:
ConnectedComponentsQuandle
Examples:
ConnectedSum
Examples: 1 , 2
DegreeOfRepresentative
Examples:
Dimensions
Examples:
ExcisedPair
Examples:
ExpandedComplex
Examples: 1
FilteredRegularCWComplex
Examples: 1
FundamentalGroupWithPathReps
Examples: 1 , 2
GDerivedSubgroup
Examples:
GModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
GOuterGroupHomomorphism
Examples: 1 , 2
GOuterGroupHomomorphism
Examples: 1 , 2
GradedAlgebraPresentation
Examples:
GradedAlgebraPresentationNC
Examples:
HAPDerivationNC
Examples:
HAPRingHomomorphismByIndeterminateMap
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingToSubringHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPZeroRingHomomorphism
Examples:
HAP_EquivalenceClasses
Examples:
HomomorphismsImages
Examples:
ImageOfDerivation
Examples:
ImageOfRingHomomorphism
Examples:
IsAssociatedGradedRing
Examples:
KernelOfDerivation
Examples:
LowerGCentralSeries
Examples:
PathComponents
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentHomology
Examples: 1 , 2
PersistentHomology
Examples: 1 , 2
PersistentHomology
Examples: 1 , 2
PoincareSeriesAutoMem
Examples:
PoincareSeriesAutoMem
Examples:
PoincareSeriesAutoMemStop
Examples:
PolynomialToRModuleRep
Examples:
PreimageOfRingHomomorphism
Examples:
PureComplexMeet
Examples:
PureComplexRandomCell
Examples: 1
PureComplexSubcomplex
Examples:
Pushout
Examples:
QuadraticIdeal
Examples: 1
ReduceIdeal
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentationMap
Examples:
RefinedColouring
Examples:
Resolution
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34
RightTransversal_alt
Examples:
RingOfIntegers
Examples: 1
SingularPolynomialNormalForm
Examples:
SingularSetNormalFormIdeal
Examples:
SingularSetNormalFormIdealNC
Examples:
SparseChainComplexOfPair
Examples:
Sphere
Examples: 1
Sq
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
Standard2Cocycle
Examples:
Standard2Cocycle
Examples:
StandardNCocycle
Examples:
StandardNCocycle
Examples:
StarGraph
Examples:
SubspaceBasisRepsByDegree
Examples:
SubspaceDimensionDegree
Examples:
Suspension
Examples: 1 , 2 , 3 , 4 , 5
TrivialGModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
VertexLink
Examples:
VertexStar
Examples:
WedgeSum
Examples: 1
TensorProductOp
Examples:
Arity
Examples:
AssociatedNumberField
Examples:
AssociatedRing
Examples:
Base
Examples: 1
BaseElement
Examples:
BaseRing
Examples:
Cocycle
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7
CoefficientModule
Examples:
CohomologicalPeriod
Examples: 1
CoxeterMatrix
Examples: 1
DerivationImages
Examples:
DerivationRelations
Examples:
DerivationRing
Examples:
Fibre
Examples:
FibreElement
Examples:
Generators
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
GeneratorsOfPresentationIdeal
Examples:
GradedAlgebraPresentationFamily
Examples:
HAPDerivationFamily
Examples:
HAPPRIME_HilbertSeries
Examples:
HAPRingHomomorphismFamily
Examples:
HAP_MultiplicativeGenerators
Examples:
IdentityMap
Examples:
ImageGenerators
Examples:
ImagePolynomialRing
Examples:
ImageRelations
Examples:
InCcGroup
Examples:
IndeterminateAndExponentOfUnivariateMonomial
Examples:
IndeterminateDegrees
Examples:
IndeterminatesOfGradedAlgebraPresentation
Examples:
IndeterminatesOfPolynomial
Examples:
IndexInSL2O
Examples: 1
InnerAutomorphismGroupQuandle
Examples:
InnerAutomorphismGroupQuandleAsPerm
Examples:
InverseRingHomomorphism
Examples:
IsConnected
Examples: 1 , 2 , 3
IsHomogeneousQuandle
Examples:
IsLatinQuandle
Examples: 1
MaximumDegreeForPresentation
Examples:
ModPRingBasisAsPolynomials
Examples:
ModPRingGeneratorDegrees
Examples:
ModPRingNiceBasis
Examples:
ModPRingNiceBasisAsPolynomials
Examples:
Module
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12
NormOfIdeal
Examples:
OuterAction
Examples:
OuterGroup
Examples: 1 , 2 , 3 , 4
PresentationIdeal
Examples:
PresentationOfGradedStructureConstantAlgebra
Examples: 1
Pullbacks
Examples:
Pushouts
Examples:
RightMultiplicationGroupOfQuandle
Examples: 1 , 2 , 3
RightMultiplicationGroupOfQuandleAsPerm
Examples: 1
SingularGroebnerBasis
Examples:
SingularReducedGroebnerBasis
Examples:
SourceGenerators
Examples:
SourcePolynomialRing
Examples:
SourceRelations
Examples:
StarGraphAttr
Examples:
TermsOfPolynomial
Examples:
UnivariateMonomialsOfMonomial
Examples:
CoefficientsRing
Examples:
ElementsFamily
Examples:
IndexInSL2Z
Examples:
Name
Examples: 1 , 2 , 3 , 4 , 5 , 6
Order
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
IsAbelianCategory
Examples:
IsAdditiveCategory
Examples:
IsCategoryName
Examples:
IsCcGroup
Examples:
IsCrystTranslationSubGroup
Examples:
IsGOuterGroup
Examples:
IsGOuterGroupHomomorphism
Examples:
IsGammaSubgroupInSL3Z
Examples:
IsHAPRationalMatrixGroup
Examples:
IsHAPRationalSpecialLinearGroup
Examples:
IsIdealOfQuadraticIntegers
Examples:
IsPeriodic
Examples: 1 , 2
IsPseudoListWithFunction
Examples:
IsQuadraticNumberField
Examples:
IsRingOfQuadraticIntegers
Examples:
IsStandard2Cocycle
Examples:
IsStandardNCocycle
Examples:
IsCcElement
Examples:
IsGradedAlgebraPresentation
Examples:
IsHAPDerivation
Examples:
IsHAPRingHomomorphism
Examples:
IsHAPRingModIdealObj
Examples:
IsHapCatOneGroup
Examples:
IsHapCatOneGroupMorphism
Examples:
IsHapChainComplex
Examples:
IsHapChainMap
Examples:
IsHapCochainComplex
Examples:
IsHapCochainMap
Examples:
IsHapCommutativeDiagram
Examples:
IsHapConjQuandElt
Examples:
IsHapCrossedModule
Examples:
IsHapCrossedModuleMorphism
Examples:
IsHapCubicalComplex
Examples:
IsHapEquivariantCWComplex
Examples:
IsHapEquivariantChainComplex
Examples:
IsHapEquivariantChainMap
Examples:
IsHapEquivariantNonFreeChainComplex
Examples:
IsHapEquivariantSpectralSequencePage
Examples:
IsHapFilteredChainComplex
Examples:
IsHapFilteredCubicalComplex
Examples:
IsHapFilteredGraph
Examples:
IsHapFilteredPureCubicalComplex
Examples:
IsHapFilteredRegularCWComplex
Examples:
IsHapFilteredSimplicialComplex
Examples:
IsHapFilteredSparseChainComplex
Examples:
IsHapGCocomplex
Examples:
IsHapGComplex
Examples:
IsHapGComplexMap
Examples:
IsHapGraph
Examples:
IsHapOppositeElement
Examples:
IsHapPureCubicalComplex
Examples:
IsHapPureCubicalLink
Examples:
IsHapPurePermutahedralComplex
Examples:
IsHapQuandlePresentation
Examples:
IsHapQuotientElement
Examples:
IsHapRegularCWComplex
Examples:
IsHapRegularCWMap
Examples:
IsHapResolution
Examples:
IsHapSimplicialComplex
Examples:
IsHapSimplicialFreeAbelianGroup
Examples:
IsHapSimplicialGroup
Examples:
IsHapSimplicialGroupMorphism
Examples:
IsHapSimplicialMap
Examples:
IsHapSparseChainComplex
Examples:
IsHapSparseChainMap
Examples:
IsHapSparseMat
Examples:
IsHapTorsionSubcomplex
Examples:
IsPseudoList
Examples:
IsCcElementRep
Examples:
IsGradedAlgebraPresentationRep
Examples:
IsHAPDerivationRep
Examples:
IsHAPIdealRep
Examples:
IsHAPRingHomomorphismIndeterminateMapRep
Examples:
IsHAPRingReductionHomomorphismRep
Examples:
IsHAPRingToSubringHomomorphismRep
Examples:
IsHAPSubringToRingHomomorphismRep
Examples:
IsHAPZeroRingHomomorphismRep
Examples:
IsHapCatOneGroupMorphismRep
Examples:
IsHapCatOneGroupRep
Examples:
IsHapChainComplexRep
Examples:
IsHapChainMapRep
Examples:
IsHapCochainComplexRep
Examples:
IsHapCochainMapRep
Examples:
IsHapCommutativeDiagramRep
Examples:
IsHapConjQuandEltRep
Examples:
IsHapCrossedModuleMorphismRep
Examples:
IsHapCrossedModuleRep
Examples:
IsHapCubicalComplexRep
Examples:
IsHapEquivariantCWComplexRep
Examples:
IsHapEquivariantChainComplexRep
Examples:
IsHapEquivariantChainMapRep
Examples:
IsHapEquivariantNonFreeChainComplexRep
Examples:
IsHapEquivariantSpectralSequencePageRep
Examples:
IsHapFilteredChainComplexRep
Examples:
IsHapFilteredCubicalComplexRep
Examples:
IsHapFilteredGraphRep
Examples:
IsHapFilteredPureCubicalComplexRep
Examples:
IsHapFilteredRegularCWComplexRep
Examples:
IsHapFilteredSimplicialComplexRep
Examples:
IsHapFilteredSparseChainComplexRep
Examples:
IsHapGCocomplexRep
Examples:
IsHapGComplexMapRep
Examples:
IsHapGComplexRep
Examples:
IsHapGraphRep
Examples:
IsHapOppositeElementRep
Examples:
IsHapPureCubicalComplexRep
Examples:
IsHapPureCubicalLinkRep
Examples:
IsHapPurePermutahedralComplexRep
Examples:
IsHapQuandlePresentationRep
Examples:
IsHapQuotientElementRep
Examples:
IsHapRegularCWComplexRep
Examples:
IsHapRegularCWMapRep
Examples:
IsHapResolutionRep
Examples:
IsHapSimplicialComplexRep
Examples:
IsHapSimplicialFreeAbelianGroupRep
Examples:
IsHapSimplicialGroupMorphismRep
Examples:
IsHapSimplicialGroupRep
Examples:
IsHapSimplicialMapRep
Examples:
IsHapSparseChainComplexRep
Examples:
IsHapSparseChainMapRep
Examples:
IsHapSparseMatRep
Examples:
IsHapTorsionSubcomplexRep
Examples:
IsPseudoListRep
Examples:
IdealOfQuadraticIntegers
Examples:
QuadraticNF
Examples:
RingOfQuadraticIntegers
Examples:
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
Examples:
Examples:
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
AdditiveInverseMutable
Examples:
AsFpGroup
Examples:
AsList
Examples:
AsSSortedList
Examples:
BarycentricSubdivision
Examples: 1 , 2
BaseRing
Examples:
Bockstein
Examples: 1 , 2 , 3
CategoryArrow
Examples:
CategoryObject
Examples:
CoboundaryMatrix
Examples:
CoefficientsOfPoincareSeries
Examples:
CoefficientsRing
Examples:
CohomologicalPeriod
Examples: 1
CohomologyClass
Examples: 1 , 2
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
ConnectedComponentsQuandle
Examples:
ConnectedSum
Examples: 1 , 2
CoxeterMatrix
Examples: 1
DefaultFieldOfMatrixGroup
Examples:
DegreeOfRepresentative
Examples:
DerivationImages
Examples:
DerivationRelations
Examples:
DerivationRing
Examples:
Dimensions
Examples:
Enumerator
Examples:
ExcisedPair
Examples:
FilteredRegularCWComplex
Examples: 1
FundamentalGroupWithPathReps
Examples: 1 , 2
GModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
GOuterGroupHomomorphism
Examples: 1 , 2
GOuterGroupHomomorphism
Examples: 1 , 2
Generators
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
GeneratorsOfMagmaWithInverses
Examples:
GeneratorsOfMagmaWithInverses
Examples:
GeneratorsOfPresentationIdeal
Examples:
GradedAlgebraPresentation
Examples:
GradedAlgebraPresentationNC
Examples:
HAPDerivationNC
Examples:
HAPPRIME_HilbertSeries
Examples:
HAPRingHomomorphismByIndeterminateMap
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingToSubringHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPZeroRingHomomorphism
Examples:
HAP_MultiplicativeGenerators
Examples:
HomomorphismsImages
Examples:
IdGroup
Examples: 1 , 2 , 3 , 4 , 5 , 6
IdentityMap
Examples:
ImageOfDerivation
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
IndeterminateAndExponentOfUnivariateMonomial
Examples:
IndeterminateDegrees
Examples:
IndeterminatesOfGradedAlgebraPresentation
Examples:
IndeterminatesOfPolynomial
Examples:
IndexInSL2O
Examples: 1
IndexInSL2Z
Examples:
InnerAutomorphismGroupQuandle
Examples:
InnerAutomorphismGroupQuandleAsPerm
Examples:
Int
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
InverseMutable
Examples:
InverseMutable
Examples:
InverseMutable
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseSameMutability
Examples:
IsAssociatedGradedRing
Examples:
IsConnected
Examples: 1 , 2 , 3
IsHomogeneousQuandle
Examples:
IsLatinQuandle
Examples: 1
IsMonomial
Examples:
IsOne
Examples:
IsPeriodic
Examples: 1 , 2
Kernel
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
KernelOfDerivation
Examples:
MaximumDegreeForPresentation
Examples:
ModPRingBasisAsPolynomials
Examples:
ModPRingGeneratorDegrees
Examples:
ModPRingNiceBasis
Examples:
ModPRingNiceBasisAsPolynomials
Examples:
OneImmutable
Examples:
OneMutable
Examples:
PathComponents
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PreimageOfRingHomomorphism
Examples:
PresentationIdeal
Examples:
PresentationOfGradedStructureConstantAlgebra
Examples: 1
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
Projection
Examples:
PureComplexMeet
Examples:
PureComplexRandomCell
Examples: 1
PureComplexSubcomplex
Examples:
Pushout
Examples:
QuadraticIdeal
Examples: 1
Random
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16
ReduceIdeal
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentationMap
Examples:
RefinedColouring
Examples:
Resolution
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34
RightMultiplicationGroupOfQuandle
Examples: 1 , 2 , 3
RightMultiplicationGroupOfQuandleAsPerm
Examples: 1
RightTransversal
Examples:
RingOfIntegers
Examples: 1
SingularGroebnerBasis
Examples:
SingularPolynomialNormalForm
Examples:
SingularReducedGroebnerBasis
Examples:
SingularSetNormalFormIdeal
Examples:
SingularSetNormalFormIdealNC
Examples:
SparseChainComplexOfPair
Examples:
Sq
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
Standard2Cocycle
Examples:
Standard2Cocycle
Examples:
StandardNCocycle
Examples:
StandardNCocycle
Examples:
StarGraph
Examples:
StarGraphAttr
Examples:
SubspaceBasisRepsByDegree
Examples:
SubspaceDimensionDegree
Examples:
Suspension
Examples: 1 , 2 , 3 , 4 , 5
TensorProductOp
Examples:
TermsOfPolynomial
Examples:
TrivialGModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
Units
Examples:
Units
Examples:
UnivariateMonomialsOfMonomial
Examples:
VertexLink
Examples:
VertexStar
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
WedgeSum
Examples: 1
ZeroMutable
Examples:
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
mod
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
-
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
-
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
/
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
Examples:
Examples:
Examples:
Examples:
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
AbelianInvariants
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
AbelianInvariants
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
BarycentricSubdivision
Examples: 1 , 2
Bockstein
Examples: 1 , 2 , 3
CanonicalRightCosetElement
Examples:
ClosedSurface
Examples: 1
CohomologyRing
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
CohomologyRing
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
ComplexProjectiveSpace
Examples: 1
ConnectedSum
Examples: 1 , 2
ConnectedSum
Examples: 1 , 2
ConnectedSum
Examples: 1 , 2
Dimensions
Examples:
DirectProductOp
Examples:
DirectProductOp
Examples:
DirectProductOp
Examples:
DirectProductOp
Examples:
Discriminant
Examples:
Discriminant
Examples:
Embedding
Examples:
ExpandedComplex
Examples: 1
ExpandedComplex
Examples: 1
ExpandedComplex
Examples: 1
ExpandedComplex
Examples: 1
GDerivedSubgroup
Examples:
Generators
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
HAPRingReductionHomomorphism
Examples:
HAPRingReductionHomomorphism
Examples:
HAP_EquivalenceClasses
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
IndexNC
Examples:
IndexNC
Examples:
InverseMutable
Examples:
InverseMutable
Examples:
InverseMutable
Examples:
InverseSameMutability
Examples:
IsEmpty
Examples:
IsEmpty
Examples:
IsPrime
Examples: 1 , 2
IsomorphismFpGroup
Examples: 1 , 2
Iterator
Examples:
KernelOfDerivation
Examples:
ListOp
Examples:
ListOp
Examples:
LowerGCentralSeries
Examples:
NaturalHomomorphism
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7
Norm
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16
Norm
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16
OneImmutable
Examples:
OneImmutable
Examples:
Order
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
Order
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentHomology
Examples: 1 , 2
PersistentHomology
Examples: 1 , 2
Position
Examples: 1 , 2
Position
Examples: 1 , 2
Position
Examples: 1 , 2
PositionCanonical
Examples:
PreimageOfRingHomomorphism
Examples:
Projection
Examples:
PureComplexMeet
Examples:
PureComplexRandomCell
Examples: 1
PureComplexSubcomplex
Examples:
QuadraticIdeal
Examples: 1
Range
Examples: 1 , 2
RankMatrixDestructive
Examples:
ReduceIdeal
Examples:
ReduceIdeal
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentationMap
Examples:
ReducedPolynomialRingPresentationMap
Examples:
ReducedPolynomialRingPresentationMap
Examples:
RefinedColouring
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal_alt
Examples:
SingularPolynomialNormalForm
Examples:
SparseChainComplexOfPair
Examples:
Sphere
Examples: 1
SubspaceBasisRepsByDegree
Examples:
SubspaceDimensionDegree
Examples:
Suspension
Examples: 1 , 2 , 3 , 4 , 5
TensorProductOp
Examples:
TensorProductOp
Examples:
TensorProductOp
Examples:
Trace
Examples:
Units
Examples:
WedgeSum
Examples: 1
WedgeSum
Examples: 1
WedgeSum
Examples: 1
[]
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
[]
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
[]
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
mod
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39
PathComponentOfSimplicialComplex
Examples:
ResolutionSL2ZInvertedInteger
Examples:
ViewGraph
Examples:
InfoHAPprime
Examples:
ASY_PATH
Examples:
AutomorphismGroupAsCrossedModule
Examples:
BROWSER_PATH
Examples:
CATONEGROUP_DATA_PERM
Examples:
CATONEGROUP_DATA_SIZE
Examples:
Cedric_PlanarDiagram
Examples:
ChildKill
Examples:
DISPLAY_PATH
Examples:
DOT_PATH
Examples:
FilteredSimplicialComplexToFilteredCWComplex
Examples:
GradedAlgebraPresentationType
Examples:
HAPTEMPORARYFUNCTION
Examples:
HAP_Knots
Examples:
HAP_ROOT
Examples:
HapCatOneGroup
Examples:
HapCatOneGroupFamily
Examples:
HapCatOneGroupMorphism
Examples:
HapCatOneGroupMorphismFamily
Examples:
HapChainComplex
Examples:
HapChainComplexFamily
Examples:
HapChainMap
Examples:
HapChainMapFamily
Examples:
HapCochainComplex
Examples:
HapCochainComplexFamily
Examples:
HapCochainMap
Examples:
HapCochainMapFamily
Examples:
HapCommutativeDiagram
Examples:
HapCommutativeDiagramFamily
Examples:
HapCrossedModule
Examples:
HapCrossedModuleFamily
Examples:
HapCrossedModuleMorphism
Examples:
HapCrossedModuleMorphismFamily
Examples:
HapCubicalComplex
Examples:
HapCubicalComplexFamily
Examples:
HapEquivariantCWComplex
Examples:
HapEquivariantCWComplexFamily
Examples:
HapEquivariantChainMap
Examples:
HapEquivariantChainMapFamily
Examples:
HapFPGModule
Examples:
HapFPGModuleHomomorphism
Examples:
HapFilteredChainComplex
Examples:
HapFilteredChainComplexFamily
Examples:
HapFilteredCubicalComplex
Examples:
HapFilteredCubicalComplexFamily
Examples:
HapFilteredGraph
Examples:
HapFilteredGraphFamily
Examples:
HapFilteredPureCubicalComplex
Examples:
HapFilteredPureCubicalComplexFamily
Examples:
HapFilteredRegularCWComplex
Examples:
HapFilteredRegularCWComplexFamily
Examples:
HapFilteredSimplicialComplex
Examples:
HapFilteredSimplicialComplexFamily
Examples:
HapFilteredSparseChainComplex
Examples:
HapFilteredSparseChainComplexFamily
Examples:
HapGChainComplex
Examples:
HapGCocomplex
Examples:
HapGCocomplexFamily
Examples:
HapGComplex
Examples:
HapGComplexFamily
Examples:
HapGlobalDeclarationsAreAlreadyLoaded
Examples:
HapGraph
Examples:
HapGraphFamily
Examples:
HapNonFreeResolution
Examples:
HapOppositeElement
Examples:
HapOppositeElementFamily
Examples:
HapPureCubicalComplex
Examples:
HapPureCubicalComplexFamily
Examples:
HapPureCubicalLink
Examples:
HapPureCubicalLinkFamily
Examples:
HapPurePermutahedralComplex
Examples:
HapPurePermutahedralComplexFamily
Examples:
HapQuotientElement
Examples:
HapQuotientElementFamily
Examples:
HapRegularCWComplex
Examples:
HapRegularCWComplexFamily
Examples:
HapRegularCWMap
Examples:
HapRegularCWMapFamily
Examples:
HapResolution
Examples:
HapResolutionFamily
Examples:
HapSimplicialComplex
Examples:
HapSimplicialComplexFamily
Examples:
HapSimplicialGroup
Examples:
HapSimplicialGroupFamily
Examples:
HapSimplicialGroupMorphism
Examples:
HapSimplicialGroupMorphismFamily
Examples:
HapSimplicialMap
Examples:
HapSimplicialMapFamily
Examples:
HapSparseChainComplex
Examples:
HapSparseChainComplexFamily
Examples:
HapSparseChainMap
Examples:
HapSparseChainMapFamily
Examples:
HapSparseMat
Examples:
HapSparseMatFamily
Examples:
HomomorphismOfDirectProduct
Examples:
IDQUASICATONEGROUP_DATA
Examples:
IsHapChain
Examples:
IsHapCochain
Examples:
IsHapComplex
Examples:
IsHapFPGModule
Examples:
IsHapFPGModuleHomomorphism
Examples:
IsHapGChainComplex
Examples:
IsHapMap
Examples:
IsHapNonFreeResolution
Examples:
NEATO_PATH
Examples:
NerveOfCover
Examples:
POLYMAKE_PATH
Examples:
PseudoList
Examples:
PseudoListFamily
Examples:
QUASICATONEGROUP_DATA_NOT
Examples:
QUASICATONEGROUP_DATA_SIZE
Examples:
ReadBioData
Examples:
SMALLQUASICATONEGROUP_DATA
Examples:
CATONEGROUP_DATA
Examples:
COMPILED
Examples:
Cedric_XYXYConnQuan
Examples:
Cedric_XYXYQuandles
Examples:
CommutingProbability
Examples:
GroupIsomorphismRepresentatives
Examples:
HAPAAA
Examples:
HAPBARCODE
Examples:
HAPDerivationType
Examples:
HAPPRIME_LastLHSBicomplexSize
Examples:
HAPPRIME_ShuffleRandomSource
Examples:
HAPRIGXXX
Examples:
HAP_GCOMPLEX_LIST
Examples:
HAP_GCOMPLEX_SETUP
Examples:
HAP_MOVES_DIM_2
Examples:
HAP_MOVES_DIM_3
Examples:
HAP_PERMMOVES_DIM_2
Examples:
HAP_PERMMOVES_DIM_3
Examples:
HAP_PoincareCubeManifoldEdgeDegrees
Examples:
HAP_Test
Examples:
HAP_XYXYXYXY
Examples:
HAPchildFunctionToggle
Examples:
HAPchildToggle
Examples:
HAPchildren
Examples:
HapConjQuandElt
Examples:
HapConjQuandEltFamily
Examples:
HapConstantPolRing
Examples:
HapEquivariantChainComplex
Examples:
HapEquivariantChainComplexFamily
Examples:
HapEquivariantNonFreeChainComplex
Examples:
HapEquivariantNonFreeChainComplexFamily
Examples:
HapEquivariantSpectralSequencePage
Examples:
HapEquivariantSpectralSequencePageFamily
Examples:
HapGComplexMap
Examples:
HapGComplexMapFamily
Examples:
HapQuandlePresentation
Examples:
HapQuandlePresentationFamily
Examples:
HapRightTransversalSL2ZSubgroup
Examples:
HapSL2ZConjugatedSubgroup
Examples:
HapSL2ZSubgroup
Examples:
HapSimplicialFreeAbelianGroup
Examples:
HapSimplicialFreeAbelianGroupFamily
Examples:
HapTorsionSubcomplex
Examples:
HapTorsionSubcomplexFamily
Examples:
IntersectionForm
Examples: 1 , 2
IsHapRightTransversalSL2ZSubgroup
Examples:
IsHapSL2ConjugatedSubgroup
Examples:
IsHapSL2OSubgroup
Examples:
IsHapSL2Subgroup
Examples:
IsHapSL2ZConjugatedSubgroup
Examples:
IsHapSL2ZSubgroup
Examples:
RefinedColouring_gc
Examples:
RefinedColouring_group
Examples:
RegularCWAssociahedronWithDiscreteVectorField
Examples:
RegularCWClosedSurface
Examples:
RegularCWComplexWithAttachedRelatorCells
Examples: 1
RegularCWComplex_DisjointUnion
Examples:
RegularCWComplex_WedgeSum
Examples:
RegularCWDiscreteSpace
Examples: 1
RegularCWSphere
Examples: 1
SimplicialComplexConnectedSum
Examples:
SphericalKnotComplementWithBoundary
Examples:
StemGroups
Examples:
cat
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28
cnt
Examples:
hap_cr
Examples:
2CoreducedChainComplex
Examples:
AbelianGOuterGroupToCatOneGroup
Examples:
AbelianInvariantsToTorsionCoefficients
Examples:
AcyclicSubcomplexOfPureCubicalComplex
Examples: 1
AddFirst
Examples:
AdjointGroupOfQuandle
Examples: 1
AlgebraicReduction_alt
Examples:
AppendFreeWord
Examples:
ArcDiagramToTubularSurface
Examples:
ArcPresentation
Examples: 1 , 2 , 3 , 4
ArcPresentationToKnottedOneComplex
Examples:
AreIsoclinic
Examples:
ArrayIterateBreak
Examples:
ArrayValueKD
Examples:
AsWordInSL2Z
Examples:
AutomorphismGroupQuandleAsPerm_nonconnected
Examples:
AverageInnerProduct
Examples:
BarCodeOfFilteredPureCubicalComplex
Examples:
BarCodeOfSymmetricMatrix
Examples:
BarComplexOfMonoid
Examples: 1
BarycentricallySimplifiedComplex
Examples: 1
BarycentricallySubdivideCell
Examples:
BettinumbersOfPureCubicalComplex_dim_2
Examples:
BocksteinHomology
Examples:
BogomolovMultiplier_viaTensorSquare
Examples:
BoundariesOfFilteredChainComplex
Examples:
BoundaryOfPureComplex
Examples: 1
BoundaryOfPureRegularCWComplex
Examples: 1
BoundaryOfRegularCWCell
Examples:
BoundaryPairOfPureRegularCWComplex
Examples:
BoundingPureComplex
Examples:
CR_ChainMapFromCocycle
Examples:
CR_CocyclesAndCoboundaries
Examples:
CR_IntegralClassToCocycle
Examples:
CR_IntegralCocycleToClass
Examples:
CR_IntegralCohomology
Examples:
CR_IntegralCycleToClass
Examples:
CWMap2ChainMap
Examples:
CWSubcomplexToRegularCWMap
Examples: 1
CanonicalRightCountableCosetElement
Examples:
CatOneGroupByCrossedModule
Examples:
CatOneGroupsByGroup
Examples:
CcElement
Examples:
Cedric_CheckThirdAxiomRow
Examples:
Cedric_ConjugateQuandleElement
Examples:
Cedric_FromAutGeReToAutQe
Examples:
Cedric_IsHomomorphism
Examples:
Cedric_Permute
Examples:
Cedric_Quandle1
Examples:
Cedric_Quandle2
Examples:
Cedric_Quandle3
Examples:
Cedric_Quandle4
Examples:
Cedric_Quandle5
Examples:
Cedric_Quandle6
Examples:
CellComplexBoundaryCheck
Examples:
ChainComplexEquivalenceOfRegularCWComplex
Examples: 1
ChainComplexHomeomorphismEquivalenceOfRegularCWComplex
Examples:
ChainComplexOfCubicalComplex
Examples:
ChainComplexOfCubicalPair
Examples:
ChainComplexOfRegularCWComplexWithVectorField
Examples:
ChainComplexOfSimplicialComplex
Examples:
ChainComplexOfSimplicialPair
Examples:
ChainComplexOfUniversalCover
Examples: 1 , 2 , 3 , 4
ChainComplexToSparseChainComplex
Examples:
ChainComplexWithChainHomotopy
Examples:
ChainMapOfCubicalPairs
Examples:
ChainMapOfRegularCWMap
Examples:
ChildRestart
Examples:
ClosureCWCell
Examples:
CoClass
Examples:
CocriticalCellsOfRegularCWComplex
Examples:
CocyclicHadamardMatrices
Examples: 1
CocyclicMatrices
Examples:
CohomologicalData
Examples: 1
CohomologyHomomorphism
Examples: 1 , 2
CohomologyHomomorphismOfRepresentation
Examples:
CohomologyModule_AsAutModule
Examples:
CohomologyModule_Gmap
Examples:
CohomologyRingOfSimplicialComplex
Examples:
CohomologySimplicialFreeAbelianGroup
Examples:
CombinationDisjointSets
Examples:
CommonEndomorphisms
Examples:
ComplementOfPureComplex
Examples: 1
ComplementaryBasis
Examples:
ComposeCWMaps
Examples:
CompositionOfFpGModuleHomomorphisms
Examples:
CompositionSeriesOfFpGModule
Examples:
ConcentricallyFilteredPureCubicalComplex
Examples: 1
CongruenceSubgroup
Examples: 1 , 2
ConjugateSL2ZGroup
Examples:
ConnectingCohomologyHomomorphism
Examples: 1 , 2
ContractArray
Examples:
ContractCubicalComplex_dim2
Examples:
ContractCubicalComplex_dim3
Examples:
ContractMatrix
Examples:
ContractPermArray
Examples:
ContractPermMatrix
Examples:
ContractPureComplex
Examples:
ContractSimplicialComplex
Examples:
ContractSimplicialComplex_alt
Examples:
ContractedFilteredPureCubicalComplex
Examples: 1
ContractedFilteredRegularCWComplex
Examples:
ContractedRegularCWComplex
Examples:
ContractibleSL2ZComplex
Examples:
ContractibleSL2ZComplex_alt
Examples:
ContractibleSubArray
Examples:
ContractibleSubMatrix
Examples:
ContractibleSubcomplexOfPureCubicalComplex
Examples: 1
ConvertTorsionComplexToGcomplex
Examples:
CosetsQuandle
Examples:
CountingCellsOfBaryCentricSubdivision
Examples:
CountingNumberOfCellsInBaryCentricSubdivision
Examples:
CoxeterComplex_alt
Examples: 1
CoxeterDiagramMatCoxeterGroup
Examples:
CoxeterWythoffComplex
Examples:
CreateCoxeterMatrix
Examples: 1
CriticalBoundaryCells
Examples: 1
CropPureComplex
Examples:
CrossedInvariant
Examples:
CrossedModuleByAutomorphismGroup
Examples:
CrossedModuleByCatOneGroup
Examples:
CrossedModuleByNormalSubgroup
Examples: 1
CrystCubicalTiling
Examples:
CrystFinitePartOfMatrix
Examples:
CrystGFullBasis
Examples: 1 , 2
CrystGcomplex
Examples: 1 , 2
CrystMatrix
Examples:
CrystTranslationMatrixToVector
Examples:
CrystallographicComplex
Examples:
CubicalToPermutahedralArray
Examples:
CupProductMatrix
Examples:
CupProductOfRegularCWComplex
Examples: 1
CupProductOfRegularCWComplex_alt
Examples: 1
CuspidalCohomologyHomomorphism
Examples:
CyclesOfFilteredChainComplex
Examples:
DavisComplex
Examples: 1 , 2 , 3 , 4
DeformationRetract
Examples:
DensityMat
Examples:
DerivedGroupOfQuandle
Examples: 1
DiagonalChainMap
Examples:
DijkgraafWittenInvariant
Examples: 1
DirectProductOfGroupHomomorphisms
Examples:
DirectProductOfRegularCWComplexes
Examples:
DirectProductOfRegularCWComplexesLazy
Examples:
DirectProductOfSimplicialComplexes
Examples:
DisplayCSVknotFile
Examples:
DisplayVectorField
Examples:
E1CohomologyPage
Examples:
E1HomologyPage
Examples:
EilenbergMacLaneSimplicialFreeAbelianGroup
Examples:
ElementsLazy
Examples:
EquivariantCWComplexToRegularCWComplex
Examples: 1 , 2 , 3 , 4
EquivariantCWComplexToRegularCWMap
Examples: 1 , 2 , 3
EquivariantCWComplexToResolution
Examples:
ExcisedPureCubicalPair_dim_2
Examples:
ExtractTorsionSubcomplex
Examples:
FactorizationNParts
Examples:
FilteredChainComplexToFilteredSparseChainComplex
Examples:
FilteredCubicalComplexToFilteredRegularCWComplex
Examples: 1
FilteredPureCubicalComplexToCubicalComplex
Examples: 1
FiltrationTermOfGraph
Examples:
FiltrationTermOfPureCubicalComplex
Examples:
FiltrationTermOfRegularCWComplex
Examples:
FirstHomologyCoveringCokernels
Examples: 1 , 2
FirstHomologySimplicialTwoComplex
Examples:
FourthHomotopyGroupOfDoubleSuspensionB
Examples:
Fp2PcpAbelianGroupHomomorphism
Examples:
FpGModuleSection
Examples:
FreeZGResolution
Examples:
FundamentalGroupOfRegularCWComplex
Examples: 1
FundamentalGroupOfRegularCWMap
Examples:
FundamentalGroupSimplicialTwoComplex
Examples:
FundamentalMultiplesOfStiefelWhitneyClasses
Examples:
GChainComplex
Examples: 1
GModuleAsCatOneGroup
Examples:
GammaSubgroupInSL3Z
Examples:
GaussCodeOfPureCubicalKnot
Examples: 1 , 2 , 3 , 4
GetTorsionPowerSubcomplex
Examples:
GetTorsionSubcomplex
Examples:
GraphOfRegularCWComplex
Examples:
GraphOfResolutionsTest
Examples:
GraphOfResolutionsToGroups
Examples:
GroupHomomorphismToMatrix
Examples:
HAPCocontractRegularCWComplex
Examples:
HAPContractFilteredRegularCWComplex
Examples:
HAPContractRegularCWComplex
Examples:
HAPContractRegularCWComplex_Alt
Examples:
HAPPRIME_Algebra2Polynomial
Examples:
HAPPRIME_CohomologyRingWithoutResolution
Examples:
HAPPRIME_CombineIndeterminateMaps
Examples:
HAPPRIME_GradedAlgebraPresentationAvoidingIndeterminates
Examples:
HAPPRIME_LHSSpectralSequence
Examples:
HAPPRIME_MakeEliminationOrdering
Examples:
HAPPRIME_MapPolynomialIndeterminates
Examples:
HAPPRIME_Polynomial2Algebra
Examples:
HAPPRIME_RingHomomorphismsAreComposable
Examples:
HAPPRIME_SModule
Examples:
HAPPRIME_SingularGroebnerBasis
Examples:
HAPPRIME_SingularReducedGroebnerBasis
Examples:
HAPPRIME_SwitchGradedAlgebraRing
Examples:
HAPPRIME_SwitchPolynomialIndeterminates
Examples:
HAPPRIME_VersionWithSVN
Examples:
HAPRegularCWComplex
Examples:
HAPRegularCWPolytope
Examples:
HAPRemoveCellFromRegularCWComplex
Examples:
HAPRemoveVectorField
Examples:
HAPRingModIdeal
Examples:
HAPRingModIdealObj
Examples:
HAPTietzeReduction_Inf
Examples:
HAPTietzeReduction_OneLevel
Examples:
HAPTietzeReduction_OneStep
Examples:
HAP_4x4MatTo2x2Mat
Examples:
HAP_AddGenerator
Examples:
HAP_AllHomomorphisms
Examples:
HAP_AppendTo
Examples:
HAP_AssociahedronBoundaries
Examples:
HAP_AssociahedronCells
Examples:
HAP_BaryCentricSubdivisionGComplex
Examples:
HAP_BaryCentricSubdivisionRegularCWComplex
Examples:
HAP_Binlisttoint
Examples:
HAP_ChainComplexToEquivariantChainComplex
Examples:
HAP_CocyclesAndCoboundaries
Examples:
HAP_CongruenceSubgroupGamma0
Examples: 1
HAP_CongruenceSubgroupGamma0Ideal
Examples:
HAP_ConjugatedCongruenceSubgroup
Examples:
HAP_ConjugatedCongruenceSubgroupGamma0
Examples:
HAP_CriticalCellsDirected
Examples:
HAP_CupProductOfPresentation
Examples:
HAP_CupProductOfSimplicialComplex
Examples:
HAP_DisplayPlanarTree
Examples:
HAP_DisplayVectorField
Examples:
HAP_ElementsSL2Zfn
Examples:
HAP_FunctorialModPCohomologyRing
Examples:
HAP_GenericSL2OSubgroup
Examples:
HAP_GenericSL2ZConjugatedSubgroup
Examples:
HAP_GenericSL2ZSubgroup
Examples:
HAP_HomToIntModP_ChainComplex
Examples:
HAP_HomToIntModP_ChainMap
Examples:
HAP_HomToIntModP_CochainComplex
Examples:
HAP_HomToIntModP_CochainMap
Examples:
HAP_HomeoLinkingForm
Examples:
HAP_Hurewicz1Cycles
Examples:
HAP_IntegralClassToCocycle
Examples:
HAP_IntegralCocycleToClass
Examples:
HAP_IntegralCohomology
Examples:
HAP_KK_AddCell
Examples:
HAP_KnotGroupInv
Examples:
HAP_MyIsBieberbachFpGroup
Examples:
HAP_MyIsFiniteFpGroup
Examples:
HAP_MyIsInfiniteFpGroup
Examples:
HAP_PHI
Examples:
HAP_PermBinlisttoint
Examples:
HAP_PlanarBinaryTrees
Examples:
HAP_PlanarTreeGraft
Examples:
HAP_PlanarTreeJoin
Examples:
HAP_PlanarTreeLeaves
Examples:
HAP_PlanarTreeRemovableEdge
Examples:
HAP_PlanarTreeRemoveEdge
Examples:
HAP_PrimePartModified
Examples:
HAP_PrincipalCongruenceSubgroup
Examples:
HAP_PrincipalCongruenceSubgroupIdeal
Examples:
HAP_PrintTo
Examples:
HAP_PureComplexSubcomplex
Examples:
HAP_PureCubicalPairToCWMap
Examples:
HAP_ResolutionAbelianGroupFromInvariants
Examples:
HAP_RightTransversalSL2ZSubgroups
Examples:
HAP_SL2OSubgroupTree_slow
Examples:
HAP_SL2SubgroupTree
Examples:
HAP_SL2TreeDisplay
Examples:
HAP_SL2ZSubgroupTree_fast
Examples:
HAP_SL2ZSubgroupTree_slow
Examples:
HAP_Sequence2Boundaries
Examples:
HAP_SimplicialPairToCWMap
Examples:
HAP_SimplicialProjectivePlane
Examples:
HAP_SimplicialTorus
Examples:
HAP_SimplifiedGaussCode
Examples:
HAP_StiefelWhitney
Examples:
HAP_SylowSubgroups
Examples:
HAP_Tensor
Examples:
HAP_TransversalCongruenceSubgroups
Examples:
HAP_TransversalCongruenceSubgroupsIdeal
Examples:
HAP_TransversalCongruenceSubgroupsIdeal_alt
Examples:
HAP_TransversalGamma0SubgroupsIdeal
Examples:
HAP_Triangulation
Examples:
HAP_TzPair
Examples:
HAP_WedgeSumOfSimplicialComplexes
Examples:
HAP_bockstein
Examples:
HAP_chain_bockstein
Examples:
HAP_coho_isoms
Examples:
HAP_nxnMatTo2nx2nMat
Examples:
HadamardGraph
Examples:
HapExample
Examples:
HapFile
Examples: 1 , 2 , 3 , 4
HasTrivialPostnikovInvariant
Examples:
HeckeOperator
Examples:
HeckeOperatorWeight2
Examples:
HenonOrbit
Examples: 1
HomToGModule_hom
Examples:
HomToInt_ChainComplex
Examples:
HomToInt_ChainMap
Examples:
HomToInt_CochainComplex
Examples:
HomToModPModule
Examples: 1
HomogeneousPolynomials
Examples:
HomogeneousPolynomials_Bianchi
Examples:
HomologicalGroupDecomposition
Examples: 1
HomologyOfPureCubicalComplex
Examples:
HomologyPbs
Examples:
HomologySimplicialFreeAbelianGroup
Examples:
HomomorphismAsMatrix
Examples:
HomotopyCatOneGroup
Examples:
HomotopyCrossedModule
Examples:
HomotopyEquivalentLargerSubArray
Examples:
HomotopyEquivalentLargerSubArray3D
Examples:
HomotopyEquivalentLargerSubMatrix
Examples:
HomotopyEquivalentLargerSubPermArray
Examples:
HomotopyEquivalentLargerSubPermArray3D
Examples:
HomotopyEquivalentLargerSubPermMatrix
Examples:
HomotopyEquivalentMaximalPureSubcomplex
Examples:
HomotopyEquivalentMinimalPureSubcomplex
Examples:
HomotopyEquivalentSmallerSubArray
Examples:
HomotopyEquivalentSmallerSubArray3D
Examples:
HomotopyEquivalentSmallerSubMatrix
Examples:
HomotopyEquivalentSmallerSubPermArray
Examples:
HomotopyEquivalentSmallerSubPermArray3D
Examples:
HomotopyEquivalentSmallerSubPermMatrix
Examples:
HomotopyLowerCentralSeries
Examples:
HomotopyLowerCentralSeriesOfCrossedModule
Examples:
HomotopyTruncation
Examples:
HopfSatohSurface
Examples: 1 , 2
HybridSubdivision
Examples:
IdCatOneGroup
Examples: 1
IdCrossedModule
Examples:
IdQuasiCatOneGroup
Examples:
IdQuasiCrossedModule
Examples:
IdentifyKnot
Examples: 1
IdentityAmongRelators
Examples: 1 , 2
ImageOfGOuterGroupHomomorphism
Examples: 1 , 2
ImageOfMap
Examples:
InducedSteenrodHomomorphisms
Examples:
IntegerSimplicialComplex
Examples: 1
IntegralCellularHomology
Examples:
IntegralCohomology
Examples:
IntegralCohomologyOfCochainComplex
Examples:
IntegralHomology
Examples: 1
IntegralHomologyOfChainComplex
Examples:
IntersectionCWSubcomplex
Examples:
IsClosedManifold
Examples: 1
IsContractibleCube_higherdims
Examples:
IsCrystSameOrbit
Examples:
IsCrystSufficientLattice
Examples:
IsHadamardMatrix
Examples:
IsIntList
Examples:
IsIsomorphismOfAbelianFpGroups
Examples: 1
IsMetricMatrix
Examples:
IsPeriodicSpaceGroup
Examples: 1
IsPureComplex
Examples:
IsPureRegularCWComplex
Examples:
IsRigid
Examples: 1
IsRigidOnRight
Examples:
IsSphericalCoxeterGroup
Examples:
IsoclinismClasses
Examples: 1 , 2
IsomorphismCatOneGroups
Examples: 1
IsomorphismCrossedModules
Examples:
KernelOfGOuterGroupHomomorphism
Examples: 1 , 2
KernelOfMap
Examples:
KernelWG
Examples:
KinkArc2Presentation
Examples:
KnotComplement
Examples: 1 , 2 , 3
KnotComplementWithBoundary
Examples: 1 , 2 , 3
LazyList
Examples:
LefschetzNumberOfChainMap
Examples:
Lfunction
Examples:
LiftColouredSurface
Examples:
LiftedRegularCWMap
Examples:
LinearHomomorphismsZZPersistenceMat
Examples:
LinkingForm
Examples: 1
LinkingFormHomeomorphismInvariant
Examples: 1
LinkingFormHomotopyInvariant
Examples: 1
ListsOfCellsToRegularCWComplex
Examples:
LowDimensionalCupProduct
Examples: 1
MakeHAPprimeDoc
Examples:
ManifoldType
Examples: 1
Mapper
Examples: 1
Mapper_alt
Examples:
MatrixSize
Examples:
MaximalSimplicesOfSimplicialComplex
Examples: 1
MaximalSphericalCoxeterSubgroupsFromAbove
Examples:
MinimizeRingRelations
Examples:
Mod2SteenrodAlgebra
Examples: 1
ModPCohomologyRing_alt
Examples:
ModPCohomologyRing_part_1
Examples:
ModPCohomologyRing_part_2
Examples:
ModPRingGeneratorsAlt
Examples:
ModPSteenrodAlgebra
Examples: 1 , 2
ModularCohomology
Examples:
ModularEquivariantChainMap
Examples:
ModularHomology
Examples:
Nil3TensorSquare
Examples:
NonFreeResolutionFiniteSubgroup
Examples:
NonManifoldVertices
Examples:
NonRegularCWBoundary
Examples:
NonabelianSymmetricKernel_alt
Examples: 1
NonabelianSymmetricSquare_inf
Examples:
NonabelianTensorProduct_Inf
Examples:
NonabelianTensorProduct_alt
Examples:
NonabelianTensorSquareAsCatOneGroup
Examples:
NonabelianTensorSquareAsCrossedModule
Examples:
NonabelianTensorSquare_inf
Examples:
NoncrossingPartitionsLatticeDisplay
Examples: 1
NullspaceSparseMatDestructive
Examples:
NumberConnectedQuandles
Examples:
NumberGeneratorsOfGroupHomology
Examples:
NumberOfCrossingsInArc2Presentation
Examples:
NumberOfHomomorphisms_connected
Examples:
NumberOfHomomorphisms_groups
Examples:
NumberOfPrimeKnots
Examples: 1 , 2
NumberSmallCatOneGroups
Examples:
NumberSmallCrossedModules
Examples:
NumberSmallQuasiCatOneGroups
Examples:
NumberSmallQuasiCrossedModules
Examples:
OppositeGroup
Examples:
OrthogonalizeBasisByAverageInnerProduct
Examples:
PCentre
Examples:
PSubgroupGChainComplex
Examples:
PSubgroupSimplicialComplex
Examples:
PUpperCentralSeries
Examples:
PartialIsoclinismClasses
Examples: 1
PartsOfQuadraticInteger
Examples:
PathComponentOfPureComplex
Examples: 1
PathComponentsCWSubcomplex
Examples:
PathComponentsOfSimplicialComplex_alt
Examples:
PathObjectForChainComplex
Examples: 1
PermutahedralComplexToRegularCWComplex
Examples: 1
PermutahedralToCubicalArray
Examples:
PersistentBettiNumbersViaContractions
Examples:
PersistentHomologyOfCrossedModule
Examples:
PersistentHomologyOfFilteredPureCubicalComplex_alt
Examples:
PersistentHomologyOfFilteredSparseChainComplex
Examples: 1 , 2
PersistentHomologyOfPureCubicalComplex_Alt
Examples:
PersistentHomologyOfQuotientGroupSeries_Int
Examples:
PiZeroOfRegularCWComplex
Examples:
PoincareBipyramidCWComplex
Examples: 1
PoincareCubeCWComplex
Examples: 1
PoincareCubeCWComplexNS
Examples: 1
PoincareDodecahedronCWComplex
Examples: 1
PoincareOctahedronCWComplex
Examples: 1
PoincarePrismCWComplex
Examples: 1
PoincareSeriesApproximation
Examples:
PoincareSeries_alt
Examples:
PolymakeFaceLattice
Examples:
PolytopalRepresentationComplex
Examples:
PrankAlt
Examples:
PresentationOfResolution_alt
Examples:
PrimePartDerivedFunctorHomomorphism
Examples:
PrimePartDerivedFunctorViaSubgroupChain
Examples:
PrimePartDerivedTwistedFunctor
Examples:
PrintAlgebraWordAsPolynomial
Examples:
PrintTorsionSubcomplex
Examples:
PureComplex
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
PureCubicalComplexToCubicalComplex
Examples: 1 , 2
PureCubicalLink
Examples: 1 , 2
PushoutOfFpGroups
Examples:
QuadraticCharacter
Examples:
QuadraticNumberField
Examples: 1
QuandleIsomorphismRepresentatives
Examples:
QuotientByTorsionSubcomplex
Examples:
QuotientChainMap
Examples:
QuotientGroup
Examples:
QuotientQuasiIsomorph
Examples:
RadicalSeriesOfResolution
Examples:
RandomArc2Presentation
Examples:
RandomCellOfPureComplex
Examples:
ReadLinkImageAsGaussCode
Examples: 1
ReadMatrixAsPureCubicalComplex
Examples:
ReduceGenerators
Examples:
ReduceGenerators_alt
Examples:
ReflectedCubicalKnot
Examples: 1 , 2 , 3 , 4
RegularCWAssociahedron
Examples:
RegularCWComplexComplement
Examples: 1
RegularCWComplexWithRemovedCell
Examples: 1
RegularCWComplex_AttachCellDestructive
Examples: 1
RegularCWCube
Examples:
RegularCWMapToCWSubcomplex
Examples:
RegularCWOrbitPolytope
Examples:
RegularCWPermutahedron
Examples:
RegularCWPolygon
Examples:
RegularCWSimplex
Examples:
RelativeCentralQuotientSpaceGroup
Examples:
RelativeGroupHomology
Examples:
RelativeRightTransversal
Examples:
RemoveStar
Examples:
ResolutionAbelianGroup_alt
Examples:
ResolutionAbelianPcpGroup
Examples:
ResolutionAffineCrystGroup
Examples:
ResolutionBoundaryOfWordOnRight
Examples:
ResolutionDirectProductLazy
Examples:
ResolutionFiniteCyclicGroup
Examples:
ResolutionGL2QuadraticIntegers
Examples:
ResolutionGL3QuadraticIntegers
Examples:
ResolutionGenericGroup
Examples:
ResolutionInfiniteCyclicGroup
Examples:
ResolutionPGL2QuadraticIntegers
Examples:
ResolutionPGL3QuadraticIntegers
Examples:
ResolutionPSL2QuadraticIntegers
Examples: 1
ResolutionPrimePowerGroupSparse
Examples:
ResolutionSL2QuadraticIntegers
Examples: 1
ResolutionSL2ZConjugated
Examples:
ResolutionSL2Z_alt
Examples:
ResolutionSpaceGroup
Examples: 1
ResolutionToEquivariantCWComplex
Examples:
ResolutionToResolutionOfFpGroup
Examples: 1
SL2QuadraticIntegers
Examples: 1
SL2ZResolution
Examples:
SL2ZResolution_alt
Examples:
SL2ZTree
Examples:
SL2ZmElementsDecomposition
Examples:
SequentialRegularCWComplexComplement
Examples:
SignatureOfSymmetricMatrix
Examples: 1
SignedPermutationGroup
Examples: 1
SimplicesToSimplicialComplex
Examples: 1 , 2 , 3 , 4
SimplicialComplexToRegularCWComplex_alt
Examples:
SimplicialK3Surface
Examples: 1
SimplicialNerveOfFilteredGraph
Examples: 1 , 2
SimplicialNerveOfTwoComplex
Examples:
SimplifiedQuandlePresentation
Examples:
SimplifiedRegularCWComplex
Examples: 1
SimplifiedSparseChainComplex
Examples:
SmallCatOneGroup
Examples: 1
SmallCrossedModule
Examples:
SmallQuasiCatOneGroup
Examples:
SmallQuasiCrossedModule
Examples:
SmoothedFpGroup
Examples:
SparseChainComplexOfCubicalComplex
Examples:
SparseChainComplexOfCubicalPair
Examples:
SparseChainComplexOfFilteredRegularCWComplex
Examples:
SparseChainComplexOfRegularCWComplexWithVectorField
Examples:
SparseChainComplexOfSimplicialComplex
Examples:
SparseChainComplexToChainComplex
Examples:
SparseChainMapOfCubicalPairs
Examples:
SparseFilteredChainComplexOfFilteredCubicalComplex
Examples:
SparseFilteredChainComplexOfFilteredSimplicialComplex
Examples: 1 , 2
SparseMattoMat
Examples: 1
SparseRowReduce
Examples:
SphericalKnotComplement
Examples: 1
Spin
Examples:
SpunAboutHyperplane
Examples:
SpunKnotComplement
Examples: 1
SpunLinkComplement
Examples:
StrongGeneratorsOfDerivedSubgroup
Examples:
StrongGeneratorsOfDerivedSubgroup_alt
Examples:
StructuralCopyOfFilteredRegularCWComplex
Examples:
SubQuasiIsomorph
Examples:
SubdivideCell
Examples:
Suspension_alt
Examples:
SylowSubgroupOfCatOneGroup
Examples:
SymmetricCentre
Examples:
SymmetricCommutativityGroup
Examples:
TensorNonFreeResolutionWithRationals
Examples:
TensorWithBurnsideRing
Examples: 1 , 2
TensorWithComplexRepresentationRing
Examples: 1 , 2
TensorWithComplexRepresentationRingOnRight
Examples:
TensorWithIntegersModPSparse
Examples:
TensorWithIntegersOverSubgroup
Examples: 1 , 2 , 3 , 4
TensorWithIntegersSparse
Examples:
TensorWithModPModule
Examples: 1
TestHapBook
Examples:
TestHapQuick
Examples:
ThickenedHEPureCubicalComplex
Examples:
ThickenedPureComplex
Examples: 1
ThickenedPureCubicalComplex_dim2
Examples:
ThirdHomotopyGroupOfSuspensionB_alt
Examples: 1
ThreeManifoldViaDehnSurgery
Examples: 1
ThreeManifoldWithBoundary
Examples: 1
TransferChainMap
Examples: 1
TransferCochainMap
Examples: 1
TranslationSubGroup
Examples:
TreeOfResolutionsToSL2Zcomplex
Examples:
TruncatedRegularCWComplex
Examples:
Tube
Examples:
TupleOrbitReps
Examples:
TupleOrbitReps_perm
Examples:
TwistedResolution
Examples:
UnboundedArrayAssign
Examples:
UnitBall
Examples:
UnitCubicalBall
Examples:
UnitPermutahedralBall
Examples:
UniversalBarCodeEval
Examples:
UniversalCover
Examples: 1 , 2 , 3 , 4
VectorToCrystMatrix
Examples:
VectorsToOneSkeleton
Examples: 1
VerticesOfRegularCWCell
Examples:
View3dPureComplex
Examples:
ViewArc2Presentation
Examples:
ViewPureComplex
Examples:
VirtuallySimplicialSubdivision
Examples:
WeakCommutativityGroup
Examples:
WirtingerGroup
Examples: 1
WirtingerGroup_gc
Examples:
WordModP
Examples:
ZigZagContractedFilteredPureCubicalComplex
Examples:
ZigZagContractedPureComplex
Examples: 1
Sq
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10
Category_Of_Groups
Examples: 1
ElementsSL2Z
Examples:
HAP_knot_census
Examples:
PathComponentOfSimplicialComplex
Examples:
ResolutionSL2ZInvertedInteger
Examples:
ViewGraph
Examples:
AsFpGroup
Examples:
BarycentricSubdivision
Examples: 1 , 2
Bockstein
Examples: 1 , 2 , 3
CategoryArrow
Examples:
CategoryObject
Examples:
ClosedSurface
Examples: 1
CoboundaryMatrix
Examples:
CoefficientsOfPoincareSeries
Examples:
CohomologyClass
Examples: 1 , 2
CohomologyRing
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
ComplexProjectiveSpace
Examples: 1
CompositionRingHomomorphism
Examples:
ConnectedComponentsQuandle
Examples:
ConnectedSum
Examples: 1 , 2
DegreeOfRepresentative
Examples:
Dimensions
Examples:
ExcisedPair
Examples:
FilteredRegularCWComplex
Examples: 1
FundamentalGroupWithPathReps
Examples: 1 , 2
GDerivedSubgroup
Examples:
GModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
GOuterGroupHomomorphism
Examples: 1 , 2
GOuterGroupHomomorphism
Examples: 1 , 2
GradedAlgebraPresentation
Examples:
GradedAlgebraPresentationNC
Examples:
HAPDerivationNC
Examples:
HAPRingHomomorphismByIndeterminateMap
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingToSubringHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPZeroRingHomomorphism
Examples:
HAP_EquivalenceClasses
Examples:
HomomorphismsImages
Examples:
ImageOfDerivation
Examples:
ImageOfRingHomomorphism
Examples:
IsAssociatedGradedRing
Examples:
KernelOfDerivation
Examples:
LowerGCentralSeries
Examples:
PathComponents
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentHomology
Examples: 1 , 2
PersistentHomology
Examples: 1 , 2
PersistentHomology
Examples: 1 , 2
PoincareSeriesAutoMem
Examples:
PoincareSeriesAutoMem
Examples:
PoincareSeriesAutoMemStop
Examples:
PolynomialToRModuleRep
Examples:
PreimageOfRingHomomorphism
Examples:
PureComplexMeet
Examples:
PureComplexRandomCell
Examples:
PureComplexSubcomplex
Examples:
Pushout
Examples:
QuadraticIdeal
Examples: 1
ReduceIdeal
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentationMap
Examples:
RefinedColouring
Examples:
Resolution
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34
RightTransversal_alt
Examples:
RingOfIntegers
Examples: 1
SingularPolynomialNormalForm
Examples:
SingularSetNormalFormIdeal
Examples:
SingularSetNormalFormIdealNC
Examples:
SparseChainComplexOfPair
Examples:
Sphere
Examples: 1
Sq
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10
Standard2Cocycle
Examples:
Standard2Cocycle
Examples:
StandardNCocycle
Examples:
StandardNCocycle
Examples:
StarGraph
Examples:
SubspaceBasisRepsByDegree
Examples:
SubspaceDimensionDegree
Examples:
Suspension
Examples: 1 , 2 , 3 , 4 , 5
TrivialGModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
VertexLink
Examples:
VertexStar
Examples:
WedgeSum
Examples: 1
TensorProductOp
Examples:
Arity
Examples:
AssociatedNumberField
Examples:
AssociatedRing
Examples:
Base
Examples: 1
BaseElement
Examples:
BaseRing
Examples:
Cocycle
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7
CoefficientModule
Examples:
CohomologicalPeriod
Examples: 1
CoxeterMatrix
Examples: 1
DerivationImages
Examples:
DerivationRelations
Examples:
DerivationRing
Examples:
Fibre
Examples:
FibreElement
Examples:
Generators
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
GeneratorsOfPresentationIdeal
Examples:
GradedAlgebraPresentationFamily
Examples:
HAPDerivationFamily
Examples:
HAPPRIME_HilbertSeries
Examples:
HAPRingHomomorphismFamily
Examples:
HAP_MultiplicativeGenerators
Examples:
IdentityMap
Examples:
ImageGenerators
Examples:
ImagePolynomialRing
Examples:
ImageRelations
Examples:
InCcGroup
Examples:
IndeterminateAndExponentOfUnivariateMonomial
Examples:
IndeterminateDegrees
Examples:
IndeterminatesOfGradedAlgebraPresentation
Examples:
IndeterminatesOfPolynomial
Examples:
IndexInSL2O
Examples: 1
InnerAutomorphismGroupQuandle
Examples:
InnerAutomorphismGroupQuandleAsPerm
Examples:
InverseRingHomomorphism
Examples:
IsConnected
Examples: 1 , 2 , 3
IsHomogeneousQuandle
Examples:
IsLatinQuandle
Examples: 1
MaximumDegreeForPresentation
Examples:
ModPRingBasisAsPolynomials
Examples:
ModPRingGeneratorDegrees
Examples:
ModPRingNiceBasis
Examples:
ModPRingNiceBasisAsPolynomials
Examples:
Module
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12
NormOfIdeal
Examples:
OuterAction
Examples:
OuterGroup
Examples: 1 , 2 , 3 , 4
PresentationIdeal
Examples:
PresentationOfGradedStructureConstantAlgebra
Examples: 1
Pullbacks
Examples:
Pushouts
Examples:
RightMultiplicationGroupOfQuandle
Examples: 1 , 2 , 3
RightMultiplicationGroupOfQuandleAsPerm
Examples: 1
SingularGroebnerBasis
Examples:
SingularReducedGroebnerBasis
Examples:
SourceGenerators
Examples:
SourcePolynomialRing
Examples:
SourceRelations
Examples:
StarGraphAttr
Examples:
TermsOfPolynomial
Examples:
UnivariateMonomialsOfMonomial
Examples:
CoefficientsRing
Examples:
ElementsFamily
Examples:
IndexInSL2Z
Examples:
Name
Examples: 1 , 2 , 3 , 4 , 5 , 6
Order
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
IsAbelianCategory
Examples:
IsAdditiveCategory
Examples:
IsCategoryName
Examples:
IsCcGroup
Examples:
IsCrystTranslationSubGroup
Examples:
IsGOuterGroup
Examples:
IsGOuterGroupHomomorphism
Examples:
IsGammaSubgroupInSL3Z
Examples:
IsHAPRationalMatrixGroup
Examples:
IsHAPRationalSpecialLinearGroup
Examples:
IsIdealOfQuadraticIntegers
Examples:
IsPeriodic
Examples: 1 , 2
IsPseudoListWithFunction
Examples:
IsQuadraticNumberField
Examples:
IsRingOfQuadraticIntegers
Examples:
IsStandard2Cocycle
Examples:
IsStandardNCocycle
Examples:
IsCcElement
Examples:
IsGradedAlgebraPresentation
Examples:
IsHAPDerivation
Examples:
IsHAPRingHomomorphism
Examples:
IsHAPRingModIdealObj
Examples:
IsHapCatOneGroup
Examples:
IsHapCatOneGroupMorphism
Examples:
IsHapChainComplex
Examples:
IsHapChainMap
Examples:
IsHapCochainComplex
Examples:
IsHapCochainMap
Examples:
IsHapCommutativeDiagram
Examples:
IsHapConjQuandElt
Examples:
IsHapCrossedModule
Examples:
IsHapCrossedModuleMorphism
Examples:
IsHapCubicalComplex
Examples:
IsHapEquivariantCWComplex
Examples:
IsHapEquivariantChainComplex
Examples:
IsHapEquivariantChainMap
Examples:
IsHapEquivariantNonFreeChainComplex
Examples:
IsHapEquivariantSpectralSequencePage
Examples:
IsHapFilteredChainComplex
Examples:
IsHapFilteredCubicalComplex
Examples:
IsHapFilteredGraph
Examples:
IsHapFilteredPureCubicalComplex
Examples:
IsHapFilteredRegularCWComplex
Examples:
IsHapFilteredSimplicialComplex
Examples:
IsHapFilteredSparseChainComplex
Examples:
IsHapGCocomplex
Examples:
IsHapGComplex
Examples:
IsHapGComplexMap
Examples:
IsHapGraph
Examples:
IsHapOppositeElement
Examples:
IsHapPureCubicalComplex
Examples:
IsHapPureCubicalLink
Examples:
IsHapPurePermutahedralComplex
Examples:
IsHapQuandlePresentation
Examples:
IsHapQuotientElement
Examples:
IsHapRegularCWComplex
Examples:
IsHapRegularCWMap
Examples:
IsHapResolution
Examples:
IsHapSimplicialComplex
Examples:
IsHapSimplicialFreeAbelianGroup
Examples:
IsHapSimplicialGroup
Examples:
IsHapSimplicialGroupMorphism
Examples:
IsHapSimplicialMap
Examples:
IsHapSparseChainComplex
Examples:
IsHapSparseChainMap
Examples:
IsHapSparseMat
Examples:
IsHapTorsionSubcomplex
Examples:
IsPseudoList
Examples:
IsCcElementRep
Examples:
IsGradedAlgebraPresentationRep
Examples:
IsHAPDerivationRep
Examples:
IsHAPIdealRep
Examples:
IsHAPRingHomomorphismIndeterminateMapRep
Examples:
IsHAPRingReductionHomomorphismRep
Examples:
IsHAPRingToSubringHomomorphismRep
Examples:
IsHAPSubringToRingHomomorphismRep
Examples:
IsHAPZeroRingHomomorphismRep
Examples:
IsHapCatOneGroupMorphismRep
Examples:
IsHapCatOneGroupRep
Examples:
IsHapChainComplexRep
Examples:
IsHapChainMapRep
Examples:
IsHapCochainComplexRep
Examples:
IsHapCochainMapRep
Examples:
IsHapCommutativeDiagramRep
Examples:
IsHapConjQuandEltRep
Examples:
IsHapCrossedModuleMorphismRep
Examples:
IsHapCrossedModuleRep
Examples:
IsHapCubicalComplexRep
Examples:
IsHapEquivariantCWComplexRep
Examples:
IsHapEquivariantChainComplexRep
Examples:
IsHapEquivariantChainMapRep
Examples:
IsHapEquivariantNonFreeChainComplexRep
Examples:
IsHapEquivariantSpectralSequencePageRep
Examples:
IsHapFilteredChainComplexRep
Examples:
IsHapFilteredCubicalComplexRep
Examples:
IsHapFilteredGraphRep
Examples:
IsHapFilteredPureCubicalComplexRep
Examples:
IsHapFilteredRegularCWComplexRep
Examples:
IsHapFilteredSimplicialComplexRep
Examples:
IsHapFilteredSparseChainComplexRep
Examples:
IsHapGCocomplexRep
Examples:
IsHapGComplexMapRep
Examples:
IsHapGComplexRep
Examples:
IsHapGraphRep
Examples:
IsHapOppositeElementRep
Examples:
IsHapPureCubicalComplexRep
Examples:
IsHapPureCubicalLinkRep
Examples:
IsHapPurePermutahedralComplexRep
Examples:
IsHapQuandlePresentationRep
Examples:
IsHapQuotientElementRep
Examples:
IsHapRegularCWComplexRep
Examples:
IsHapRegularCWMapRep
Examples:
IsHapResolutionRep
Examples:
IsHapSimplicialComplexRep
Examples:
IsHapSimplicialFreeAbelianGroupRep
Examples:
IsHapSimplicialGroupMorphismRep
Examples:
IsHapSimplicialGroupRep
Examples:
IsHapSimplicialMapRep
Examples:
IsHapSparseChainComplexRep
Examples:
IsHapSparseChainMapRep
Examples:
IsHapSparseMatRep
Examples:
IsHapTorsionSubcomplexRep
Examples:
IsPseudoListRep
Examples:
IdealOfQuadraticIntegers
Examples:
QuadraticNF
Examples:
RingOfQuadraticIntegers
Examples:
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
Examples:
Examples:
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
AdditiveInverseMutable
Examples:
AsFpGroup
Examples:
AsList
Examples:
AsSSortedList
Examples:
BarycentricSubdivision
Examples: 1 , 2
BaseRing
Examples:
Bockstein
Examples: 1 , 2 , 3
CategoryArrow
Examples:
CategoryObject
Examples:
CoboundaryMatrix
Examples:
CoefficientsOfPoincareSeries
Examples:
CoefficientsRing
Examples:
CohomologicalPeriod
Examples: 1
CohomologyClass
Examples: 1 , 2
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
ConnectedComponentsQuandle
Examples:
ConnectedSum
Examples: 1 , 2
CoxeterMatrix
Examples: 1
DefaultFieldOfMatrixGroup
Examples:
DegreeOfRepresentative
Examples:
DerivationImages
Examples:
DerivationRelations
Examples:
DerivationRing
Examples:
Dimensions
Examples:
Enumerator
Examples:
ExcisedPair
Examples:
FilteredRegularCWComplex
Examples: 1
FundamentalGroupWithPathReps
Examples: 1 , 2
GModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
GOuterGroupHomomorphism
Examples: 1 , 2
GOuterGroupHomomorphism
Examples: 1 , 2
Generators
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
GeneratorsOfMagmaWithInverses
Examples:
GeneratorsOfMagmaWithInverses
Examples:
GeneratorsOfPresentationIdeal
Examples:
GradedAlgebraPresentation
Examples:
GradedAlgebraPresentationNC
Examples:
HAPDerivationNC
Examples:
HAPPRIME_HilbertSeries
Examples:
HAPRingHomomorphismByIndeterminateMap
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingToSubringHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPZeroRingHomomorphism
Examples:
HAP_MultiplicativeGenerators
Examples:
HomomorphismsImages
Examples:
IdGroup
Examples: 1 , 2 , 3 , 4 , 5 , 6
IdentityMap
Examples:
ImageOfDerivation
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
IndeterminateAndExponentOfUnivariateMonomial
Examples:
IndeterminateDegrees
Examples:
IndeterminatesOfGradedAlgebraPresentation
Examples:
IndeterminatesOfPolynomial
Examples:
IndexInSL2O
Examples: 1
IndexInSL2Z
Examples:
InnerAutomorphismGroupQuandle
Examples:
InnerAutomorphismGroupQuandleAsPerm
Examples:
Int
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37
InverseMutable
Examples:
InverseMutable
Examples:
InverseMutable
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseSameMutability
Examples:
IsAssociatedGradedRing
Examples:
IsConnected
Examples: 1 , 2 , 3
IsHomogeneousQuandle
Examples:
IsLatinQuandle
Examples: 1
IsMonomial
Examples:
IsOne
Examples:
IsPeriodic
Examples: 1 , 2
Kernel
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
KernelOfDerivation
Examples:
MaximumDegreeForPresentation
Examples:
ModPRingBasisAsPolynomials
Examples:
ModPRingGeneratorDegrees
Examples:
ModPRingNiceBasis
Examples:
ModPRingNiceBasisAsPolynomials
Examples:
OneImmutable
Examples:
OneMutable
Examples:
PathComponents
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PreimageOfRingHomomorphism
Examples:
PresentationIdeal
Examples:
PresentationOfGradedStructureConstantAlgebra
Examples: 1
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
Projection
Examples:
PureComplexMeet
Examples:
PureComplexRandomCell
Examples:
PureComplexSubcomplex
Examples:
Pushout
Examples:
QuadraticIdeal
Examples: 1
Random
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16
ReduceIdeal
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentationMap
Examples:
RefinedColouring
Examples:
Resolution
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34
RightMultiplicationGroupOfQuandle
Examples: 1 , 2 , 3
RightMultiplicationGroupOfQuandleAsPerm
Examples: 1
RightTransversal
Examples:
RingOfIntegers
Examples: 1
SingularGroebnerBasis
Examples:
SingularPolynomialNormalForm
Examples:
SingularReducedGroebnerBasis
Examples:
SingularSetNormalFormIdeal
Examples:
SingularSetNormalFormIdealNC
Examples:
SparseChainComplexOfPair
Examples:
Sq
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10
Standard2Cocycle
Examples:
Standard2Cocycle
Examples:
StandardNCocycle
Examples:
StandardNCocycle
Examples:
StarGraph
Examples:
StarGraphAttr
Examples:
SubspaceBasisRepsByDegree
Examples:
SubspaceDimensionDegree
Examples:
Suspension
Examples: 1 , 2 , 3 , 4 , 5
TensorProductOp
Examples:
TermsOfPolynomial
Examples:
TrivialGModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
Units
Examples:
Units
Examples:
UnivariateMonomialsOfMonomial
Examples:
VertexLink
Examples:
VertexStar
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
WedgeSum
Examples: 1
ZeroMutable
Examples:
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
mod
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
-
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
-
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
/
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
Examples:
Examples:
Examples:
Examples:
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
AbelianInvariants
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
AbelianInvariants
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
BarycentricSubdivision
Examples: 1 , 2
Bockstein
Examples: 1 , 2 , 3
CanonicalRightCosetElement
Examples:
ClosedSurface
Examples: 1
CohomologyRing
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
CohomologyRing
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
ComplexProjectiveSpace
Examples: 1
ConnectedSum
Examples: 1 , 2
ConnectedSum
Examples: 1 , 2
ConnectedSum
Examples: 1 , 2
Dimensions
Examples:
DirectProductOp
Examples:
DirectProductOp
Examples:
DirectProductOp
Examples:
DirectProductOp
Examples:
Discriminant
Examples:
Discriminant
Examples:
Embedding
Examples:
GDerivedSubgroup
Examples:
Generators
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
HAPRingReductionHomomorphism
Examples:
HAPRingReductionHomomorphism
Examples:
HAP_EquivalenceClasses
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
IndexNC
Examples:
IndexNC
Examples:
InverseMutable
Examples:
InverseMutable
Examples:
InverseMutable
Examples:
InverseSameMutability
Examples:
IsEmpty
Examples:
IsEmpty
Examples:
IsPrime
Examples: 1 , 2
IsomorphismFpGroup
Examples: 1 , 2
Iterator
Examples:
KernelOfDerivation
Examples:
ListOp
Examples:
ListOp
Examples:
LowerGCentralSeries
Examples:
NaturalHomomorphism
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7
Norm
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16
Norm
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16
OneImmutable
Examples:
OneImmutable
Examples:
Order
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
Order
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentHomology
Examples: 1 , 2
PersistentHomology
Examples: 1 , 2
Position
Examples: 1 , 2
Position
Examples: 1 , 2
Position
Examples: 1 , 2
PositionCanonical
Examples:
PreimageOfRingHomomorphism
Examples:
Projection
Examples:
PureComplexMeet
Examples:
PureComplexRandomCell
Examples:
PureComplexSubcomplex
Examples:
QuadraticIdeal
Examples: 1
Range
Examples: 1 , 2
RankMatrixDestructive
Examples:
ReduceIdeal
Examples:
ReduceIdeal
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentationMap
Examples:
ReducedPolynomialRingPresentationMap
Examples:
ReducedPolynomialRingPresentationMap
Examples:
RefinedColouring
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal_alt
Examples:
SingularPolynomialNormalForm
Examples:
SparseChainComplexOfPair
Examples:
Sphere
Examples: 1
SubspaceBasisRepsByDegree
Examples:
SubspaceDimensionDegree
Examples:
Suspension
Examples: 1 , 2 , 3 , 4 , 5
TensorProductOp
Examples:
TensorProductOp
Examples:
TensorProductOp
Examples:
Trace
Examples:
Units
Examples:
WedgeSum
Examples: 1
WedgeSum
Examples: 1
WedgeSum
Examples: 1
[]
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
[]
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
[]
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
mod
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39
InfoHAPprime
Examples:
ASY_PATH
Examples:
AutomorphismGroupAsCrossedModule
Examples:
BROWSER_PATH
Examples:
CATONEGROUP_DATA_PERM
Examples:
CATONEGROUP_DATA_SIZE
Examples:
Cedric_PlanarDiagram
Examples:
ChildKill
Examples:
DISPLAY_PATH
Examples:
DOT_PATH
Examples:
FilteredSimplicialComplexToFilteredCWComplex
Examples:
GradedAlgebraPresentationType
Examples:
HAPTEMPORARYFUNCTION
Examples:
HAP_Knots
Examples:
HAP_ROOT
Examples:
HapCatOneGroup
Examples:
HapCatOneGroupFamily
Examples:
HapCatOneGroupMorphism
Examples:
HapCatOneGroupMorphismFamily
Examples:
HapChainComplex
Examples:
HapChainComplexFamily
Examples:
HapChainMap
Examples:
HapChainMapFamily
Examples:
HapCochainComplex
Examples:
HapCochainComplexFamily
Examples:
HapCochainMap
Examples:
HapCochainMapFamily
Examples:
HapCommutativeDiagram
Examples:
HapCommutativeDiagramFamily
Examples:
HapCrossedModule
Examples:
HapCrossedModuleFamily
Examples:
HapCrossedModuleMorphism
Examples:
HapCrossedModuleMorphismFamily
Examples:
HapCubicalComplex
Examples:
HapCubicalComplexFamily
Examples:
HapEquivariantCWComplex
Examples:
HapEquivariantCWComplexFamily
Examples:
HapEquivariantChainMap
Examples:
HapEquivariantChainMapFamily
Examples:
HapFPGModule
Examples:
HapFPGModuleHomomorphism
Examples:
HapFilteredChainComplex
Examples:
HapFilteredChainComplexFamily
Examples:
HapFilteredCubicalComplex
Examples:
HapFilteredCubicalComplexFamily
Examples:
HapFilteredGraph
Examples:
HapFilteredGraphFamily
Examples:
HapFilteredPureCubicalComplex
Examples:
HapFilteredPureCubicalComplexFamily
Examples:
HapFilteredRegularCWComplex
Examples:
HapFilteredRegularCWComplexFamily
Examples:
HapFilteredSimplicialComplex
Examples:
HapFilteredSimplicialComplexFamily
Examples:
HapFilteredSparseChainComplex
Examples:
HapFilteredSparseChainComplexFamily
Examples:
HapGChainComplex
Examples:
HapGCocomplex
Examples:
HapGCocomplexFamily
Examples:
HapGComplex
Examples:
HapGComplexFamily
Examples:
HapGlobalDeclarationsAreAlreadyLoaded
Examples:
HapGraph
Examples:
HapGraphFamily
Examples:
HapNonFreeResolution
Examples:
HapOppositeElement
Examples:
HapOppositeElementFamily
Examples:
HapPureCubicalComplex
Examples:
HapPureCubicalComplexFamily
Examples:
HapPureCubicalLink
Examples:
HapPureCubicalLinkFamily
Examples:
HapPurePermutahedralComplex
Examples:
HapPurePermutahedralComplexFamily
Examples:
HapQuotientElement
Examples:
HapQuotientElementFamily
Examples:
HapRegularCWComplex
Examples:
HapRegularCWComplexFamily
Examples:
HapRegularCWMap
Examples:
HapRegularCWMapFamily
Examples:
HapResolution
Examples:
HapResolutionFamily
Examples:
HapSimplicialComplex
Examples:
HapSimplicialComplexFamily
Examples:
HapSimplicialGroup
Examples:
HapSimplicialGroupFamily
Examples:
HapSimplicialGroupMorphism
Examples:
HapSimplicialGroupMorphismFamily
Examples:
HapSimplicialMap
Examples:
HapSimplicialMapFamily
Examples:
HapSparseChainComplex
Examples:
HapSparseChainComplexFamily
Examples:
HapSparseChainMap
Examples:
HapSparseChainMapFamily
Examples:
HapSparseMat
Examples:
HapSparseMatFamily
Examples:
HomomorphismOfDirectProduct
Examples:
IDQUASICATONEGROUP_DATA
Examples:
IsHapChain
Examples:
IsHapCochain
Examples:
IsHapComplex
Examples:
IsHapFPGModule
Examples:
IsHapFPGModuleHomomorphism
Examples:
IsHapGChainComplex
Examples:
IsHapMap
Examples:
IsHapNonFreeResolution
Examples:
NEATO_PATH
Examples:
NerveOfCover
Examples:
POLYMAKE_PATH
Examples:
PseudoList
Examples:
PseudoListFamily
Examples:
QUASICATONEGROUP_DATA_NOT
Examples:
QUASICATONEGROUP_DATA_SIZE
Examples:
ReadBioData
Examples:
SMALLQUASICATONEGROUP_DATA
Examples:
CATONEGROUP_DATA
Examples:
COMPILED
Examples:
Cedric_XYXYConnQuan
Examples:
Cedric_XYXYQuandles
Examples:
CommutingProbability
Examples:
GroupIsomorphismRepresentatives
Examples:
HAPAAA
Examples:
HAPBARCODE
Examples:
HAPDerivationType
Examples:
HAPPRIME_LastLHSBicomplexSize
Examples:
HAPPRIME_ShuffleRandomSource
Examples:
HAPRIGXXX
Examples:
HAP_GCOMPLEX_LIST
Examples:
HAP_GCOMPLEX_SETUP
Examples:
HAP_MOVES_DIM_2
Examples:
HAP_MOVES_DIM_3
Examples:
HAP_PERMMOVES_DIM_2
Examples:
HAP_PERMMOVES_DIM_3
Examples:
HAP_PoincareCubeManifoldEdgeDegrees
Examples:
HAP_Test
Examples:
HAP_XYXYXYXY
Examples:
HAPchildFunctionToggle
Examples:
HAPchildToggle
Examples:
HAPchildren
Examples:
HapConjQuandElt
Examples:
HapConjQuandEltFamily
Examples:
HapConstantPolRing
Examples:
HapEquivariantChainComplex
Examples:
HapEquivariantChainComplexFamily
Examples:
HapEquivariantNonFreeChainComplex
Examples:
HapEquivariantNonFreeChainComplexFamily
Examples:
HapEquivariantSpectralSequencePage
Examples:
HapEquivariantSpectralSequencePageFamily
Examples:
HapGComplexMap
Examples:
HapGComplexMapFamily
Examples:
HapQuandlePresentation
Examples:
HapQuandlePresentationFamily
Examples:
HapRightTransversalSL2ZSubgroup
Examples:
HapSL2ZConjugatedSubgroup
Examples:
HapSL2ZSubgroup
Examples:
HapSimplicialFreeAbelianGroup
Examples:
HapSimplicialFreeAbelianGroupFamily
Examples:
HapTorsionSubcomplex
Examples:
HapTorsionSubcomplexFamily
Examples:
IntersectionForm
Examples: 1 , 2
IsHapRightTransversalSL2ZSubgroup
Examples:
IsHapSL2ConjugatedSubgroup
Examples:
IsHapSL2OSubgroup
Examples:
IsHapSL2Subgroup
Examples:
IsHapSL2ZConjugatedSubgroup
Examples:
IsHapSL2ZSubgroup
Examples:
RefinedColouring_gc
Examples:
RefinedColouring_group
Examples:
RegularCWAssociahedronWithDiscreteVectorField
Examples:
RegularCWClosedSurface
Examples:
RegularCWComplexWithAttachedRelatorCells
Examples: 1
RegularCWComplex_DisjointUnion
Examples:
RegularCWComplex_WedgeSum
Examples:
RegularCWDiscreteSpace
Examples: 1
RegularCWSphere
Examples: 1
SimplicialComplexConnectedSum
Examples:
SphericalKnotComplementWithBoundary
Examples:
StemGroups
Examples:
cat
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28
cnt
Examples:
hap_cr
Examples:
2CoreducedChainComplex
Examples:
AbelianGOuterGroupToCatOneGroup
Examples:
AbelianInvariantsToTorsionCoefficients
Examples:
AcyclicSubcomplexOfPureCubicalComplex
Examples: 1
AddFirst
Examples:
AdjointGroupOfQuandle
Examples: 1
AlgebraicReduction_alt
Examples:
AppendFreeWord
Examples:
ArcDiagramToTubularSurface
Examples:
ArcPresentation
Examples: 1 , 2 , 3 , 4
ArcPresentationToKnottedOneComplex
Examples:
AreIsoclinic
Examples:
ArrayIterateBreak
Examples:
ArrayValueKD
Examples:
AsWordInSL2Z
Examples:
AutomorphismGroupQuandleAsPerm_nonconnected
Examples:
AverageInnerProduct
Examples:
BarCodeOfFilteredPureCubicalComplex
Examples:
BarCodeOfSymmetricMatrix
Examples:
BarComplexOfMonoid
Examples: 1
BarycentricallySimplifiedComplex
Examples: 1
BarycentricallySubdivideCell
Examples:
BettinumbersOfPureCubicalComplex_dim_2
Examples:
BocksteinHomology
Examples:
BogomolovMultiplier_viaTensorSquare
Examples:
BoundariesOfFilteredChainComplex
Examples:
BoundaryOfPureComplex
Examples: 1
BoundaryOfPureRegularCWComplex
Examples: 1
BoundaryOfRegularCWCell
Examples:
BoundaryPairOfPureRegularCWComplex
Examples:
BoundingPureComplex
Examples:
CR_ChainMapFromCocycle
Examples:
CR_CocyclesAndCoboundaries
Examples:
CR_IntegralClassToCocycle
Examples:
CR_IntegralCocycleToClass
Examples:
CR_IntegralCohomology
Examples:
CR_IntegralCycleToClass
Examples:
CWMap2ChainMap
Examples:
CWSubcomplexToRegularCWMap
Examples: 1
CanonicalRightCountableCosetElement
Examples:
CatOneGroupByCrossedModule
Examples:
CatOneGroupsByGroup
Examples:
CcElement
Examples:
Cedric_CheckThirdAxiomRow
Examples:
Cedric_ConjugateQuandleElement
Examples:
Cedric_FromAutGeReToAutQe
Examples:
Cedric_IsHomomorphism
Examples:
Cedric_Permute
Examples:
Cedric_Quandle1
Examples:
Cedric_Quandle2
Examples:
Cedric_Quandle3
Examples:
Cedric_Quandle4
Examples:
Cedric_Quandle5
Examples:
Cedric_Quandle6
Examples:
CellComplexBoundaryCheck
Examples:
ChainComplexEquivalenceOfRegularCWComplex
Examples: 1
ChainComplexHomeomorphismEquivalenceOfRegularCWComplex
Examples:
ChainComplexOfCubicalComplex
Examples:
ChainComplexOfCubicalPair
Examples:
ChainComplexOfRegularCWComplexWithVectorField
Examples:
ChainComplexOfSimplicialComplex
Examples:
ChainComplexOfSimplicialPair
Examples:
ChainComplexOfUniversalCover
Examples: 1 , 2 , 3 , 4
ChainComplexToSparseChainComplex
Examples:
ChainComplexWithChainHomotopy
Examples:
ChainMapOfCubicalPairs
Examples:
ChainMapOfRegularCWMap
Examples:
ChevalleyEilenbergComplexOfModule
Examples:
ChildRestart
Examples:
ClosureCWCell
Examples:
CoClass
Examples:
CocriticalCellsOfRegularCWComplex
Examples:
CocyclicHadamardMatrices
Examples: 1
CocyclicMatrices
Examples:
CohomologicalData
Examples: 1
CohomologyHomomorphism
Examples: 1 , 2
CohomologyHomomorphismOfRepresentation
Examples:
CohomologyModule_AsAutModule
Examples:
CohomologyModule_Gmap
Examples:
CohomologyRingOfSimplicialComplex
Examples:
CohomologySimplicialFreeAbelianGroup
Examples:
CombinationDisjointSets
Examples:
CommonEndomorphisms
Examples:
ComplementOfPureComplex
Examples: 1
ComplementaryBasis
Examples:
ComposeCWMaps
Examples:
CompositionOfFpGModuleHomomorphisms
Examples:
CompositionSeriesOfFpGModule
Examples:
ConcentricallyFilteredPureCubicalComplex
Examples: 1
CongruenceSubgroup
Examples: 1 , 2
ConjugateSL2ZGroup
Examples:
ConnectingCohomologyHomomorphism
Examples: 1 , 2
ContractArray
Examples:
ContractCubicalComplex_dim2
Examples:
ContractCubicalComplex_dim3
Examples:
ContractMatrix
Examples:
ContractPermArray
Examples:
ContractPermMatrix
Examples:
ContractPureComplex
Examples:
ContractSimplicialComplex
Examples:
ContractSimplicialComplex_alt
Examples:
ContractedFilteredPureCubicalComplex
Examples: 1
ContractedFilteredRegularCWComplex
Examples:
ContractedRegularCWComplex
Examples:
ContractibleSL2ZComplex
Examples:
ContractibleSL2ZComplex_alt
Examples:
ContractibleSubArray
Examples:
ContractibleSubMatrix
Examples:
ContractibleSubcomplexOfPureCubicalComplex
Examples: 1
ConvertTorsionComplexToGcomplex
Examples:
CosetsQuandle
Examples:
CountingCellsOfBaryCentricSubdivision
Examples:
CountingNumberOfCellsInBaryCentricSubdivision
Examples:
CoxeterComplex_alt
Examples: 1
CoxeterDiagramMatCoxeterGroup
Examples:
CoxeterWythoffComplex
Examples:
CreateCoxeterMatrix
Examples: 1
CriticalBoundaryCells
Examples: 1
CropPureComplex
Examples:
CrossedInvariant
Examples:
CrossedModuleByAutomorphismGroup
Examples:
CrossedModuleByCatOneGroup
Examples:
CrossedModuleByNormalSubgroup
Examples: 1
CrystCubicalTiling
Examples:
CrystFinitePartOfMatrix
Examples:
CrystGFullBasis
Examples: 1 , 2
CrystGcomplex
Examples: 1 , 2
CrystMatrix
Examples:
CrystTranslationMatrixToVector
Examples:
CrystallographicComplex
Examples:
CubicalToPermutahedralArray
Examples:
CupProductMatrix
Examples:
CupProductOfRegularCWComplex
Examples: 1
CupProductOfRegularCWComplex_alt
Examples: 1
CuspidalCohomologyHomomorphism
Examples:
CyclesOfFilteredChainComplex
Examples:
DavisComplex
Examples: 1 , 2 , 3 , 4
DeformationRetract
Examples:
DensityMat
Examples:
DerivedGroupOfQuandle
Examples: 1
DiagonalChainMap
Examples:
DijkgraafWittenInvariant
Examples: 1
DirectProductOfGroupHomomorphisms
Examples:
DirectProductOfRegularCWComplexes
Examples:
DirectProductOfRegularCWComplexesLazy
Examples:
DirectProductOfSimplicialComplexes
Examples:
DisplayCSVknotFile
Examples:
DisplayVectorField
Examples:
E1CohomologyPage
Examples:
E1HomologyPage
Examples:
EilenbergMacLaneSimplicialFreeAbelianGroup
Examples:
ElementsLazy
Examples:
EquivariantCWComplexToRegularCWComplex
Examples: 1 , 2 , 3 , 4
EquivariantCWComplexToRegularCWMap
Examples: 1 , 2 , 3
EquivariantCWComplexToResolution
Examples:
ExcisedPureCubicalPair_dim_2
Examples:
ExtractTorsionSubcomplex
Examples:
FactorizationNParts
Examples:
FilteredChainComplexToFilteredSparseChainComplex
Examples:
FilteredCubicalComplexToFilteredRegularCWComplex
Examples: 1
FilteredPureCubicalComplexToCubicalComplex
Examples: 1
FiltrationTermOfGraph
Examples:
FiltrationTermOfPureCubicalComplex
Examples:
FiltrationTermOfRegularCWComplex
Examples:
FiltrationTerms
Examples: 1
FirstHomologyCoveringCokernels
Examples: 1 , 2
FirstHomologySimplicialTwoComplex
Examples:
FourthHomotopyGroupOfDoubleSuspensionB
Examples:
Fp2PcpAbelianGroupHomomorphism
Examples:
FpGModuleSection
Examples:
FreeZGResolution
Examples:
FundamentalGroupOfRegularCWComplex
Examples: 1
FundamentalGroupOfRegularCWMap
Examples:
FundamentalGroupSimplicialTwoComplex
Examples:
FundamentalMultiplesOfStiefelWhitneyClasses
Examples:
GChainComplex
Examples: 1
GModuleAsCatOneGroup
Examples:
GammaSubgroupInSL3Z
Examples:
GaussCodeOfPureCubicalKnot
Examples: 1 , 2 , 3 , 4
GetTorsionPowerSubcomplex
Examples:
GetTorsionSubcomplex
Examples:
GraphOfRegularCWComplex
Examples:
GraphOfResolutionsTest
Examples:
GraphOfResolutionsToGroups
Examples:
GroupHomomorphismToMatrix
Examples:
HAPCocontractRegularCWComplex
Examples:
HAPContractFilteredRegularCWComplex
Examples:
HAPContractRegularCWComplex
Examples:
HAPContractRegularCWComplex_Alt
Examples:
HAPPRIME_Algebra2Polynomial
Examples:
HAPPRIME_CohomologyRingWithoutResolution
Examples:
HAPPRIME_CombineIndeterminateMaps
Examples:
HAPPRIME_GradedAlgebraPresentationAvoidingIndeterminates
Examples:
HAPPRIME_LHSSpectralSequence
Examples:
HAPPRIME_MakeEliminationOrdering
Examples:
HAPPRIME_MapPolynomialIndeterminates
Examples:
HAPPRIME_Polynomial2Algebra
Examples:
HAPPRIME_RingHomomorphismsAreComposable
Examples:
HAPPRIME_SModule
Examples:
HAPPRIME_SingularGroebnerBasis
Examples:
HAPPRIME_SingularReducedGroebnerBasis
Examples:
HAPPRIME_SwitchGradedAlgebraRing
Examples:
HAPPRIME_SwitchPolynomialIndeterminates
Examples:
HAPPRIME_VersionWithSVN
Examples:
HAPRegularCWComplex
Examples:
HAPRegularCWPolytope
Examples:
HAPRemoveCellFromRegularCWComplex
Examples:
HAPRemoveVectorField
Examples:
HAPRingModIdeal
Examples:
HAPRingModIdealObj
Examples:
HAPTietzeReduction_Inf
Examples:
HAPTietzeReduction_OneLevel
Examples:
HAPTietzeReduction_OneStep
Examples:
HAP_4x4MatTo2x2Mat
Examples:
HAP_AddGenerator
Examples:
HAP_AllHomomorphisms
Examples:
HAP_AppendTo
Examples:
HAP_AssociahedronBoundaries
Examples:
HAP_AssociahedronCells
Examples:
HAP_BaryCentricSubdivisionGComplex
Examples:
HAP_BaryCentricSubdivisionRegularCWComplex
Examples:
HAP_Binlisttoint
Examples:
HAP_ChainComplexToEquivariantChainComplex
Examples:
HAP_CocyclesAndCoboundaries
Examples:
HAP_CongruenceSubgroupGamma0
Examples: 1
HAP_CongruenceSubgroupGamma0Ideal
Examples:
HAP_ConjugatedCongruenceSubgroup
Examples:
HAP_ConjugatedCongruenceSubgroupGamma0
Examples:
HAP_CriticalCellsDirected
Examples:
HAP_CupProductOfPresentation
Examples:
HAP_CupProductOfSimplicialComplex
Examples:
HAP_DisplayPlanarTree
Examples:
HAP_DisplayVectorField
Examples:
HAP_ElementsSL2Zfn
Examples:
HAP_FunctorialModPCohomologyRing
Examples:
HAP_GenericSL2OSubgroup
Examples:
HAP_GenericSL2ZConjugatedSubgroup
Examples:
HAP_GenericSL2ZSubgroup
Examples:
HAP_HomToIntModP_ChainComplex
Examples:
HAP_HomToIntModP_ChainMap
Examples:
HAP_HomToIntModP_CochainComplex
Examples:
HAP_HomToIntModP_CochainMap
Examples:
HAP_HomeoLinkingForm
Examples:
HAP_Hurewicz1Cycles
Examples:
HAP_IntegralClassToCocycle
Examples:
HAP_IntegralCocycleToClass
Examples:
HAP_IntegralCohomology
Examples:
HAP_KK_AddCell
Examples:
HAP_KnotGroupInv
Examples:
HAP_MyIsBieberbachFpGroup
Examples:
HAP_MyIsFiniteFpGroup
Examples:
HAP_MyIsInfiniteFpGroup
Examples:
HAP_PHI
Examples:
HAP_PermBinlisttoint
Examples:
HAP_PlanarBinaryTrees
Examples:
HAP_PlanarTreeGraft
Examples:
HAP_PlanarTreeJoin
Examples:
HAP_PlanarTreeLeaves
Examples:
HAP_PlanarTreeRemovableEdge
Examples:
HAP_PlanarTreeRemoveEdge
Examples:
HAP_PrimePartModified
Examples:
HAP_PrincipalCongruenceSubgroup
Examples:
HAP_PrincipalCongruenceSubgroupIdeal
Examples:
HAP_PrintTo
Examples:
HAP_PureComplexSubcomplex
Examples:
HAP_PureCubicalPairToCWMap
Examples:
HAP_ResolutionAbelianGroupFromInvariants
Examples:
HAP_RightTransversalSL2ZSubgroups
Examples:
HAP_SL2OSubgroupTree_slow
Examples:
HAP_SL2SubgroupTree
Examples:
HAP_SL2TreeDisplay
Examples:
HAP_SL2ZSubgroupTree_fast
Examples:
HAP_SL2ZSubgroupTree_slow
Examples:
HAP_Sequence2Boundaries
Examples:
HAP_SimplicialPairToCWMap
Examples:
HAP_SimplicialProjectivePlane
Examples:
HAP_SimplicialTorus
Examples:
HAP_SimplifiedGaussCode
Examples:
HAP_StiefelWhitney
Examples:
HAP_SylowSubgroups
Examples:
HAP_Tensor
Examples:
HAP_TransversalCongruenceSubgroups
Examples:
HAP_TransversalCongruenceSubgroupsIdeal
Examples:
HAP_TransversalCongruenceSubgroupsIdeal_alt
Examples:
HAP_TransversalGamma0SubgroupsIdeal
Examples:
HAP_Triangulation
Examples:
HAP_TzPair
Examples:
HAP_WedgeSumOfSimplicialComplexes
Examples:
HAP_bockstein
Examples:
HAP_chain_bockstein
Examples:
HAP_coho_isoms
Examples:
HAP_nxnMatTo2nx2nMat
Examples:
HadamardGraph
Examples:
HapExample
Examples:
HapFile
Examples: 1 , 2 , 3 , 4
HasTrivialPostnikovInvariant
Examples:
HeckeOperator
Examples:
HeckeOperatorWeight2
Examples:
HenonOrbit
Examples: 1
HomToGModule_hom
Examples:
HomToInt_ChainComplex
Examples:
HomToInt_ChainMap
Examples:
HomToInt_CochainComplex
Examples:
HomToModPModule
Examples: 1
HomogeneousPolynomials
Examples:
HomogeneousPolynomials_Bianchi
Examples:
HomologicalGroupDecomposition
Examples: 1
HomologyOfPureCubicalComplex
Examples:
HomologyPbs
Examples:
HomologySimplicialFreeAbelianGroup
Examples:
HomomorphismAsMatrix
Examples:
HomotopyCatOneGroup
Examples:
HomotopyCrossedModule
Examples:
HomotopyEquivalentLargerSubArray
Examples:
HomotopyEquivalentLargerSubArray3D
Examples:
HomotopyEquivalentLargerSubMatrix
Examples:
HomotopyEquivalentLargerSubPermArray
Examples:
HomotopyEquivalentLargerSubPermArray3D
Examples:
HomotopyEquivalentLargerSubPermMatrix
Examples:
HomotopyEquivalentMaximalPureSubcomplex
Examples:
HomotopyEquivalentMinimalPureSubcomplex
Examples:
HomotopyEquivalentSmallerSubArray
Examples:
HomotopyEquivalentSmallerSubArray3D
Examples:
HomotopyEquivalentSmallerSubMatrix
Examples:
HomotopyEquivalentSmallerSubPermArray
Examples:
HomotopyEquivalentSmallerSubPermArray3D
Examples:
HomotopyEquivalentSmallerSubPermMatrix
Examples:
HomotopyLowerCentralSeries
Examples:
HomotopyLowerCentralSeriesOfCrossedModule
Examples:
HomotopyTruncation
Examples:
HopfSatohSurface
Examples: 1 , 2
HybridSubdivision
Examples:
IdCatOneGroup
Examples: 1
IdCrossedModule
Examples:
IdQuasiCatOneGroup
Examples:
IdQuasiCrossedModule
Examples:
IdentifyKnot
Examples: 1
IdentityAmongRelators
Examples: 1 , 2 , 3
ImageOfGOuterGroupHomomorphism
Examples: 1 , 2
ImageOfMap
Examples:
InducedSteenrodHomomorphisms
Examples:
IntegerSimplicialComplex
Examples: 1
IntegralCellularHomology
Examples:
IntegralCohomology
Examples:
IntegralCohomologyOfCochainComplex
Examples:
IntegralHomology
Examples: 1
IntegralHomologyOfChainComplex
Examples:
IntersectionCWSubcomplex
Examples:
IsClosedManifold
Examples: 1
IsContractibleCube_higherdims
Examples:
IsCrystSameOrbit
Examples:
IsCrystSufficientLattice
Examples:
IsHadamardMatrix
Examples:
IsIntList
Examples:
IsIsomorphismOfAbelianFpGroups
Examples: 1
IsMetricMatrix
Examples:
IsPeriodicSpaceGroup
Examples: 1
IsPureComplex
Examples:
IsPureRegularCWComplex
Examples:
IsRigid
Examples: 1
IsRigidOnRight
Examples:
IsSphericalCoxeterGroup
Examples:
IsoclinismClasses
Examples: 1 , 2
IsomorphismCatOneGroups
Examples: 1
IsomorphismCrossedModules
Examples:
KernelOfGOuterGroupHomomorphism
Examples: 1 , 2
KernelOfMap
Examples:
KernelWG
Examples:
KinkArc2Presentation
Examples:
KnotComplement
Examples: 1 , 2 , 3
KnotComplementWithBoundary
Examples: 1 , 2 , 3
LazyList
Examples:
LefschetzNumberOfChainMap
Examples:
Lfunction
Examples:
LiftColouredSurface
Examples:
LiftedRegularCWMap
Examples:
LinearHomomorphismsZZPersistenceMat
Examples:
LinkingForm
Examples: 1
LinkingFormHomeomorphismInvariant
Examples: 1
LinkingFormHomotopyInvariant
Examples: 1
ListsOfCellsToRegularCWComplex
Examples:
LowDimensionalCupProduct
Examples: 1
MakeHAPprimeDoc
Examples:
ManifoldType
Examples: 1
Mapper
Examples: 1
Mapper_alt
Examples:
MatrixSize
Examples:
MaximalSimplicesOfSimplicialComplex
Examples: 1
MaximalSphericalCoxeterSubgroupsFromAbove
Examples:
MinimizeRingRelations
Examples:
Mod2SteenrodAlgebra
Examples: 1
ModPCohomologyRing_alt
Examples:
ModPCohomologyRing_part_1
Examples:
ModPCohomologyRing_part_2
Examples:
ModPRingGeneratorsAlt
Examples:
ModPSteenrodAlgebra
Examples: 1 , 2
ModularCohomology
Examples:
ModularEquivariantChainMap
Examples:
ModularHomology
Examples:
Nil3TensorSquare
Examples:
NonFreeResolutionFiniteSubgroup
Examples:
NonManifoldVertices
Examples:
NonRegularCWBoundary
Examples:
NonabelianSymmetricKernel_alt
Examples: 1
NonabelianSymmetricSquare_inf
Examples:
NonabelianTensorProduct_Inf
Examples:
NonabelianTensorProduct_alt
Examples:
NonabelianTensorSquareAsCatOneGroup
Examples:
NonabelianTensorSquareAsCrossedModule
Examples:
NonabelianTensorSquare_inf
Examples:
NoncrossingPartitionsLatticeDisplay
Examples: 1
NullspaceSparseMatDestructive
Examples:
NumberConnectedQuandles
Examples:
NumberGeneratorsOfGroupHomology
Examples:
NumberOfCrossingsInArc2Presentation
Examples:
NumberOfHomomorphisms_connected
Examples:
NumberOfHomomorphisms_groups
Examples:
NumberOfPrimeKnots
Examples: 1 , 2
NumberSmallCatOneGroups
Examples:
NumberSmallCrossedModules
Examples:
NumberSmallQuasiCatOneGroups
Examples:
NumberSmallQuasiCrossedModules
Examples:
OppositeGroup
Examples:
OrthogonalizeBasisByAverageInnerProduct
Examples:
PCentre
Examples:
PSubgroupGChainComplex
Examples:
PSubgroupSimplicialComplex
Examples:
PUpperCentralSeries
Examples:
PartialIsoclinismClasses
Examples: 1
PartsOfQuadraticInteger
Examples:
PathComponentOfPureComplex
Examples: 1
PathComponentsCWSubcomplex
Examples:
PathComponentsOfSimplicialComplex_alt
Examples:
PathObjectForChainComplex
Examples: 1
PermutahedralComplexToRegularCWComplex
Examples: 1
PermutahedralToCubicalArray
Examples:
PersistentBettiNumbersViaContractions
Examples:
PersistentHomologyOfCrossedModule
Examples:
PersistentHomologyOfFilteredPureCubicalComplex_alt
Examples:
PersistentHomologyOfFilteredSparseChainComplex
Examples: 1 , 2
PersistentHomologyOfPureCubicalComplex_Alt
Examples:
PersistentHomologyOfQuotientGroupSeries_Int
Examples:
PiZeroOfRegularCWComplex
Examples:
PoincareBipyramidCWComplex
Examples: 1
PoincareCubeCWComplex
Examples: 1
PoincareCubeCWComplexNS
Examples: 1
PoincareDodecahedronCWComplex
Examples: 1 , 2
PoincareOctahedronCWComplex
Examples: 1
PoincarePrismCWComplex
Examples: 1
PoincareSeriesApproximation
Examples:
PoincareSeries_alt
Examples:
PolymakeFaceLattice
Examples:
PolytopalRepresentationComplex
Examples:
PrankAlt
Examples:
PresentationOfResolution_alt
Examples:
PrimePartDerivedFunctorHomomorphism
Examples:
PrimePartDerivedFunctorViaSubgroupChain
Examples:
PrimePartDerivedTwistedFunctor
Examples:
PrintAlgebraWordAsPolynomial
Examples:
PrintTorsionSubcomplex
Examples:
PureComplex
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
PureCubicalComplexToCubicalComplex
Examples: 1 , 2
PureCubicalLink
Examples: 1 , 2
PushoutOfFpGroups
Examples:
QuadraticCharacter
Examples:
QuadraticNumberField
Examples: 1
QuandleIsomorphismRepresentatives
Examples:
QuotientByTorsionSubcomplex
Examples:
QuotientChainMap
Examples:
QuotientGroup
Examples:
QuotientQuasiIsomorph
Examples:
RadicalSeriesOfResolution
Examples:
RandomArc2Presentation
Examples:
RandomCellOfPureComplex
Examples:
ReadLinkImageAsGaussCode
Examples: 1
ReadMatrixAsPureCubicalComplex
Examples:
ReduceGenerators
Examples:
ReduceGenerators_alt
Examples:
ReflectedCubicalKnot
Examples: 1 , 2 , 3 , 4
RegularCWAssociahedron
Examples:
RegularCWComplexComplement
Examples: 1
RegularCWComplexWithRemovedCell
Examples: 1
RegularCWComplex_AttachCellDestructive
Examples: 1
RegularCWCube
Examples:
RegularCWMapToCWSubcomplex
Examples:
RegularCWOrbitPolytope
Examples:
RegularCWPermutahedron
Examples:
RegularCWPolygon
Examples:
RegularCWSimplex
Examples:
RelativeCentralQuotientSpaceGroup
Examples:
RelativeGroupHomology
Examples:
RelativeRightTransversal
Examples:
RemoveStar
Examples:
ResolutionAbelianGroup_alt
Examples:
ResolutionAbelianPcpGroup
Examples:
ResolutionAffineCrystGroup
Examples:
ResolutionBoundaryOfWordOnRight
Examples:
ResolutionDirectProductLazy
Examples:
ResolutionFiniteCyclicGroup
Examples:
ResolutionGL2QuadraticIntegers
Examples:
ResolutionGL3QuadraticIntegers
Examples:
ResolutionGenericGroup
Examples:
ResolutionInfiniteCyclicGroup
Examples:
ResolutionPGL2QuadraticIntegers
Examples:
ResolutionPGL3QuadraticIntegers
Examples:
ResolutionPSL2QuadraticIntegers
Examples: 1
ResolutionPrimePowerGroupSparse
Examples:
ResolutionSL2QuadraticIntegers
Examples: 1
ResolutionSL2ZConjugated
Examples:
ResolutionSL2Z_alt
Examples:
ResolutionSpaceGroup
Examples: 1
ResolutionToEquivariantCWComplex
Examples:
ResolutionToResolutionOfFpGroup
Examples: 1
SL2QuadraticIntegers
Examples: 1
SL2ZResolution
Examples:
SL2ZResolution_alt
Examples:
SL2ZTree
Examples:
SL2ZmElementsDecomposition
Examples:
SequentialRegularCWComplexComplement
Examples:
SignatureOfSymmetricMatrix
Examples: 1
SignedPermutationGroup
Examples: 1
SimplicesToSimplicialComplex
Examples: 1 , 2 , 3 , 4
SimplicialComplexToRegularCWComplex_alt
Examples:
SimplicialK3Surface
Examples: 1
SimplicialNerveOfFilteredGraph
Examples: 1 , 2
SimplicialNerveOfTwoComplex
Examples:
SimplifiedQuandlePresentation
Examples:
SimplifiedRegularCWComplex
Examples: 1
SimplifiedSparseChainComplex
Examples:
SmallCatOneGroup
Examples: 1
SmallCrossedModule
Examples:
SmallQuasiCatOneGroup
Examples:
SmallQuasiCrossedModule
Examples:
SmoothedFpGroup
Examples:
SparseChainComplexOfCubicalComplex
Examples:
SparseChainComplexOfCubicalPair
Examples:
SparseChainComplexOfFilteredRegularCWComplex
Examples:
SparseChainComplexOfRegularCWComplexWithVectorField
Examples:
SparseChainComplexOfSimplicialComplex
Examples:
SparseChainComplexToChainComplex
Examples:
SparseChainMapOfCubicalPairs
Examples:
SparseFilteredChainComplexOfFilteredCubicalComplex
Examples:
SparseFilteredChainComplexOfFilteredSimplicialComplex
Examples: 1 , 2
SparseMattoMat
Examples: 1
SparseRowReduce
Examples:
SphericalKnotComplement
Examples: 1
Spin
Examples:
SpunAboutHyperplane
Examples:
SpunKnotComplement
Examples: 1
SpunLinkComplement
Examples:
StrongGeneratorsOfDerivedSubgroup
Examples:
StrongGeneratorsOfDerivedSubgroup_alt
Examples:
StructuralCopyOfFilteredRegularCWComplex
Examples:
SubQuasiIsomorph
Examples:
SubdivideCell
Examples:
Suspension_alt
Examples:
SylowSubgroupOfCatOneGroup
Examples:
SymmetricCentre
Examples:
SymmetricCommutativityGroup
Examples:
TensorNonFreeResolutionWithRationals
Examples:
TensorWithBurnsideRing
Examples: 1 , 2
TensorWithComplexRepresentationRing
Examples: 1 , 2
TensorWithComplexRepresentationRingOnRight
Examples:
TensorWithIntegersModPSparse
Examples:
TensorWithIntegersOverSubgroup
Examples: 1 , 2 , 3 , 4
TensorWithIntegersSparse
Examples:
TensorWithModPModule
Examples: 1
TestHapBook
Examples:
TestHapQuick
Examples:
ThickenedHEPureCubicalComplex
Examples:
ThickenedPureComplex
Examples: 1
ThickenedPureCubicalComplex_dim2
Examples:
ThirdHomotopyGroupOfSuspensionB_alt
Examples: 1
ThreeManifoldViaDehnSurgery
Examples: 1
ThreeManifoldWithBoundary
Examples: 1
TransferChainMap
Examples: 1
TransferCochainMap
Examples: 1
TranslationSubGroup
Examples:
TreeOfResolutionsToSL2Zcomplex
Examples:
TruncatedRegularCWComplex
Examples:
Tube
Examples:
TupleOrbitReps
Examples:
TupleOrbitReps_perm
Examples:
TwistedResolution
Examples:
UnboundedArrayAssign
Examples:
UnitBall
Examples:
UnitCubicalBall
Examples:
UnitPermutahedralBall
Examples:
UniversalBarCodeEval
Examples:
UniversalCover
Examples: 1 , 2 , 3 , 4
VectorToCrystMatrix
Examples:
VectorsToOneSkeleton
Examples: 1
VerticesOfRegularCWCell
Examples:
View3dPureComplex
Examples:
ViewArc2Presentation
Examples:
ViewPureComplex
Examples:
VirtuallySimplicialSubdivision
Examples:
WeakCommutativityGroup
Examples:
WirtingerGroup
Examples: 1
WirtingerGroup_gc
Examples:
WordModP
Examples:
ZigZagContractedFilteredPureCubicalComplex
Examples:
ZigZagContractedPureComplex
Examples: 1
Sq
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
Category_Of_Groups
Examples: 1
PreImagesElmNC
Examples:
PreImagesNC
Examples:
PreImagesSetNC
Examples:
AsFpGroup
Examples:
BarycentricSubdivision
Examples: 1 , 2
Bockstein
Examples: 1 , 2 , 3
CategoryArrow
Examples:
CategoryObject
Examples:
ClosedSurface
Examples: 1
CoboundaryMatrix
Examples:
CoefficientsOfPoincareSeries
Examples:
CohomologyClass
Examples: 1 , 2
CohomologyRing
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
ComplexProjectiveSpace
Examples: 1
CompositionRingHomomorphism
Examples:
ConnectedComponentsQuandle
Examples:
ConnectedSum
Examples: 1 , 2
DegreeOfRepresentative
Examples:
Dimensions
Examples:
ExcisedPair
Examples:
ExpandedComplex
Examples: 1
FilteredRegularCWComplex
Examples: 1
FundamentalGroupWithPathReps
Examples: 1 , 2
GDerivedSubgroup
Examples:
GModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
GOuterGroupHomomorphism
Examples: 1 , 2
GOuterGroupHomomorphism
Examples: 1 , 2
GradedAlgebraPresentation
Examples:
GradedAlgebraPresentationNC
Examples:
HAPDerivationNC
Examples:
HAPRingHomomorphismByIndeterminateMap
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingToSubringHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPZeroRingHomomorphism
Examples:
HAP_EquivalenceClasses
Examples:
HomomorphismsImages
Examples:
ImageOfDerivation
Examples:
ImageOfRingHomomorphism
Examples:
IsAssociatedGradedRing
Examples:
KernelOfDerivation
Examples:
LowerGCentralSeries
Examples:
PathComponents
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentHomology
Examples: 1 , 2
PersistentHomology
Examples: 1 , 2
PersistentHomology
Examples: 1 , 2
PoincareSeriesAutoMem
Examples:
PoincareSeriesAutoMem
Examples:
PoincareSeriesAutoMemStop
Examples:
PolynomialToRModuleRep
Examples:
PreimageOfRingHomomorphism
Examples:
PureComplexMeet
Examples:
PureComplexRandomCell
Examples: 1
PureComplexSubcomplex
Examples:
Pushout
Examples:
QuadraticIdeal
Examples: 1
ReduceIdeal
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentationMap
Examples:
RefinedColouring
Examples:
Resolution
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34
RightTransversal_alt
Examples:
RingOfIntegers
Examples: 1
SingularPolynomialNormalForm
Examples:
SingularSetNormalFormIdeal
Examples:
SingularSetNormalFormIdealNC
Examples:
SparseChainComplexOfPair
Examples:
Sphere
Examples: 1
Sq
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
Standard2Cocycle
Examples:
Standard2Cocycle
Examples:
StandardNCocycle
Examples:
StandardNCocycle
Examples:
StarGraph
Examples:
SubspaceBasisRepsByDegree
Examples:
SubspaceDimensionDegree
Examples:
Suspension
Examples: 1 , 2 , 3 , 4 , 5
TrivialGModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
VertexLink
Examples:
VertexStar
Examples:
WedgeSum
Examples: 1
TensorProductOp
Examples:
Arity
Examples:
AssociatedNumberField
Examples:
AssociatedRing
Examples:
Base
Examples: 1
BaseElement
Examples:
BaseRing
Examples:
Cocycle
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7
CoefficientModule
Examples:
CohomologicalPeriod
Examples: 1
CoxeterMatrix
Examples: 1
DerivationImages
Examples:
DerivationRelations
Examples:
DerivationRing
Examples:
Fibre
Examples:
FibreElement
Examples:
Generators
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
GeneratorsOfPresentationIdeal
Examples:
GradedAlgebraPresentationFamily
Examples:
HAPDerivationFamily
Examples:
HAPPRIME_HilbertSeries
Examples:
HAPRingHomomorphismFamily
Examples:
HAP_MultiplicativeGenerators
Examples:
IdentityMap
Examples:
ImageGenerators
Examples:
ImagePolynomialRing
Examples:
ImageRelations
Examples:
InCcGroup
Examples:
IndeterminateAndExponentOfUnivariateMonomial
Examples:
IndeterminateDegrees
Examples:
IndeterminatesOfGradedAlgebraPresentation
Examples:
IndeterminatesOfPolynomial
Examples:
IndexInSL2O
Examples: 1
InnerAutomorphismGroupQuandle
Examples:
InnerAutomorphismGroupQuandleAsPerm
Examples:
InverseRingHomomorphism
Examples:
IsConnected
Examples: 1 , 2 , 3
IsHomogeneousQuandle
Examples:
IsLatinQuandle
Examples: 1
MaximumDegreeForPresentation
Examples:
ModPRingBasisAsPolynomials
Examples:
ModPRingGeneratorDegrees
Examples:
ModPRingNiceBasis
Examples:
ModPRingNiceBasisAsPolynomials
Examples:
Module
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12
NormOfIdeal
Examples:
OuterAction
Examples:
OuterGroup
Examples: 1 , 2 , 3 , 4
PresentationIdeal
Examples:
PresentationOfGradedStructureConstantAlgebra
Examples: 1
Pullbacks
Examples:
Pushouts
Examples:
RightMultiplicationGroupOfQuandle
Examples: 1 , 2 , 3
RightMultiplicationGroupOfQuandleAsPerm
Examples: 1
SingularGroebnerBasis
Examples:
SingularReducedGroebnerBasis
Examples:
SourceGenerators
Examples:
SourcePolynomialRing
Examples:
SourceRelations
Examples:
StarGraphAttr
Examples:
TermsOfPolynomial
Examples:
UnivariateMonomialsOfMonomial
Examples:
CoefficientsRing
Examples:
ElementsFamily
Examples:
IndexInSL2Z
Examples:
Name
Examples: 1 , 2 , 3 , 4 , 5 , 6
Order
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
IsAbelianCategory
Examples:
IsAdditiveCategory
Examples:
IsCategoryName
Examples:
IsCcGroup
Examples:
IsCrystTranslationSubGroup
Examples:
IsGOuterGroup
Examples:
IsGOuterGroupHomomorphism
Examples:
IsGammaSubgroupInSL3Z
Examples:
IsHAPRationalMatrixGroup
Examples:
IsHAPRationalSpecialLinearGroup
Examples:
IsIdealOfQuadraticIntegers
Examples:
IsPeriodic
Examples: 1 , 2
IsPseudoListWithFunction
Examples:
IsQuadraticNumberField
Examples:
IsRingOfQuadraticIntegers
Examples:
IsStandard2Cocycle
Examples:
IsStandardNCocycle
Examples:
IsCcElement
Examples:
IsGradedAlgebraPresentation
Examples:
IsHAPDerivation
Examples:
IsHAPRingHomomorphism
Examples:
IsHAPRingModIdealObj
Examples:
IsHapCatOneGroup
Examples:
IsHapCatOneGroupMorphism
Examples:
IsHapChainComplex
Examples:
IsHapChainMap
Examples:
IsHapCochainComplex
Examples:
IsHapCochainMap
Examples:
IsHapCommutativeDiagram
Examples:
IsHapConjQuandElt
Examples:
IsHapCrossedModule
Examples:
IsHapCrossedModuleMorphism
Examples:
IsHapCubicalComplex
Examples:
IsHapEquivariantCWComplex
Examples:
IsHapEquivariantChainComplex
Examples:
IsHapEquivariantChainMap
Examples:
IsHapEquivariantNonFreeChainComplex
Examples:
IsHapEquivariantSpectralSequencePage
Examples:
IsHapFilteredChainComplex
Examples:
IsHapFilteredCubicalComplex
Examples:
IsHapFilteredGraph
Examples:
IsHapFilteredPureCubicalComplex
Examples:
IsHapFilteredRegularCWComplex
Examples:
IsHapFilteredSimplicialComplex
Examples:
IsHapFilteredSparseChainComplex
Examples:
IsHapGCocomplex
Examples:
IsHapGComplex
Examples:
IsHapGComplexMap
Examples:
IsHapGraph
Examples:
IsHapOppositeElement
Examples:
IsHapPureCubicalComplex
Examples:
IsHapPureCubicalLink
Examples:
IsHapPurePermutahedralComplex
Examples:
IsHapQuandlePresentation
Examples:
IsHapQuotientElement
Examples:
IsHapRegularCWComplex
Examples:
IsHapRegularCWMap
Examples:
IsHapResolution
Examples:
IsHapSimplicialComplex
Examples:
IsHapSimplicialFreeAbelianGroup
Examples:
IsHapSimplicialGroup
Examples:
IsHapSimplicialGroupMorphism
Examples:
IsHapSimplicialMap
Examples:
IsHapSparseChainComplex
Examples:
IsHapSparseChainMap
Examples:
IsHapSparseMat
Examples:
IsHapTorsionSubcomplex
Examples:
IsPseudoList
Examples:
IsCcElementRep
Examples:
IsGradedAlgebraPresentationRep
Examples:
IsHAPDerivationRep
Examples:
IsHAPIdealRep
Examples:
IsHAPRingHomomorphismIndeterminateMapRep
Examples:
IsHAPRingReductionHomomorphismRep
Examples:
IsHAPRingToSubringHomomorphismRep
Examples:
IsHAPSubringToRingHomomorphismRep
Examples:
IsHAPZeroRingHomomorphismRep
Examples:
IsHapCatOneGroupMorphismRep
Examples:
IsHapCatOneGroupRep
Examples:
IsHapChainComplexRep
Examples:
IsHapChainMapRep
Examples:
IsHapCochainComplexRep
Examples:
IsHapCochainMapRep
Examples:
IsHapCommutativeDiagramRep
Examples:
IsHapConjQuandEltRep
Examples:
IsHapCrossedModuleMorphismRep
Examples:
IsHapCrossedModuleRep
Examples:
IsHapCubicalComplexRep
Examples:
IsHapEquivariantCWComplexRep
Examples:
IsHapEquivariantChainComplexRep
Examples:
IsHapEquivariantChainMapRep
Examples:
IsHapEquivariantNonFreeChainComplexRep
Examples:
IsHapEquivariantSpectralSequencePageRep
Examples:
IsHapFilteredChainComplexRep
Examples:
IsHapFilteredCubicalComplexRep
Examples:
IsHapFilteredGraphRep
Examples:
IsHapFilteredPureCubicalComplexRep
Examples:
IsHapFilteredRegularCWComplexRep
Examples:
IsHapFilteredSimplicialComplexRep
Examples:
IsHapFilteredSparseChainComplexRep
Examples:
IsHapGCocomplexRep
Examples:
IsHapGComplexMapRep
Examples:
IsHapGComplexRep
Examples:
IsHapGraphRep
Examples:
IsHapOppositeElementRep
Examples:
IsHapPureCubicalComplexRep
Examples:
IsHapPureCubicalLinkRep
Examples:
IsHapPurePermutahedralComplexRep
Examples:
IsHapQuandlePresentationRep
Examples:
IsHapQuotientElementRep
Examples:
IsHapRegularCWComplexRep
Examples:
IsHapRegularCWMapRep
Examples:
IsHapResolutionRep
Examples:
IsHapSimplicialComplexRep
Examples:
IsHapSimplicialFreeAbelianGroupRep
Examples:
IsHapSimplicialGroupMorphismRep
Examples:
IsHapSimplicialGroupRep
Examples:
IsHapSimplicialMapRep
Examples:
IsHapSparseChainComplexRep
Examples:
IsHapSparseChainMapRep
Examples:
IsHapSparseMatRep
Examples:
IsHapTorsionSubcomplexRep
Examples:
IsPseudoListRep
Examples:
IdealOfQuadraticIntegers
Examples:
QuadraticNF
Examples:
RingOfQuadraticIntegers
Examples:
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
Examples:
Examples:
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
AdditiveInverseMutable
Examples:
AsFpGroup
Examples:
AsList
Examples:
AsSSortedList
Examples:
BarycentricSubdivision
Examples: 1 , 2
BaseRing
Examples:
Bockstein
Examples: 1 , 2 , 3
CategoryArrow
Examples:
CategoryObject
Examples:
CoboundaryMatrix
Examples:
CoefficientsOfPoincareSeries
Examples:
CoefficientsRing
Examples:
CohomologicalPeriod
Examples: 1
CohomologyClass
Examples: 1 , 2
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
CompositionRingHomomorphism
Examples:
ConnectedComponentsQuandle
Examples:
ConnectedSum
Examples: 1 , 2
CoxeterMatrix
Examples: 1
DefaultFieldOfMatrixGroup
Examples:
DegreeOfRepresentative
Examples:
DerivationImages
Examples:
DerivationRelations
Examples:
DerivationRing
Examples:
Dimensions
Examples:
Enumerator
Examples:
ExcisedPair
Examples:
FilteredRegularCWComplex
Examples: 1
FundamentalGroupWithPathReps
Examples: 1 , 2
GModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
GOuterGroupHomomorphism
Examples: 1 , 2
GOuterGroupHomomorphism
Examples: 1 , 2
Generators
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
GeneratorsOfMagmaWithInverses
Examples:
GeneratorsOfMagmaWithInverses
Examples:
GeneratorsOfPresentationIdeal
Examples:
GradedAlgebraPresentation
Examples:
GradedAlgebraPresentationNC
Examples:
HAPDerivationNC
Examples:
HAPPRIME_HilbertSeries
Examples:
HAPRingHomomorphismByIndeterminateMap
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingReductionHomomorphism
Examples:
HAPRingToSubringHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPSubringToRingHomomorphism
Examples:
HAPZeroRingHomomorphism
Examples:
HAP_MultiplicativeGenerators
Examples:
HomomorphismsImages
Examples:
IdGroup
Examples: 1 , 2 , 3 , 4 , 5 , 6
IdentityMap
Examples:
ImageOfDerivation
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
IndeterminateAndExponentOfUnivariateMonomial
Examples:
IndeterminateDegrees
Examples:
IndeterminatesOfGradedAlgebraPresentation
Examples:
IndeterminatesOfPolynomial
Examples:
IndexInSL2O
Examples: 1
IndexInSL2Z
Examples:
InnerAutomorphismGroupQuandle
Examples:
InnerAutomorphismGroupQuandleAsPerm
Examples:
Int
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
InverseMutable
Examples:
InverseMutable
Examples:
InverseMutable
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseRingHomomorphism
Examples:
InverseSameMutability
Examples:
IsAssociatedGradedRing
Examples:
IsConnected
Examples: 1 , 2 , 3
IsHomogeneousQuandle
Examples:
IsLatinQuandle
Examples: 1
IsMonomial
Examples:
IsOne
Examples:
IsPeriodic
Examples: 1 , 2
Kernel
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
KernelOfDerivation
Examples:
MaximumDegreeForPresentation
Examples:
ModPRingBasisAsPolynomials
Examples:
ModPRingGeneratorDegrees
Examples:
ModPRingNiceBasis
Examples:
ModPRingNiceBasisAsPolynomials
Examples:
OneImmutable
Examples:
OneMutable
Examples:
PathComponents
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PreimageOfRingHomomorphism
Examples:
PresentationIdeal
Examples:
PresentationOfGradedStructureConstantAlgebra
Examples: 1
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
PrintObj
Examples:
Projection
Examples:
PureComplexMeet
Examples:
PureComplexRandomCell
Examples: 1
PureComplexSubcomplex
Examples:
Pushout
Examples:
QuadraticIdeal
Examples: 1
Random
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16
ReduceIdeal
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentationMap
Examples:
RefinedColouring
Examples:
Resolution
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34
RightMultiplicationGroupOfQuandle
Examples: 1 , 2 , 3
RightMultiplicationGroupOfQuandleAsPerm
Examples: 1
RightTransversal
Examples:
RingOfIntegers
Examples: 1
SingularGroebnerBasis
Examples:
SingularPolynomialNormalForm
Examples:
SingularReducedGroebnerBasis
Examples:
SingularSetNormalFormIdeal
Examples:
SingularSetNormalFormIdealNC
Examples:
SparseChainComplexOfPair
Examples:
Sq
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
Standard2Cocycle
Examples:
Standard2Cocycle
Examples:
StandardNCocycle
Examples:
StandardNCocycle
Examples:
StarGraph
Examples:
StarGraphAttr
Examples:
SubspaceBasisRepsByDegree
Examples:
SubspaceDimensionDegree
Examples:
Suspension
Examples: 1 , 2 , 3 , 4 , 5
TensorProductOp
Examples:
TermsOfPolynomial
Examples:
TrivialGModuleAsGOuterGroup
Examples: 1 , 2 , 3 , 4
Units
Examples:
Units
Examples:
UnivariateMonomialsOfMonomial
Examples:
VertexLink
Examples:
VertexStar
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
ViewObj
Examples:
WedgeSum
Examples: 1
ZeroMutable
Examples:
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
mod
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
*
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
+
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
-
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
-
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
/
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
Examples:
Examples:
Examples:
Examples:
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
=
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
AbelianInvariants
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
AbelianInvariants
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
BarycentricSubdivision
Examples: 1 , 2
Bockstein
Examples: 1 , 2 , 3
CanonicalRightCosetElement
Examples:
ClosedSurface
Examples: 1
CohomologyRing
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
CohomologyRing
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
ComplexProjectiveSpace
Examples: 1
ConnectedSum
Examples: 1 , 2
ConnectedSum
Examples: 1 , 2
ConnectedSum
Examples: 1 , 2
Dimensions
Examples:
DirectProductOp
Examples:
DirectProductOp
Examples:
DirectProductOp
Examples:
DirectProductOp
Examples:
Discriminant
Examples:
Discriminant
Examples:
Embedding
Examples:
ExpandedComplex
Examples: 1
ExpandedComplex
Examples: 1
ExpandedComplex
Examples: 1
ExpandedComplex
Examples: 1
GDerivedSubgroup
Examples:
Generators
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
HAPRingReductionHomomorphism
Examples:
HAPRingReductionHomomorphism
Examples:
HAP_EquivalenceClasses
Examples:
ImageOfRingHomomorphism
Examples:
ImageOfRingHomomorphism
Examples:
IndexNC
Examples:
IndexNC
Examples:
InverseMutable
Examples:
InverseMutable
Examples:
InverseMutable
Examples:
InverseSameMutability
Examples:
IsEmpty
Examples:
IsEmpty
Examples:
IsPrime
Examples: 1 , 2
IsomorphismFpGroup
Examples: 1 , 2
Iterator
Examples:
KernelOfDerivation
Examples:
ListOp
Examples:
ListOp
Examples:
LowerGCentralSeries
Examples:
NaturalHomomorphism
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7
Norm
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16
Norm
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16
OneImmutable
Examples:
OneImmutable
Examples:
Order
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
Order
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentBettiNumbersAlt
Examples: 1
PersistentHomology
Examples: 1 , 2
PersistentHomology
Examples: 1 , 2
Position
Examples: 1 , 2
Position
Examples: 1 , 2
Position
Examples: 1 , 2
PositionCanonical
Examples:
PreimageOfRingHomomorphism
Examples:
Projection
Examples:
PureComplexMeet
Examples:
PureComplexRandomCell
Examples: 1
PureComplexSubcomplex
Examples:
QuadraticIdeal
Examples: 1
Range
Examples: 1 , 2
RankMatrixDestructive
Examples:
ReduceIdeal
Examples:
ReduceIdeal
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentation
Examples:
ReducedPolynomialRingPresentationMap
Examples:
ReducedPolynomialRingPresentationMap
Examples:
ReducedPolynomialRingPresentationMap
Examples:
RefinedColouring
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal
Examples:
RightTransversal_alt
Examples:
SingularPolynomialNormalForm
Examples:
SparseChainComplexOfPair
Examples:
Sphere
Examples: 1
SubspaceBasisRepsByDegree
Examples:
SubspaceDimensionDegree
Examples:
Suspension
Examples: 1 , 2 , 3 , 4 , 5
TensorProductOp
Examples:
TensorProductOp
Examples:
TensorProductOp
Examples:
Trace
Examples:
Units
Examples:
WedgeSum
Examples: 1
WedgeSum
Examples: 1
WedgeSum
Examples: 1
[]
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
[]
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
[]
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
^
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
in
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64
mod
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39
PathComponentOfSimplicialComplex
Examples:
ResolutionSL2ZInvertedInteger
Examples:
ViewGraph
Examples:
InfoHAPprime
Examples:
ASY_PATH
Examples:
AutomorphismGroupAsCrossedModule
Examples:
BROWSER_PATH
Examples:
CATONEGROUP_DATA_PERM
Examples:
CATONEGROUP_DATA_SIZE
Examples:
Cedric_PlanarDiagram
Examples:
ChildKill
Examples:
DISPLAY_PATH
Examples:
DOT_PATH
Examples:
FilteredSimplicialComplexToFilteredCWComplex
Examples:
GradedAlgebraPresentationType
Examples:
HAPTEMPORARYFUNCTION
Examples:
HAP_Knots
Examples:
HAP_ROOT
Examples:
HapCatOneGroup
Examples:
HapCatOneGroupFamily
Examples:
HapCatOneGroupMorphism
Examples:
HapCatOneGroupMorphismFamily
Examples:
HapChainComplex
Examples:
HapChainComplexFamily
Examples:
HapChainMap
Examples:
HapChainMapFamily
Examples:
HapCochainComplex
Examples:
HapCochainComplexFamily
Examples:
HapCochainMap
Examples:
HapCochainMapFamily
Examples:
HapCommutativeDiagram
Examples:
HapCommutativeDiagramFamily
Examples:
HapCrossedModule
Examples:
HapCrossedModuleFamily
Examples:
HapCrossedModuleMorphism
Examples:
HapCrossedModuleMorphismFamily
Examples:
HapCubicalComplex
Examples:
HapCubicalComplexFamily
Examples:
HapEquivariantCWComplex
Examples:
HapEquivariantCWComplexFamily
Examples:
HapEquivariantChainMap
Examples:
HapEquivariantChainMapFamily
Examples:
HapFPGModule
Examples:
HapFPGModuleHomomorphism
Examples:
HapFilteredChainComplex
Examples:
HapFilteredChainComplexFamily
Examples:
HapFilteredCubicalComplex
Examples:
HapFilteredCubicalComplexFamily
Examples:
HapFilteredGraph
Examples:
HapFilteredGraphFamily
Examples:
HapFilteredPureCubicalComplex
Examples:
HapFilteredPureCubicalComplexFamily
Examples:
HapFilteredRegularCWComplex
Examples:
HapFilteredRegularCWComplexFamily
Examples:
HapFilteredSimplicialComplex
Examples:
HapFilteredSimplicialComplexFamily
Examples:
HapFilteredSparseChainComplex
Examples:
HapFilteredSparseChainComplexFamily
Examples:
HapGChainComplex
Examples:
HapGCocomplex
Examples:
HapGCocomplexFamily
Examples:
HapGComplex
Examples:
HapGComplexFamily
Examples:
HapGlobalDeclarationsAreAlreadyLoaded
Examples:
HapGraph
Examples:
HapGraphFamily
Examples:
HapNonFreeResolution
Examples:
HapOppositeElement
Examples:
HapOppositeElementFamily
Examples:
HapPureCubicalComplex
Examples:
HapPureCubicalComplexFamily
Examples:
HapPureCubicalLink
Examples:
HapPureCubicalLinkFamily
Examples:
HapPurePermutahedralComplex
Examples:
HapPurePermutahedralComplexFamily
Examples:
HapQuotientElement
Examples:
HapQuotientElementFamily
Examples:
HapRegularCWComplex
Examples:
HapRegularCWComplexFamily
Examples:
HapRegularCWMap
Examples:
HapRegularCWMapFamily
Examples:
HapResolution
Examples:
HapResolutionFamily
Examples:
HapSimplicialComplex
Examples:
HapSimplicialComplexFamily
Examples:
HapSimplicialGroup
Examples:
HapSimplicialGroupFamily
Examples:
HapSimplicialGroupMorphism
Examples:
HapSimplicialGroupMorphismFamily
Examples:
HapSimplicialMap
Examples:
HapSimplicialMapFamily
Examples:
HapSparseChainComplex
Examples:
HapSparseChainComplexFamily
Examples:
HapSparseChainMap
Examples:
HapSparseChainMapFamily
Examples:
HapSparseMat
Examples:
HapSparseMatFamily
Examples:
HomomorphismOfDirectProduct
Examples:
IDQUASICATONEGROUP_DATA
Examples:
IsHapChain
Examples:
IsHapCochain
Examples:
IsHapComplex
Examples:
IsHapFPGModule
Examples:
IsHapFPGModuleHomomorphism
Examples:
IsHapGChainComplex
Examples:
IsHapMap
Examples:
IsHapNonFreeResolution
Examples:
NEATO_PATH
Examples:
NerveOfCover
Examples:
POLYMAKE_PATH
Examples:
PseudoList
Examples:
PseudoListFamily
Examples:
QUASICATONEGROUP_DATA_NOT
Examples:
QUASICATONEGROUP_DATA_SIZE
Examples:
ReadBioData
Examples:
SMALLQUASICATONEGROUP_DATA
Examples:
CATONEGROUP_DATA
Examples:
COMPILED
Examples:
Cedric_XYXYConnQuan
Examples:
Cedric_XYXYQuandles
Examples:
CommutingProbability
Examples:
GroupIsomorphismRepresentatives
Examples:
HAPAAA
Examples:
HAPBARCODE
Examples:
HAPDerivationType
Examples:
HAPPRIME_LastLHSBicomplexSize
Examples:
HAPPRIME_ShuffleRandomSource
Examples:
HAPRIGXXX
Examples:
HAP_GCOMPLEX_LIST
Examples:
HAP_GCOMPLEX_SETUP
Examples:
HAP_MOVES_DIM_2
Examples:
HAP_MOVES_DIM_3
Examples:
HAP_PERMMOVES_DIM_2
Examples:
HAP_PERMMOVES_DIM_3
Examples:
HAP_PoincareCubeManifoldEdgeDegrees
Examples:
HAP_Test
Examples:
HAP_XYXYXYXY
Examples:
HAPchildFunctionToggle
Examples:
HAPchildToggle
Examples:
HAPchildren
Examples:
HapConjQuandElt
Examples:
HapConjQuandEltFamily
Examples:
HapConstantPolRing
Examples:
HapEquivariantChainComplex
Examples:
HapEquivariantChainComplexFamily
Examples:
HapEquivariantNonFreeChainComplex
Examples:
HapEquivariantNonFreeChainComplexFamily
Examples:
HapEquivariantSpectralSequencePage
Examples:
HapEquivariantSpectralSequencePageFamily
Examples:
HapGComplexMap
Examples:
HapGComplexMapFamily
Examples:
HapQuandlePresentation
Examples:
HapQuandlePresentationFamily
Examples:
HapRightTransversalSL2ZSubgroup
Examples:
HapSL2ZConjugatedSubgroup
Examples:
HapSL2ZSubgroup
Examples:
HapSimplicialFreeAbelianGroup
Examples:
HapSimplicialFreeAbelianGroupFamily
Examples:
HapTorsionSubcomplex
Examples:
HapTorsionSubcomplexFamily
Examples:
IntersectionForm
Examples: 1 , 2
IsHapRightTransversalSL2ZSubgroup
Examples:
IsHapSL2ConjugatedSubgroup
Examples:
IsHapSL2OSubgroup
Examples:
IsHapSL2Subgroup
Examples:
IsHapSL2ZConjugatedSubgroup
Examples:
IsHapSL2ZSubgroup
Examples:
RefinedColouring_gc
Examples:
RefinedColouring_group
Examples:
RegularCWAssociahedronWithDiscreteVectorField
Examples:
RegularCWClosedSurface
Examples:
RegularCWComplexWithAttachedRelatorCells
Examples: 1
RegularCWComplex_DisjointUnion
Examples:
RegularCWComplex_WedgeSum
Examples:
RegularCWDiscreteSpace
Examples: 1
RegularCWSphere
Examples: 1
SimplicialComplexConnectedSum
Examples:
SphericalKnotComplementWithBoundary
Examples:
StemGroups
Examples:
cat
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28
cnt
Examples:
hap_cr
Examples:
The contracting homotopy on the ZE-resolution has not yet been fully implemented for infinite groups.
- + diff --git a/doc/chap5.txt b/doc/chap5.txt index 0cc592a6..86308a10 100644 --- a/doc/chap5.txt +++ b/doc/chap5.txt @@ -388,9 +388,9 @@ [33X[0;0YThe contracting homotopy on the [22XZE[122X-resolution has not yet been fully implemented for infinite groups.[133X - [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap11.html[107X) , 2 - ([7X../www/SideLinks/About/aboutCohomologyRings.html[107X) , 3 - ([7X../www/SideLinks/About/aboutRosenbergerMonster.html[107X) , 4 + [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap6.html[107X) , 2 ([7X../tutorial/chap11.html[107X) , 3 + ([7X../www/SideLinks/About/aboutCohomologyRings.html[107X) , 4 + ([7X../www/SideLinks/About/aboutRosenbergerMonster.html[107X) , 5 ([7X../www/SideLinks/About/aboutExtensions.html[107X) [133X [1X5.1-21 ResolutionNormalSeries[101X diff --git a/doc/chap5_mj.html b/doc/chap5_mj.html index e4712faf..12074b3d 100644 --- a/doc/chap5_mj.html +++ b/doc/chap5_mj.html @@ -321,7 +321,7 @@The contracting homotopy on the \(ZE\)-resolution has not yet been fully implemented for infinite groups.
- + diff --git a/doc/chap9.html b/doc/chap9.html index 9da9c175..da302f6f 100644 --- a/doc/chap9.html +++ b/doc/chap9.html @@ -72,7 +72,7 @@This function was written by Pablo Fernandez Ascariz
-Examples:
+Examples: 1
diff --git a/doc/chap9.txt b/doc/chap9.txt index 2ecb5c11..69799f83 100644 --- a/doc/chap9.txt +++ b/doc/chap9.txt @@ -47,7 +47,7 @@ [33X[0;0YThis function was written by [12XPablo Fernandez Ascariz[112X[133X - [33X[0;0Y[12XExamples:[112X[133X + [33X[0;0Y[12XExamples:[112X 1 ([7X../tutorial/chap7.html[107X) [133X [1X9.1-4 LeibnizComplex[101X diff --git a/doc/chap9_mj.html b/doc/chap9_mj.html index baf64b7f..1baf4e5d 100644 --- a/doc/chap9_mj.html +++ b/doc/chap9_mj.html @@ -75,7 +75,7 @@This function was written by Pablo Fernandez Ascariz
-Examples:
+Examples: 1
diff --git a/doc/chapInd.html b/doc/chapInd.html index 811e79dd..8cce949e 100644 --- a/doc/chapInd.html +++ b/doc/chapInd.html @@ -70,7 +70,7 @@BoundaryOfPureCubicalComplex
29.1-36 BoundingPureCubicalComplex
29.1-40 CategoricalEnrichment
34.2-1 CategoryName
34.2-7 CategoryName
34.2-9 CayleyGraphOfGroup
1.1-7 1.10-3 28.1-18 CayleyGraphOfGroupDisplay
17.1-1 17.1-1 CayleyMetric
1.2-1 33.1-1 33.1-1 ComplementOfFilteredPureCubicalComplex
29.1-49 ComplementOfPureCubicalComplex
29.1-42 Compose
39.1-5 CompositionEqualityAdditionMinus
34.2-8 CompositionEqualityAdditionMinus
34.2-10 CompositionSeriesOfFpGModules
21.1-1 ConcentricFiltration
1.3-3 ConjugatedResolution
5.1-27 HAPDerivation
2.4-2 HAPPrintTo
36.1-8 HAPRead
36.1-9 HasInitialObject
34.2-5 HasTerminalObject
34.2-6 HilbertPoincareSeries
2.4-3 Homology
1.9-3 1.9-3 1.9-3 1.9-3 1.9-3 1.9-3 1.9-3 11.1-18 28.1-1 28.1-1 29.1-15 29.1-15 HomologyOfDerivation
2.4-4 IntersectionOfFpGModules
21.1-12 IsAspherical
1.5-7 17.1-3 IsAvailableChild
36.1-5 IsCategoryArrow
34.2-12 IsCategoryObject
34.2-11 IsCategoryArrow
34.2-14 IsCategoryObject
34.2-13 IsConnectedQuandle
32.1-15 IsFpGModuleHomomorphismData
21.1-13 IsLatin
32.1-14 MakeHAPManual
39.1-9 ManhattanMetric
1.2-6 33.1-6 Map
38.1-7 Mapping
34.2-10 Mapping
34.2-12 MaximalSimplicesToSimplicialComplex
28.1-10 MaximalSubmoduleOfFpGModule
21.1-14 MaximalSubmodulesOfFpGModule
21.1-15 NormalSeriesToQuotientHomomorphisms
39.1-13 NormalSubgroupAsCatOneGroup
24.1-7 NumberOfHomomorphisms
32.1-6 Object
34.2-9 Object
34.2-11 OrbitPolytope
1.10-10 18.1-6 OrientRegularCWComplex
1.4-5 ParallelList
37.1-4 SkeletonOfSimplicialComplex
28.1-11 SL2Z
39.1-1 39.1-1 SolutionsMatDestructive
39.1-11 Source
34.2-5 38.1-8 Source
34.2-7 38.1-8 SparseBoundaryMatrix
10.1-12 SparseChainComplex
10.1-10 SparseChainComplexOfRegularCWComplex
10.1-11 SymmetricMatrixToGraph
1.1-24 SymmetricMatrixToIncidenceMatrix
28.1-16 28.1-16 Syzygy
19.1-4 Target
34.2-6 38.1-9 Target
34.2-8 38.1-9 TensorCentre
15.1-12 TensorProductOfChainComplexes
9.1-8 TensorWithIntegers
2.3-3 2.3-3 8.1-9 BoundaryOfPureCubicalComplex
29.1-36 BoundingPureCubicalComplex
29.1-40 CategoricalEnrichment
34.2-1 CategoryName
34.2-7 CategoryName
34.2-9 CayleyGraphOfGroup
1.1-7 1.10-3 28.1-18 CayleyGraphOfGroupDisplay
17.1-1 17.1-1 CayleyMetric
1.2-1 33.1-1 33.1-1 ComplementOfFilteredPureCubicalComplex
29.1-49 ComplementOfPureCubicalComplex
29.1-42 Compose
39.1-5 CompositionEqualityAdditionMinus
34.2-8 CompositionEqualityAdditionMinus
34.2-10 CompositionSeriesOfFpGModules
21.1-1 ConcentricFiltration
1.3-3 ConjugatedResolution
5.1-27 HAPDerivation
2.4-2 HAPPrintTo
36.1-8 HAPRead
36.1-9 HasInitialObject
34.2-5 HasTerminalObject
34.2-6 HilbertPoincareSeries
2.4-3 Homology
1.9-3 1.9-3 1.9-3 1.9-3 1.9-3 1.9-3 1.9-3 11.1-18 28.1-1 28.1-1 29.1-15 29.1-15 HomologyOfDerivation
2.4-4 IntersectionOfFpGModules
21.1-12 IsAspherical
1.5-7 17.1-3 IsAvailableChild
36.1-5 IsCategoryArrow
34.2-12 IsCategoryObject
34.2-11 IsCategoryArrow
34.2-14 IsCategoryObject
34.2-13 IsConnectedQuandle
32.1-15 IsFpGModuleHomomorphismData
21.1-13 IsLatin
32.1-14 MakeHAPManual
39.1-9 ManhattanMetric
1.2-6 33.1-6 Map
38.1-7 Mapping
34.2-10 Mapping
34.2-12 MaximalSimplicesToSimplicialComplex
28.1-10 MaximalSubmoduleOfFpGModule
21.1-14 MaximalSubmodulesOfFpGModule
21.1-15 NormalSeriesToQuotientHomomorphisms
39.1-13 NormalSubgroupAsCatOneGroup
24.1-7 NumberOfHomomorphisms
32.1-6 Object
34.2-9 Object
34.2-11 OrbitPolytope
1.10-10 18.1-6 OrientRegularCWComplex
1.4-5 ParallelList
37.1-4 SkeletonOfSimplicialComplex
28.1-11 SL2Z
39.1-1 39.1-1 SolutionsMatDestructive
39.1-11 Source
34.2-5 38.1-8 Source
34.2-7 38.1-8 SparseBoundaryMatrix
10.1-12 SparseChainComplex
10.1-10 SparseChainComplexOfRegularCWComplex
10.1-11 SymmetricMatrixToGraph
1.1-24 SymmetricMatrixToIncidenceMatrix
28.1-16 28.1-16 Syzygy
19.1-4 Target
34.2-6 38.1-9 Target
34.2-8 38.1-9 TensorCentre
15.1-12 TensorProductOfChainComplexes
9.1-8 TensorWithIntegers
2.3-3 2.3-3 8.1-9 Graham Ellis @@ -272,7 +272,7 @@
Graham Ellis @@ -275,7 +275,7 @@
for g∈ G, m,m'∈ M.
-A crossed module ∂: M→ G is equivalent to a cat^1-group (H,s,t) (see 6.8) where H=M ⋊ G, s(m,g) = (1,g), t(m,g)=(1,(∂ m)g). A cat^1-group is, in turn, equivalent to a simplicial group with Moore complex has length 1. The simplicial group is constructed by considering the cat^1-group as a category and taking its nerve. Alternatively, the simplicial group can be constructed by viewing the crossed module as a crossed complex and using a nonabelian version of the Dold-Kan theorem.
+A crossed module ∂: M→ G is equivalent to a cat^1-group (H,s,t) (see 6.9) where H=M ⋊ G, s(m,g) = (1,g), t(m,g)=(1,(∂ m)g). A cat^1-group is, in turn, equivalent to a simplicial group with Moore complex has length 1. The simplicial group is constructed by considering the cat^1-group as a category and taking its nerve. Alternatively, the simplicial group can be constructed by viewing the crossed module as a crossed complex and using a nonabelian version of the Dold-Kan theorem.
The following example concerns the crossed module
@@ -884,7 +884,7 @@A 2-type is a CW-complex X whose homotopy groups are trivial in dimensions n=0 and n>2. As explained in 6.8 the homotopy type of such a space can be captured algebraically by a cat^1-group G. Let X, Y be 2-tytpes represented by cat^1-groups G, H. If X and Y are homotopy equivalent then there exists a sequence of morphisms of cat^1-groups
+A 2-type is a CW-complex X whose homotopy groups are trivial in dimensions n=0 and n>2. As explained in 6.9 the homotopy type of such a space can be captured algebraically by a cat^1-group G. Let X, Y be 2-tytpes represented by cat^1-groups G, H. If X and Y are homotopy equivalent then there exists a sequence of morphisms of cat^1-groups
G \rightarrow K_1 \rightarrow K_2 \leftarrow K_3 \rightarrow \cdots \rightarrow K_n \leftarrow H
diff --git a/tutorial/chap12.txt b/tutorial/chap12.txt index f6953023..d060f295 100644 --- a/tutorial/chap12.txt +++ b/tutorial/chap12.txt @@ -13,7 +13,7 @@ [33X[0;0Yfor [22Xg∈ G[122X, [22Xm,m'∈ M[122X.[133X - [33X[0;0YA crossed module [22X∂: M→ G[122X is equivalent to a cat[22X^1[122X-group [22X(H,s,t)[122X (see [14X6.8[114X) + [33X[0;0YA crossed module [22X∂: M→ G[122X is equivalent to a cat[22X^1[122X-group [22X(H,s,t)[122X (see [14X6.9[114X) where [22XH=M ⋊ G[122X, [22Xs(m,g) = (1,g)[122X, [22Xt(m,g)=(1,(∂ m)g)[122X. A cat[22X^1[122X-group is, in turn, equivalent to a simplicial group with Moore complex has length [22X1[122X. The simplicial group is constructed by considering the cat[22X^1[122X-group as a category @@ -533,7 +533,7 @@ [1X12.9 [33X[0;0YEnumerating homotopy 2-types[133X[101X [33X[0;0YA [13X2-type[113X is a CW-complex [22XX[122X whose homotopy groups are trivial in dimensions - [22Xn=0[122X and [22Xn>2[122X. As explained in [14X6.8[114X the homotopy type of such a space can be + [22Xn=0[122X and [22Xn>2[122X. As explained in [14X6.9[114X the homotopy type of such a space can be captured algebraically by a cat[22X^1[122X-group [22XG[122X. Let [22XX[122X, [22XY[122X be [22X2[122X-tytpes represented by cat[22X^1[122X-groups [22XG[122X, [22XH[122X. If [22XX[122X and [22XY[122X are homotopy equivalent then there exists a sequence of morphisms of cat[22X^1[122X-groups[133X diff --git a/tutorial/chap12_mj.html b/tutorial/chap12_mj.html index 97b889e5..ef4f960f 100644 --- a/tutorial/chap12_mj.html +++ b/tutorial/chap12_mj.html @@ -79,7 +79,7 @@for \(g\in G\), \(m,m'\in M\).
-A crossed module \(\partial\colon M\rightarrow G\) is equivalent to a cat\(^1\)-group \((H,s,t)\) (see 6.8) where \(H=M \rtimes G\), \(s(m,g) = (1,g)\), \(t(m,g)=(1,(\partial m)g)\). A cat\(^1\)-group is, in turn, equivalent to a simplicial group with Moore complex has length \(1\). The simplicial group is constructed by considering the cat\(^1\)-group as a category and taking its nerve. Alternatively, the simplicial group can be constructed by viewing the crossed module as a crossed complex and using a nonabelian version of the Dold-Kan theorem.
+A crossed module \(\partial\colon M\rightarrow G\) is equivalent to a cat\(^1\)-group \((H,s,t)\) (see 6.9) where \(H=M \rtimes G\), \(s(m,g) = (1,g)\), \(t(m,g)=(1,(\partial m)g)\). A cat\(^1\)-group is, in turn, equivalent to a simplicial group with Moore complex has length \(1\). The simplicial group is constructed by considering the cat\(^1\)-group as a category and taking its nerve. Alternatively, the simplicial group can be constructed by viewing the crossed module as a crossed complex and using a nonabelian version of the Dold-Kan theorem.
The following example concerns the crossed module
@@ -887,7 +887,7 @@A 2-type is a CW-complex \(X\) whose homotopy groups are trivial in dimensions \(n=0 \) and \(n>2\). As explained in 6.8 the homotopy type of such a space can be captured algebraically by a cat\(^1\)-group \(G\). Let \(X\), \(Y\) be \(2\)-tytpes represented by cat\(^1\)-groups \(G\), \(H\). If \(X\) and \(Y\) are homotopy equivalent then there exists a sequence of morphisms of cat\(^1\)-groups
+A 2-type is a CW-complex \(X\) whose homotopy groups are trivial in dimensions \(n=0 \) and \(n>2\). As explained in 6.9 the homotopy type of such a space can be captured algebraically by a cat\(^1\)-group \(G\). Let \(X\), \(Y\) be \(2\)-tytpes represented by cat\(^1\)-groups \(G\), \(H\). If \(X\) and \(Y\) are homotopy equivalent then there exists a sequence of morphisms of cat\(^1\)-groups
\[G \rightarrow K_1 \rightarrow K_2 \leftarrow K_3 \rightarrow \cdots \rightarrow K_n \leftarrow H\]
diff --git a/tutorial/chap5.html b/tutorial/chap5.html index b28e07df..862d7664 100644 --- a/tutorial/chap5.html +++ b/tutorial/chap5.html @@ -223,7 +223,7 @@ContractedComplex(M, optional subcomplex of M)
ExpandedComplex(M, optional subcomplex of M)
ExpandedComplex(M, optional supercomplex of M)
PureComplexUnion(M,N)
ContractedComplex(M, optional subcomplex of M)
ExpandedComplex(M, optional subcomplex of M)
ExpandedComplex(M, optional supercomplex of M)
PureComplexUnion(M,N)
Let G be a finite group and k a field of characteristic 0. The group algebra k(G), and the algebra F(G) of functions d_g: G→ k, h→ d_g,h, are both Hopf algebras. The tensor product F(G) ⊗ k(G) also admits a Hopf algebra structure known as the quantum double D(G). A twisted quantum double D_f(G) was introduced by R. Dijkraaf, V. Pasquier & P. Roche [DPR91]. The twisted double is a quasi-Hopf algebra depending on a 3-cocycle f: G× G× G→ k. The multiplication is given by (d_g ⊗ x)(d_h ⊗ y) = d_gx,xhβ_g(x,y)(d_g ⊗ xy) where β_a is defined by β_a(h,g) = f(a,h,g) f(h,h^-1ah,g)^-1 f(h,g,(hg)^-1ahg) . Although the algebraic structure of D_f(G) depends very much on the particular 3-cocycle f, representation-theoretic properties of D_f(G) depend only on the cohomology class of f.
An explicit 2-cocycle f: G× G→ A is needed to construct the multiplication (a,g)(a',g') = (a + g⋅ a' + f(g,g'), gg') in the extension a group G by a ZG-module A determined by the cohomology class of f in H^2(G,A). See 6.6.
+An explicit 2-cocycle f: G× G→ A is needed to construct the multiplication (a,g)(a',g') = (a + g⋅ a' + f(g,g'), gg') in the extension a group G by a ZG-module A determined by the cohomology class of f in H^2(G,A). See 6.7.
In work on coding theory and Hadamard matrices a number of papers have investigated square matrices (a_ij) whose entries a_ij=f(g_i,g_j) are the values of a 2-cocycle f: G× G → Z_2 where G is a finite group acting trivially on Z_2. See for instance [Hor00] and 6.7.
+In work on coding theory and Hadamard matrices a number of papers have investigated square matrices (a_ij) whose entries a_ij=f(g_i,g_j) are the values of a 2-cocycle f: G× G → Z_2 where G is a finite group acting trivially on Z_2. See for instance [Hor00] and 6.8.
Let A be the Lie algebra constructed from the associative algebra M^4× 4( Q) of all 4× 4 rational matrices. Let V be its adjoint module (with underlying vector space of dimension 16 and equal to that of A). The following commands compute H_4(A,V) = Q.
+ + ++gap> M:=FullMatrixAlgebra(Rationals,4);; +gap> A:=LieAlgebra(M);; +gap> V:=AdjointModule(A);; +gap> C:=ChevalleyEilenbergComplex(V,17);; +gap> List([0..17],C!.dimension); +[ 16, 256, 1920, 8960, 29120, 69888, 128128, 183040, 205920, 183040, 128128, + 69888, 29120, 8960, 1920, 256, 16, 0 ] +gap> Homology(C,4); +1 + +
Note that the eighth term C_8(V) in the Chevalley-Eilenberg complex C_∗(V) is a vector space of dimension 205920 and so it will take longer to compute the homology in degree 8.
+ diff --git a/tutorial/chap7.txt b/tutorial/chap7.txt index b10555ee..e6aa1b0d 100644 --- a/tutorial/chap7.txt +++ b/tutorial/chap7.txt @@ -1,5 +1,5 @@ - [1X7 [33X[0;0YCohomology of groups[133X[101X + [1X7 [33X[0;0YCohomology of groups (and Lie Algebras)[133X[101X [1X7.1 [33X[0;0YFinite groups[133X[101X @@ -848,12 +848,12 @@ [30X [33X[0;6YAn explicit [22X2[122X-cocycle [22Xf: G× G→ A[122X is needed to construct the multiplication [22X(a,g)(a',g') = (a + g⋅ a' + f(g,g'), gg')[122X in the extension a group [22XG[122X by a [22XZG[122X-module [22XA[122X determined by the cohomology - class of [22Xf[122X in [22XH^2(G,A)[122X. See [14X6.6[114X.[133X + class of [22Xf[122X in [22XH^2(G,A)[122X. See [14X6.7[114X.[133X [30X [33X[0;6YIn work on coding theory and Hadamard matrices a number of papers have investigated square matrices [22X(a_ij)[122X whose entries [22Xa_ij=f(g_i,g_j)[122X are the values of a [22X2[122X-cocycle [22Xf: G× G → Z_2[122X where [22XG[122X is a finite group - acting trivially on [22XZ_2[122X. See for instance [Hor00] and [14X6.7[114X.[133X + acting trivially on [22XZ_2[122X. See for instance [Hor00] and [14X6.8[114X.[133X [33X[0;0YGiven a [22XZG[122X-resolution [22XR_∗[122X (with contracting homotopy) and a [22XZG[122X-module [22XA[122X one can use HAP commands to compute explicit standard [22Xn[122X-cocycles [22Xf: G^n → A[122X. @@ -1123,3 +1123,28 @@ [4X[28X[128X[104X [4X[32X[104X + + [1X7.15 [33X[0;0YHomology of a Lie algebra with coefficients in a module[133X[101X + + [33X[0;0YLet [22XA[122X be the Lie algebra constructed from the associative algebra [22XM^4× 4( Q)[122X + of all [22X4× 4[122X rational matrices. Let [22XV[122X be its adjoint module (with underlying + vector space of dimension [22X16[122X and equal to that of [22XA[122X). The following commands + compute [22XH_4(A,V) = Q[122X.[133X + + [4X[32X Example [32X[104X + [4X[25Xgap>[125X [27XM:=FullMatrixAlgebra(Rationals,4);; [127X[104X + [4X[25Xgap>[125X [27XA:=LieAlgebra(M);;[127X[104X + [4X[25Xgap>[125X [27XV:=AdjointModule(A);;[127X[104X + [4X[25Xgap>[125X [27XC:=ChevalleyEilenbergComplex(V,17);;[127X[104X + [4X[25Xgap>[125X [27XList([0..17],C!.dimension);[127X[104X + [4X[28X[ 16, 256, 1920, 8960, 29120, 69888, 128128, 183040, 205920, 183040, 128128, [128X[104X + [4X[28X 69888, 29120, 8960, 1920, 256, 16, 0 ][128X[104X + [4X[25Xgap>[125X [27XHomology(C,4);[127X[104X + [4X[28X1[128X[104X + [4X[28X[128X[104X + [4X[32X[104X + + [33X[0;0YNote that the eighth term [22XC_8(V)[122X in the Chevalley-Eilenberg complex [22XC_∗(V)[122X + is a vector space of dimension [22X205920[122X and so it will take longer to compute + the homology in degree [22X8[122X.[133X + diff --git a/tutorial/chap7_mj.html b/tutorial/chap7_mj.html index 980c7e17..bc231bc3 100644 --- a/tutorial/chap7_mj.html +++ b/tutorial/chap7_mj.html @@ -8,7 +8,7 @@ -Let \(G\) be a finite group and \(k\) a field of characteristic \(0\). The group algebra \(k(G)\), and the algebra \(F(G)\) of functions \(d_g\colon G\rightarrow k, h\rightarrow d_{g,h}\), are both Hopf algebras. The tensor product \(F(G) \otimes k(G)\) also admits a Hopf algebra structure known as the quantum double \(D(G)\). A twisted quantum double \(D_f(G)\) was introduced by R. Dijkraaf, V. Pasquier & P. Roche [DPR91]. The twisted double is a quasi-Hopf algebra depending on a \(3\)-cocycle \(f\colon G\times G\times G\rightarrow k\). The multiplication is given by \((d_g \otimes x)(d_h \otimes y) = d_{gx,xh}\beta_g(x,y)(d_g \otimes xy)\) where \(\beta_a \) is defined by \(\beta_a(h,g) = f(a,h,g) f(h,h^{-1}ah,g)^{-1} f(h,g,(hg)^{-1}ahg)\) . Although the algebraic structure of \(D_f(G)\) depends very much on the particular \(3\)-cocycle \(f\), representation-theoretic properties of \(D_f(G)\) depend only on the cohomology class of \(f\).
An explicit \(2\)-cocycle \(f\colon G\times G\rightarrow A\) is needed to construct the multiplication \((a,g)(a',g') = (a + g\cdot a' + f(g,g'), gg')\) in the extension a group \(G\) by a \(\mathbb ZG\)-module \(A\) determined by the cohomology class of \(f\) in \(H^2(G,A)\). See 6.6.
+An explicit \(2\)-cocycle \(f\colon G\times G\rightarrow A\) is needed to construct the multiplication \((a,g)(a',g') = (a + g\cdot a' + f(g,g'), gg')\) in the extension a group \(G\) by a \(\mathbb ZG\)-module \(A\) determined by the cohomology class of \(f\) in \(H^2(G,A)\). See 6.7.
In work on coding theory and Hadamard matrices a number of papers have investigated square matrices \((a_{ij})\) whose entries \(a_{ij}=f(g_i,g_j)\) are the values of a \(2\)-cocycle \(f\colon G\times G \rightarrow \mathbb Z_2\) where \(G\) is a finite group acting trivially on \(\mathbb Z_2\). See for instance [Hor00] and 6.7.
+In work on coding theory and Hadamard matrices a number of papers have investigated square matrices \((a_{ij})\) whose entries \(a_{ij}=f(g_i,g_j)\) are the values of a \(2\)-cocycle \(f\colon G\times G \rightarrow \mathbb Z_2\) where \(G\) is a finite group acting trivially on \(\mathbb Z_2\). See for instance [Hor00] and 6.8.
Let \(A\) be the Lie algebra constructed from the associative algebra \(M^{4\times 4}(\mathbb Q)\) of all \(4\times 4\) rational matrices. Let \(V\) be its adjoint module (with underlying vector space of dimension \(16\) and equal to that of \(A\)). The following commands compute \(H_{4}(A,V) = \mathbb Q\).
+ + ++gap> M:=FullMatrixAlgebra(Rationals,4);; +gap> A:=LieAlgebra(M);; +gap> V:=AdjointModule(A);; +gap> C:=ChevalleyEilenbergComplex(V,17);; +gap> List([0..17],C!.dimension); +[ 16, 256, 1920, 8960, 29120, 69888, 128128, 183040, 205920, 183040, 128128, + 69888, 29120, 8960, 1920, 256, 16, 0 ] +gap> Homology(C,4); +1 + +
Note that the eighth term \(C_{8}(V)\) in the Chevalley-Eilenberg complex \(C_\ast(V)\) is a vector space of dimension \(205920\) and so it will take longer to compute the homology in degree \(8\).
+ diff --git a/tutorial/images/3096final.png b/tutorial/images/3096final.png index 8335db25..9e4ee17f 100644 Binary files a/tutorial/images/3096final.png and b/tutorial/images/3096final.png differ diff --git a/tutorial/images/coinsbettizero.gif b/tutorial/images/coinsbettizero.gif index 6d8cd858..ae7c1ed4 100644 Binary files a/tutorial/images/coinsbettizero.gif and b/tutorial/images/coinsbettizero.gif differ diff --git a/tutorial/images/imbar0.gif b/tutorial/images/imbar0.gif index 4a8613cc..fd14ba8c 100644 Binary files a/tutorial/images/imbar0.gif and b/tutorial/images/imbar0.gif differ diff --git a/tutorial/images/imbar1.gif b/tutorial/images/imbar1.gif index a85859e2..e74ab330 100644 Binary files a/tutorial/images/imbar1.gif and b/tutorial/images/imbar1.gif differ diff --git a/tutorial/images/refinedbc.gif b/tutorial/images/refinedbc.gif new file mode 100644 index 00000000..7b0cae10 Binary files /dev/null and b/tutorial/images/refinedbc.gif differ diff --git a/tutorial/images/refinedbc0.gif b/tutorial/images/refinedbc0.gif new file mode 100644 index 00000000..8df5c9f2 Binary files /dev/null and b/tutorial/images/refinedbc0.gif differ diff --git a/tutorial/manual.pdf b/tutorial/manual.pdf index 1ccf7861..b93151a3 100644 Binary files a/tutorial/manual.pdf and b/tutorial/manual.pdf differ diff --git a/tutorial/manual.six b/tutorial/manual.six index 5cae4eaf..c35bd340 100644 --- a/tutorial/manual.six +++ b/tutorial/manual.six @@ -3,205 +3,696 @@ HELPBOOKINFOSIXTMP := rec( encoding := "UTF-8", bookname := "HAP", entries := -[ [ "Title page", ".", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" ], [ "Table of Contents", ".-1", [ 0, 0, 1 ], 20, 2, "table of contents", "X8537FEB07AF2BEC8" ], - [ "\033[1X\033[33X\033[0;-2YSimplicial complexes & CW complexes\033[133X\033[101X", "1", [ 1, 0, 0 ], 1, 6, "simplicial complexes & cw complexes", "X7E5EA9587D4BCFB4" ], - [ "\033[1X\033[33X\033[0;-2YThe Klein bottle as a simplicial complex\033[133X\033[101X", "1.1", [ 1, 1, 0 ], 4, 6, "the klein bottle as a simplicial complex", "X85691C6980034524" ], - [ "\033[1X\033[33X\033[0;-2YOther simplicial surfaces\033[133X\033[101X", "1.2", [ 1, 2, 0 ], 46, 7, "other simplicial surfaces", "X7B8F88487B1B766C" ], - [ "\033[1X\033[33X\033[0;-2YThe Quillen complex\033[133X\033[101X", "1.3", [ 1, 3, 0 ], 86, 7, "the quillen complex", "X80A72C347D99A58E" ], - [ "\033[1X\033[33X\033[0;-2YThe Quillen complex as a reduced CW-complex\033[133X\033[101X", "1.4", [ 1, 4, 0 ], 110, 8, "the quillen complex as a reduced cw-complex", "X7C4A2B8B79950232" ], - [ "\033[1X\033[33X\033[0;-2YSimple homotopy equivalences\033[133X\033[101X", "1.5", [ 1, 5, 0 ], 143, 8, "simple homotopy equivalences", "X782AAB84799E3C44" ], - [ "\033[1X\033[33X\033[0;-2YCellular simplifications preserving homeomorphism type\033[133X\033[101X", "1.6", [ 1, 6, 0 ], 186, 9, "cellular simplifications preserving homeomorphism type", - "X80474C7885AC1578" ], [ "\033[1X\033[33X\033[0;-2YConstructing a CW-structure on a knot complement\033[133X\033[101X", "1.7", [ 1, 7, 0 ], 212, 9, - "constructing a cw-structure on a knot complement", "X7A15484C7E680AC9" ], [ "\033[1X\033[33X\033[0;-2YConstructing a regular CW-complex by attaching cells\033[133X\033[101X", "1.8", - [ 1, 8, 0 ], 247, 10, "constructing a regular cw-complex by attaching cells", "X829793717FB6DDCE" ], - [ "\033[1X\033[33X\033[0;-2YConstructing a regular CW-complex from its face lattice\033[133X\033[101X", "1.9", [ 1, 9, 0 ], 305, 11, "constructing a regular cw-complex from its face lattice", - "X7B7354E68025FC92" ], [ "\033[1X\033[33X\033[0;-2YCup products\033[133X\033[101X", "1.10", [ 1, 10, 0 ], 375, 12, "cup products", "X823FA6A9828FF473" ], - [ "\033[1X\033[33X\033[0;-2YIntersection forms of \033[22X4\033[122X\033[101X\027\033[1X\027-manifolds\033[133X\033[101X", "1.11", [ 1, 11, 0 ], 636, 17, "intersection forms of 4-manifolds", - "X7F9B01CF7EE1D2FC" ], [ "\033[1X\033[33X\033[0;-2YCohomology Rings\033[133X\033[101X", "1.12", [ 1, 12, 0 ], 712, 18, "cohomology rings", "X80B6849C835B7F19" ], - [ "\033[1X\033[33X\033[0;-2YBockstein homomorphism\033[133X\033[101X", "1.13", [ 1, 13, 0 ], 783, 19, "bockstein homomorphism", "X83035DEC7C9659C6" ], - [ "\033[1X\033[33X\033[0;-2YCW maps and induced homomorphisms\033[133X\033[101X", "1.14", [ 1, 14, 0 ], 824, 20, "cw maps and induced homomorphisms", "X8771FF2885105154" ], - [ "\033[1X\033[33X\033[0;-2YConstructing a simplicial complex from a regular CW-complex\033[133X\033[101X", "1.15", [ 1, 15, 0 ], 878, 20, - "constructing a simplicial complex from a regular cw-complex", "X853D6B247D0E18DB" ], [ "\033[1X\033[33X\033[0;-2YEquivariant CW complexes\033[133X\033[101X", "1.16", [ 1, 16, 0 ], 906, 21, - "equivariant cw complexes", "X85A579217DCB6CC8" ], [ "\033[1X\033[33X\033[0;-2YOrbifolds and classifying spaces\033[133X\033[101X", "1.17", [ 1, 17, 0 ], 1010, 23, - "orbifolds and classifying spaces", "X86881717878ADCD6" ], [ "\033[1X\033[33X\033[0;-2YCubical complexes & permutahedral complexes\033[133X\033[101X", "2", [ 2, 0, 0 ], 1, 27, - "cubical complexes & permutahedral complexes", "X7F8376F37AF80AAC" ], [ "\033[1X\033[33X\033[0;-2YCubical complexes\033[133X\033[101X", "2.1", [ 2, 1, 0 ], 4, 27, "cubical complexes", - "X7D67D5F3820637AD" ], [ "\033[1X\033[33X\033[0;-2YPermutahedral complexes\033[133X\033[101X", "2.2", [ 2, 2, 0 ], 91, 28, "permutahedral complexes", "X85D8195379F2A8CA" ], - [ "\033[1X\033[33X\033[0;-2YConstructing pure cubical and permutahedral complexes\033[133X\033[101X", "2.3", [ 2, 3, 0 ], 218, 30, "constructing pure cubical and permutahedral complexes", - "X78D3037283B506E0" ], [ "\033[1X\033[33X\033[0;-2YComputations in dynamical systems\033[133X\033[101X", "2.4", [ 2, 4, 0 ], 240, 31, "computations in dynamical systems", "X8462CF66850CC3A8" ], - [ "\033[1X\033[33X\033[0;-2YCovering spaces\033[133X\033[101X", "3", [ 3, 0, 0 ], 1, 32, "covering spaces", "X87472058788D76C0" ], - [ "\033[1X\033[33X\033[0;-2YCellular chains on the universal cover\033[133X\033[101X", "3.1", [ 3, 1, 0 ], 15, 32, "cellular chains on the universal cover", "X85FB4CA987BC92CC" ], - [ "\033[1X\033[33X\033[0;-2YSpun knots and the Satoh tube map\033[133X\033[101X", "3.2", [ 3, 2, 0 ], 81, 33, "spun knots and the satoh tube map", "X7E5CC04E7E3CCDAD" ], - [ "\033[1X\033[33X\033[0;-2YCohomology with local coefficients\033[133X\033[101X", "3.3", [ 3, 3, 0 ], 178, 35, "cohomology with local coefficients", "X7C304A1C7EF0BA60" ], - [ "\033[1X\033[33X\033[0;-2YDistinguishing between two non-homeomorphic homotopy equivalent spaces\033[133X\033[101X", "3.4", [ 3, 4, 0 ], 218, 36, - "distinguishing between two non-homeomorphic homotopy equivalent spaces", "X7A4F34B780FA2CD5" ], - [ "\033[1X\033[33X\033[0;-2YSecond homotopy groups of spaces with finite fundamental group\033[133X\033[101X", "3.5", [ 3, 5, 0 ], 259, 36, - "second homotopy groups of spaces with finite fundamental group", "X869FD75B84AAC7AD" ], [ "\033[1X\033[33X\033[0;-2YThird homotopy groups of simply connected spaces\033[133X\033[101X", "3.6", - [ 3, 6, 0 ], 307, 37, "third homotopy groups of simply connected spaces", "X87F8F6C3812A7E73" ], [ "\033[1X\033[33X\033[0;-2YFirst example: Whitehead's certain exact sequence\033[133X\033[101X", - "3.6-1", [ 3, 6, 1 ], 310, 37, "first example: whiteheads certain exact sequence", "X7B506CF27DE54DBE" ], [ "\033[1X\033[33X\033[0;-2YSecond example: the Hopf invariant\033[133X\033[101X", - "3.6-2", [ 3, 6, 2 ], 341, 38, "second example: the hopf invariant", "X828F0FAB86AA60E9" ], - [ "\033[1X\033[33X\033[0;-2YComputing the second homotopy group of a space with infinite fundamental group\033[133X\033[101X", "3.7", [ 3, 7, 0 ], 433, 39, - "computing the second homotopy group of a space with infinite fundamental group", "X7EAF7E677FB9D53F" ], [ "\033[1X\033[33X\033[0;-2YThree Manifolds\033[133X\033[101X", "4", [ 4, 0, 0 ], 1, 41, - "three manifolds", "X7BFA4D1587D8DF49" ], [ "\033[1X\033[33X\033[0;-2YDehn Surgery\033[133X\033[101X", "4.1", [ 4, 1, 0 ], 4, 41, "dehn surgery", "X82D1348C79238C2D" ], - [ "\033[1X\033[33X\033[0;-2YConnected Sums\033[133X\033[101X", "4.2", [ 4, 2, 0 ], 49, 42, "connected sums", "X848EDEE882B36F6C" ], - [ "\033[1X\033[33X\033[0;-2YDijkgraaf-Witten Invariant\033[133X\033[101X", "4.3", [ 4, 3, 0 ], 78, 42, "dijkgraaf-witten invariant", "X78AE684C7DBD7C70" ], - [ "\033[1X\033[33X\033[0;-2YCohomology rings\033[133X\033[101X", "4.4", [ 4, 4, 0 ], 143, 43, "cohomology rings", "X80B6849C835B7F19" ], - [ "\033[1X\033[33X\033[0;-2YLinking Form\033[133X\033[101X", "4.5", [ 4, 5, 0 ], 184, 44, "linking form", "X7F56BB4C801AB894" ], - [ "\033[1X\033[33X\033[0;-2YDetermining the homeomorphism type of a lens space\033[133X\033[101X", "4.6", [ 4, 6, 0 ], 271, 45, "determining the homeomorphism type of a lens space", - "X850C76697A6A1654" ], [ "\033[1X\033[33X\033[0;-2YSurgeries on distinct knots can yield homeomorphic manifolds\033[133X\033[101X", "4.7", [ 4, 7, 0 ], 383, 47, - "surgeries on distinct knots can yield homeomorphic manifolds", "X7EC6B008878CC77E" ], - [ "\033[1X\033[33X\033[0;-2YFinite fundamental groups of \033[22X3\033[122X\033[101X\027\033[1X\027-manifolds\033[133X\033[101X", "4.8", [ 4, 8, 0 ], 464, 48, - "finite fundamental groups of 3-manifolds", "X7B425A3280A2AF07" ], [ "\033[1X\033[33X\033[0;-2YPoincare's cube manifolds\033[133X\033[101X", "4.9", [ 4, 9, 0 ], 500, 49, - "poincares cube manifolds", "X78912D227D753167" ], [ "\033[1X\033[33X\033[0;-2YThere are at least 25 distinct cube manifolds\033[133X\033[101X", "4.10", [ 4, 10, 0 ], 555, 50, - "there are at least 25 distinct cube manifolds", "X8761051F84C6CEC2" ], [ "\033[1X\033[33X\033[0;-2YFace pairings for 25 distinct cube manifolds\033[133X\033[101X", "4.10-1", [ 4, 10, 1 ], 672, - 52, "face pairings for 25 distinct cube manifolds", "X7D50795883E534A3" ], [ "\033[1X\033[33X\033[0;-2YPlatonic cube manifolds\033[133X\033[101X", "4.10-2", [ 4, 10, 2 ], 898, 56, - "platonic cube manifolds", "X837811BB8181666E" ], [ "\033[1X\033[33X\033[0;-2YThere are at most 41 distinct cube manifolds\033[133X\033[101X", "4.11", [ 4, 11, 0 ], 924, 56, +[ [ "Title page", ".", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" ], + [ "Table of Contents", ".-1", [ 0, 0, 1 ], 20, 2, "table of contents", + "X8537FEB07AF2BEC8" ], + [ + "\033[1X\033[33X\033[0;-2YSimplicial complexes & CW complexes\033[133X\033[\ +101X", "1", [ 1, 0, 0 ], 1, 7, "simplicial complexes & cw complexes", + "X7E5EA9587D4BCFB4" ], + [ + "\033[1X\033[33X\033[0;-2YThe Klein bottle as a simplicial complex\033[133X\ +\033[101X", "1.1", [ 1, 1, 0 ], 4, 7, + "the klein bottle as a simplicial complex", "X85691C6980034524" ], + [ "\033[1X\033[33X\033[0;-2YOther simplicial surfaces\033[133X\033[101X", + "1.2", [ 1, 2, 0 ], 46, 8, "other simplicial surfaces", + "X7B8F88487B1B766C" ], + [ "\033[1X\033[33X\033[0;-2YThe Quillen complex\033[133X\033[101X", "1.3", + [ 1, 3, 0 ], 86, 8, "the quillen complex", "X80A72C347D99A58E" ], + [ + "\033[1X\033[33X\033[0;-2YThe Quillen complex as a reduced CW-complex\033[1\ +33X\033[101X", "1.4", [ 1, 4, 0 ], 110, 9, + "the quillen complex as a reduced cw-complex", "X7C4A2B8B79950232" ], + [ "\033[1X\033[33X\033[0;-2YSimple homotopy equivalences\033[133X\033[101X", + "1.5", [ 1, 5, 0 ], 143, 9, "simple homotopy equivalences", + "X782AAB84799E3C44" ], + [ + "\033[1X\033[33X\033[0;-2YCellular simplifications preserving homeomorphism\ + type\033[133X\033[101X", "1.6", [ 1, 6, 0 ], 186, 10, + "cellular simplifications preserving homeomorphism type", + "X80474C7885AC1578" ], + [ + "\033[1X\033[33X\033[0;-2YConstructing a CW-structure on a knot complement\\ +033[133X\033[101X", "1.7", [ 1, 7, 0 ], 212, 10, + "constructing a cw-structure on a knot complement", "X7A15484C7E680AC9" + ], + [ + "\033[1X\033[33X\033[0;-2YConstructing a regular CW-complex by attaching ce\ +lls\033[133X\033[101X", "1.8", [ 1, 8, 0 ], 247, 11, + "constructing a regular cw-complex by attaching cells", + "X829793717FB6DDCE" ], + [ + "\033[1X\033[33X\033[0;-2YConstructing a regular CW-complex from its face l\ +attice\033[133X\033[101X", "1.9", [ 1, 9, 0 ], 305, 12, + "constructing a regular cw-complex from its face lattice", + "X7B7354E68025FC92" ], + [ "\033[1X\033[33X\033[0;-2YCup products\033[133X\033[101X", "1.10", + [ 1, 10, 0 ], 375, 13, "cup products", "X823FA6A9828FF473" ], + [ + "\033[1X\033[33X\033[0;-2YIntersection forms of \033[22X4\033[122X\033[101X\ +\027\033[1X\027-manifolds\033[133X\033[101X", "1.11", [ 1, 11, 0 ], 636, 18, + "intersection forms of 4-manifolds", "X7F9B01CF7EE1D2FC" ], + [ "\033[1X\033[33X\033[0;-2YCohomology Rings\033[133X\033[101X", "1.12", + [ 1, 12, 0 ], 712, 19, "cohomology rings", "X80B6849C835B7F19" ], + [ "\033[1X\033[33X\033[0;-2YBockstein homomorphism\033[133X\033[101X", + "1.13", [ 1, 13, 0 ], 783, 20, "bockstein homomorphism", + "X83035DEC7C9659C6" ], + [ + "\033[1X\033[33X\033[0;-2YCW maps and induced homomorphisms\033[133X\033[10\ +1X", "1.14", [ 1, 14, 0 ], 824, 21, "cw maps and induced homomorphisms", + "X8771FF2885105154" ], + [ + "\033[1X\033[33X\033[0;-2YConstructing a simplicial complex from a regular \ +CW-complex\033[133X\033[101X", "1.15", [ 1, 15, 0 ], 878, 21, + "constructing a simplicial complex from a regular cw-complex", + "X853D6B247D0E18DB" ], + [ "\033[1X\033[33X\033[0;-2YEquivariant CW complexes\033[133X\033[101X", + "1.16", [ 1, 16, 0 ], 906, 22, "equivariant cw complexes", + "X85A579217DCB6CC8" ], + [ + "\033[1X\033[33X\033[0;-2YOrbifolds and classifying spaces\033[133X\033[101\ +X", "1.17", [ 1, 17, 0 ], 1010, 24, "orbifolds and classifying spaces", + "X86881717878ADCD6" ], + [ + "\033[1X\033[33X\033[0;-2YCubical complexes & permutahedral complexes\033[1\ +33X\033[101X", "2", [ 2, 0, 0 ], 1, 28, + "cubical complexes & permutahedral complexes", "X7F8376F37AF80AAC" ], + [ "\033[1X\033[33X\033[0;-2YCubical complexes\033[133X\033[101X", "2.1", + [ 2, 1, 0 ], 4, 28, "cubical complexes", "X7D67D5F3820637AD" ], + [ "\033[1X\033[33X\033[0;-2YPermutahedral complexes\033[133X\033[101X", + "2.2", [ 2, 2, 0 ], 91, 29, "permutahedral complexes", + "X85D8195379F2A8CA" ], + [ + "\033[1X\033[33X\033[0;-2YConstructing pure cubical and permutahedral compl\ +exes\033[133X\033[101X", "2.3", [ 2, 3, 0 ], 218, 31, + "constructing pure cubical and permutahedral complexes", + "X78D3037283B506E0" ], + [ + "\033[1X\033[33X\033[0;-2YComputations in dynamical systems\033[133X\033[10\ +1X", "2.4", [ 2, 4, 0 ], 240, 32, "computations in dynamical systems", + "X8462CF66850CC3A8" ], + [ "\033[1X\033[33X\033[0;-2YCovering spaces\033[133X\033[101X", "3", + [ 3, 0, 0 ], 1, 33, "covering spaces", "X87472058788D76C0" ], + [ + "\033[1X\033[33X\033[0;-2YCellular chains on the universal cover\033[133X\\ +033[101X", "3.1", [ 3, 1, 0 ], 15, 33, + "cellular chains on the universal cover", "X85FB4CA987BC92CC" ], + [ + "\033[1X\033[33X\033[0;-2YSpun knots and the Satoh tube map\033[133X\033[10\ +1X", "3.2", [ 3, 2, 0 ], 81, 34, "spun knots and the satoh tube map", + "X7E5CC04E7E3CCDAD" ], + [ + "\033[1X\033[33X\033[0;-2YCohomology with local coefficients\033[133X\033[1\ +01X", "3.3", [ 3, 3, 0 ], 178, 36, "cohomology with local coefficients", + "X7C304A1C7EF0BA60" ], + [ + "\033[1X\033[33X\033[0;-2YDistinguishing between two non-homeomorphic homot\ +opy equivalent spaces\033[133X\033[101X", "3.4", [ 3, 4, 0 ], 218, 37, + "distinguishing between two non-homeomorphic homotopy equivalent spaces" + , "X7A4F34B780FA2CD5" ], + [ + "\033[1X\033[33X\033[0;-2YSecond homotopy groups of spaces with finite fund\ +amental group\033[133X\033[101X", "3.5", [ 3, 5, 0 ], 259, 37, + "second homotopy groups of spaces with finite fundamental group", + "X869FD75B84AAC7AD" ], + [ + "\033[1X\033[33X\033[0;-2YThird homotopy groups of simply connected spaces\\ +033[133X\033[101X", "3.6", [ 3, 6, 0 ], 307, 38, + "third homotopy groups of simply connected spaces", "X87F8F6C3812A7E73" + ], + [ + "\033[1X\033[33X\033[0;-2YFirst example: Whitehead's certain exact sequence\ +\033[133X\033[101X", "3.6-1", [ 3, 6, 1 ], 310, 38, + "first example: whiteheads certain exact sequence", "X7B506CF27DE54DBE" + ], + [ + "\033[1X\033[33X\033[0;-2YSecond example: the Hopf invariant\033[133X\033[1\ +01X", "3.6-2", [ 3, 6, 2 ], 341, 39, "second example: the hopf invariant", + "X828F0FAB86AA60E9" ], + [ + "\033[1X\033[33X\033[0;-2YComputing the second homotopy group of a space wi\ +th infinite fundamental group\033[133X\033[101X", "3.7", [ 3, 7, 0 ], 433, + 40, + "computing the second homotopy group of a space with infinite fundamenta\ +l group", "X7EAF7E677FB9D53F" ], + [ "\033[1X\033[33X\033[0;-2YThree Manifolds\033[133X\033[101X", "4", + [ 4, 0, 0 ], 1, 42, "three manifolds", "X7BFA4D1587D8DF49" ], + [ "\033[1X\033[33X\033[0;-2YDehn Surgery\033[133X\033[101X", "4.1", + [ 4, 1, 0 ], 4, 42, "dehn surgery", "X82D1348C79238C2D" ], + [ "\033[1X\033[33X\033[0;-2YConnected Sums\033[133X\033[101X", "4.2", + [ 4, 2, 0 ], 49, 43, "connected sums", "X848EDEE882B36F6C" ], + [ "\033[1X\033[33X\033[0;-2YDijkgraaf-Witten Invariant\033[133X\033[101X", + "4.3", [ 4, 3, 0 ], 78, 43, "dijkgraaf-witten invariant", + "X78AE684C7DBD7C70" ], + [ "\033[1X\033[33X\033[0;-2YCohomology rings\033[133X\033[101X", "4.4", + [ 4, 4, 0 ], 143, 44, "cohomology rings", "X80B6849C835B7F19" ], + [ "\033[1X\033[33X\033[0;-2YLinking Form\033[133X\033[101X", "4.5", + [ 4, 5, 0 ], 184, 45, "linking form", "X7F56BB4C801AB894" ], + [ + "\033[1X\033[33X\033[0;-2YDetermining the homeomorphism type of a lens spac\ +e\033[133X\033[101X", "4.6", [ 4, 6, 0 ], 271, 46, + "determining the homeomorphism type of a lens space", + "X850C76697A6A1654" ], + [ + "\033[1X\033[33X\033[0;-2YSurgeries on distinct knots can yield homeomorphi\ +c manifolds\033[133X\033[101X", "4.7", [ 4, 7, 0 ], 383, 48, + "surgeries on distinct knots can yield homeomorphic manifolds", + "X7EC6B008878CC77E" ], + [ + "\033[1X\033[33X\033[0;-2YFinite fundamental groups of \033[22X3\033[122X\\ +033[101X\027\033[1X\027-manifolds\033[133X\033[101X", "4.8", [ 4, 8, 0 ], + 464, 49, "finite fundamental groups of 3-manifolds", + "X7B425A3280A2AF07" ], + [ "\033[1X\033[33X\033[0;-2YPoincare's cube manifolds\033[133X\033[101X", + "4.9", [ 4, 9, 0 ], 500, 50, "poincares cube manifolds", + "X78912D227D753167" ], + [ + "\033[1X\033[33X\033[0;-2YThere are at least 25 distinct cube manifolds\\ +033[133X\033[101X", "4.10", [ 4, 10, 0 ], 555, 51, + "there are at least 25 distinct cube manifolds", "X8761051F84C6CEC2" ], + [ "\033[1X\033[33X\033[0;-2YFace pairings for 25 distinct cube manifolds\033\ +[133X\033[101X", "4.10-1", [ 4, 10, 1 ], 672, 53, + "face pairings for 25 distinct cube manifolds", "X7D50795883E534A3" ], + [ "\033[1X\033[33X\033[0;-2YPlatonic cube manifolds\033[133X\033[101X", + "4.10-2", [ 4, 10, 2 ], 898, 57, "platonic cube manifolds", + "X837811BB8181666E" ], + [ + "\033[1X\033[33X\033[0;-2YThere are at most 41 distinct cube manifolds\033[\ +133X\033[101X", "4.11", [ 4, 11, 0 ], 924, 57, "there are at most 41 distinct cube manifolds", "X8084A36082B26D86" ], - [ "\033[1X\033[33X\033[0;-2YThere are precisely 18 orientable cube manifolds, of which 9 are spherical and 5 are euclidean\033[133X\033[101X", "4.12", [ 4, 12, 0 ], 1055, 58, - "there are precisely 18 orientable cube manifolds of which 9 are spherical and 5 are euclidean", "X7B63C22C80E53758" ], - [ "\033[1X\033[33X\033[0;-2YCube manifolds with boundary\033[133X\033[101X", "4.13", [ 4, 13, 0 ], 1123, 60, "cube manifolds with boundary", "X796BF3817BD7F57D" ], - [ "\033[1X\033[33X\033[0;-2YOctahedral manifolds\033[133X\033[101X", "4.14", [ 4, 14, 0 ], 1193, 61, "octahedral manifolds", "X7EC4359B7DF208B0" ], - [ "\033[1X\033[33X\033[0;-2YDodecahedral manifolds\033[133X\033[101X", "4.15", [ 4, 15, 0 ], 1232, 61, "dodecahedral manifolds", "X85FFF9B97B7AD818" ], - [ "\033[1X\033[33X\033[0;-2YPrism manifolds\033[133X\033[101X", "4.16", [ 4, 16, 0 ], 1281, 62, "prism manifolds", "X78B75E2E79FBCC54" ], - [ "\033[1X\033[33X\033[0;-2YBipyramid manifolds\033[133X\033[101X", "4.17", [ 4, 17, 0 ], 1339, 63, "bipyramid manifolds", "X7F31DFDA846E8E75" ], - [ "\033[1X\033[33X\033[0;-2YTopological data analysis\033[133X\033[101X", "5", [ 5, 0, 0 ], 1, 64, "topological data analysis", "X7B7E077887694A9F" ], - [ "\033[1X\033[33X\033[0;-2YPersistent homology\033[133X\033[101X", "5.1", [ 5, 1, 0 ], 4, 64, "persistent homology", "X80A70B20873378E0" ], - [ "\033[1X\033[33X\033[0;-2YBackground to the data\033[133X\033[101X", "5.1-1", [ 5, 1, 1 ], 55, 65, "background to the data", "X7D512DA37F789B4C" ], - [ "\033[1X\033[33X\033[0;-2YMapper clustering\033[133X\033[101X", "5.2", [ 5, 2, 0 ], 62, 65, "mapper clustering", "X849556107A23FF7B" ], - [ "\033[1X\033[33X\033[0;-2YBackground to the data\033[133X\033[101X", "5.2-1", [ 5, 2, 1 ], 107, 66, "background to the data", "X7D512DA37F789B4C" ], - [ "\033[1X\033[33X\033[0;-2YDigital image analysis and persistent homology\033[133X\033[101X", "5.3", [ 5, 3, 0 ], 113, 66, "digital image analysis and persistent homology", "X79616D12822FDB9A" ], - [ "\033[1X\033[33X\033[0;-2YNaive example of image segmentation by automatic thresholding\033[133X\033[101X", "5.3-1", [ 5, 3, 1 ], 141, 66, - "naive example of image segmentation by automatic thresholding", "X8066F9B17B78418E" ], [ "\033[1X\033[33X\033[0;-2YBackground to the data\033[133X\033[101X", "5.3-2", [ 5, 3, 2 ], 164, 66, - "background to the data", "X7D512DA37F789B4C" ], [ "\033[1X\033[33X\033[0;-2YA second example of digital image segmentation\033[133X\033[101X", "5.4", [ 5, 4, 0 ], 169, 67, - "a second example of digital image segmentation", "X7A8224DA7B00E0D9" ], [ "\033[1X\033[33X\033[0;-2YAlternative approaches to computing persistent homology\033[133X\033[101X", "5.5", - [ 5, 5, 0 ], 220, 67, "alternative approaches to computing persistent homology", "X7D2CC9CB85DF1BAF" ], [ "\033[1X\033[33X\033[0;-2YNon-trivial cup product\033[133X\033[101X", "5.5-1", - [ 5, 5, 1 ], 288, 68, "non-trivial cup product", "X86FD0A867EC9E64F" ], [ "\033[1X\033[33X\033[0;-2YKnotted proteins\033[133X\033[101X", "5.6", [ 5, 6, 0 ], 305, 69, "knotted proteins", - "X80D0D8EB7BCD05E9" ], [ "\033[1X\033[33X\033[0;-2YRandom simplicial complexes\033[133X\033[101X", "5.7", [ 5, 7, 0 ], 384, 70, "random simplicial complexes", "X87AF06677F05C624" ], - [ "\033[1X\033[33X\033[0;-2YComputing homology of a clique complex (Vietoris-Rips complex)\033[133X\033[101X", "5.8", [ 5, 8, 0 ], 487, 72, - "computing homology of a clique complex vietoris-rips complex", "X875EE92F7DBA1E27" ], [ "\033[1X\033[33X\033[0;-2YGroup theoretic computations\033[133X\033[101X", "6", [ 6, 0, 0 ], 1, 74, - "group theoretic computations", "X7C07F4BD8466991A" ], [ "\033[1X\033[33X\033[0;-2YThird homotopy group of a supsension of an Eilenberg-MacLane space\033[133X\033[101X", "6.1", [ 6, 1, 0 ], 4, - 74, "third homotopy group of a supsension of an eilenberg-maclane space", "X86D7FBBD7E5287C9" ], [ "\033[1X\033[33X\033[0;-2YRepresentations of knot quandles\033[133X\033[101X", "6.2", - [ 6, 2, 0 ], 23, 74, "representations of knot quandles", "X803FDFFE78A08446" ], [ "\033[1X\033[33X\033[0;-2YIdentifying knots\033[133X\033[101X", "6.3", [ 6, 3, 0 ], 62, 75, "identifying knots", - "X7E4EFB987DA22017" ], [ "\033[1X\033[33X\033[0;-2YAspherical \033[22X2\033[122X\033[101X\027\033[1X\027-complexes\033[133X\033[101X", "6.4", [ 6, 4, 0 ], 80, 75, "aspherical 2-complexes", - "X8664E986873195E6" ], [ "\033[1X\033[33X\033[0;-2YBogomolov multiplier\033[133X\033[101X", "6.5", [ 6, 5, 0 ], 102, 76, "bogomolov multiplier", "X7F719758856A443D" ], - [ "\033[1X\033[33X\033[0;-2YSecond group cohomology and group extensions\033[133X\033[101X", "6.6", [ 6, 6, 0 ], 121, 76, "second group cohomology and group extensions", "X8333413B838D787D" ], - [ "\033[1X\033[33X\033[0;-2YSecond group cohomology and cocyclic Hadamard matrices\033[133X\033[101X", "6.7", [ 6, 7, 0 ], 266, 78, "second group cohomology and cocyclic hadamard matrices", - "X7C60E2B578074532" ], [ "\033[1X\033[33X\033[0;-2YThird group cohomology and homotopy \033[22X2\033[122X\033[101X\027\033[1X\027-types\033[133X\033[101X", "6.8", [ 6, 8, 0 ], 289, 79, - "third group cohomology and homotopy 2-types", "X78040D8580D35D53" ], [ "\033[1X\033[33X\033[0;-2YCohomology of groups\033[133X\033[101X", "7", [ 7, 0, 0 ], 1, 81, "cohomology of groups", - "X7E34E2C6868F2726" ], [ "\033[1X\033[33X\033[0;-2YFinite groups\033[133X\033[101X", "7.1", [ 7, 1, 0 ], 4, 81, "finite groups", "X807B265978F90E01" ], - [ "\033[1X\033[33X\033[0;-2YNaive homology computation for a very small group\033[133X\033[101X", "7.1-1", [ 7, 1, 1 ], 7, 81, "naive homology computation for a very small group", - "X80A721AC7A8D30A3" ], [ "\033[1X\033[33X\033[0;-2YA more efficient homology computation\033[133X\033[101X", "7.1-2", [ 7, 1, 2 ], 38, 81, "a more efficient homology computation", - "X838CEA3F850DFC82" ], [ "\033[1X\033[33X\033[0;-2YComputation of an induced homology homomorphism\033[133X\033[101X", "7.1-3", [ 7, 1, 3 ], 61, 82, - "computation of an induced homology homomorphism", "X842E93467AD09EC1" ], [ "\033[1X\033[33X\033[0;-2YSome other finite group homology computations\033[133X\033[101X", "7.1-4", [ 7, 1, 4 ], 89, - 82, "some other finite group homology computations", "X8754D2937E6FD7CE" ], [ "\033[1X\033[33X\033[0;-2YNilpotent groups\033[133X\033[101X", "7.2", [ 7, 2, 0 ], 208, 84, "nilpotent groups", - "X8463EF6A821FFB69" ], [ "\033[1X\033[33X\033[0;-2YCrystallographic and Almost Crystallographic groups\033[133X\033[101X", "7.3", [ 7, 3, 0 ], 227, 84, - "crystallographic and almost crystallographic groups", "X82E8FAC67BC16C01" ], [ "\033[1X\033[33X\033[0;-2YArithmetic groups\033[133X\033[101X", "7.4", [ 7, 4, 0 ], 256, 85, "arithmetic groups", - "X7AFFB32587D047FE" ], [ "\033[1X\033[33X\033[0;-2YArtin groups\033[133X\033[101X", "7.5", [ 7, 5, 0 ], 273, 85, "artin groups", "X800CB6257DC8FB3A" ], - [ "\033[1X\033[33X\033[0;-2YGraphs of groups\033[133X\033[101X", "7.6", [ 7, 6, 0 ], 296, 85, "graphs of groups", "X7BAFCA3680E478AE" ], - [ "\033[1X\033[33X\033[0;-2YLie algebra homology and free nilpotent groups\033[133X\033[101X", "7.7", [ 7, 7, 0 ], 325, 86, "lie algebra homology and free nilpotent groups", "X7CE849E58706796C" ], - [ "\033[1X\033[33X\033[0;-2YCohomology with coefficients in a module\033[133X\033[101X", "7.8", [ 7, 8, 0 ], 397, 87, "cohomology with coefficients in a module", "X7C3DEDD57BB4D537" ], - [ "\033[1X\033[33X\033[0;-2YCohomology as a functor of the first variable\033[133X\033[101X", "7.9", [ 7, 9, 0 ], 543, 89, "cohomology as a functor of the first variable", "X7E573EA582CCEF2E" ], - [ "\033[1X\033[33X\033[0;-2YCohomology as a functor of the second variable and the long exact coefficient sequence\033[133X\033[101X", "7.10", [ 7, 10, 0 ], 575, 90, - "cohomology as a functor of the second variable and the long exact coefficient sequence", "X796731727A7EBE59" ], [ "\033[1X\033[33X\033[0;-2YTransfer Homomorphism\033[133X\033[101X", "7.11", - [ 7, 11, 0 ], 655, 91, "transfer homomorphism", "X80F6FD3E7C7E4E8D" ], [ "\033[1X\033[33X\033[0;-2YCohomology rings of finite fundamental groups of 3-manifolds\033[133X\033[101X", "7.12", - [ 7, 12, 0 ], 688, 91, "cohomology rings of finite fundamental groups of 3-manifolds", "X79B1406C803FF178" ], [ "\033[1X\033[33X\033[0;-2YExplicit cocycles\033[133X\033[101X", "7.13", - [ 7, 13, 0 ], 804, 93, "explicit cocycles", "X833A19F0791C3B06" ], - [ "\033[1X\033[33X\033[0;-2YQuillen's complex and the \033[22Xp\033[122X\033[101X\027\033[1X\027-part of homology\033[133X\033[101X", "7.14", [ 7, 14, 0 ], 990, 96, - "quillens complex and the p-part of homology", "X7C5233E27D2D603E" ], [ "\033[1X\033[33X\033[0;-2YCohomology rings and Steenrod operations for finite groups\033[133X\033[101X", "8", [ 8, 0, 0 ], - 1, 99, "cohomology rings and steenrod operations for finite groups", "X7EA6128E8703A13E" ], - [ "\033[1X\033[33X\033[0;-2YMod-\033[22Xp\033[122X\033[101X\027\033[1X\027 cohomology rings of finite groups\033[133X\033[101X", "8.1", [ 8, 1, 0 ], 4, 99, "mod-p cohomology rings of finite groups", - "X877CAF8B7E64DE04" ], [ "\033[1X\033[33X\033[0;-2YRing presentations (for the commutative \033[22Xp=2\033[122X\033[101X\027\033[1X\027 case)\033[133X\033[101X", "8.1-1", [ 8, 1, 1 ], 44, 100, - "ring presentations for the commutative p=2 case", "X870E0299782638AF" ], - [ "\033[1X\033[33X\033[0;-2YFunctorial ring homomorphisms in Mod-\033[22Xp\033[122X\033[101X\027\033[1X\027 cohomology\033[133X\033[101X", "8.2", [ 8, 2, 0 ], 72, 100, - "functorial ring homomorphisms in mod-p cohomology", "X780DF87680C3F52B" ], [ "\033[1X\033[33X\033[0;-2YTesting homomorphism properties\033[133X\033[101X", "8.2-1", [ 8, 2, 1 ], 95, 100, - "testing homomorphism properties", "X834CED9D7A104695" ], [ "\033[1X\033[33X\033[0;-2YTesting functorial properties\033[133X\033[101X", "8.2-2", [ 8, 2, 2 ], 112, 101, - "testing functorial properties", "X7A0D505D844F0CD4" ], [ "\033[1X\033[33X\033[0;-2YComputing with larger groups\033[133X\033[101X", "8.2-3", [ 8, 2, 3 ], 148, 101, - "computing with larger groups", "X855764877FA44225" ], [ "\033[1X\033[33X\033[0;-2YCohomology rings of finite \033[22X2\033[122X\033[101X\027\033[1X\027-groups\033[133X\033[101X", "8.3", - [ 8, 3, 0 ], 201, 102, "cohomology rings of finite 2-groups", "X80A9B7117D8EC0AB" ], - [ "\033[1X\033[33X\033[0;-2YSteenrod operations for finite \033[22X2\033[122X\033[101X\027\033[1X\027-groups\033[133X\033[101X", "8.4", [ 8, 4, 0 ], 229, 103, - "steenrod operations for finite 2-groups", "X80114B0483EF9A67" ], - [ "\033[1X\033[33X\033[0;-2YSteenrod operations on the classifying space of a finite \033[22Xp\033[122X\033[101X\027\033[1X\027-group\033[133X\033[101X", "8.5", [ 8, 5, 0 ], 311, 104, - "steenrod operations on the classifying space of a finite p-group", "X7D5ACA56870A40E9" ], [ "\033[1X\033[33X\033[0;-2YBredon homology\033[133X\033[101X", "9", [ 9, 0, 0 ], 1, 105, - "bredon homology", "X786DB80A8693779E" ], [ "\033[1X\033[33X\033[0;-2YDavis complex\033[133X\033[101X", "9.1", [ 9, 1, 0 ], 4, 105, "davis complex", "X7B0212F97F3D442A" ], - [ "\033[1X\033[33X\033[0;-2YArithmetic groups\033[133X\033[101X", "9.2", [ 9, 2, 0 ], 28, 105, "arithmetic groups", "X7AFFB32587D047FE" ], - [ "\033[1X\033[33X\033[0;-2YCrystallographic groups\033[133X\033[101X", "9.3", [ 9, 3, 0 ], 55, 106, "crystallographic groups", "X7DEBF2BB7D1FB144" ], - [ "\033[1X\033[33X\033[0;-2YChain Complexes\033[133X\033[101X", "10", [ 10, 0, 0 ], 1, 107, "chain complexes", "X7A06103979B92808" ], - [ "\033[1X\033[33X\033[0;-2YChain complex of a simplicial complex and simplicial pair\033[133X\033[101X", "10.1", [ 10, 1, 0 ], 24, 107, "chain complex of a simplicial complex and simplicial pair", - "X782DE78884DD6992" ], [ "\033[1X\033[33X\033[0;-2YChain complex of a cubical complex and cubical pair\033[133X\033[101X", "10.2", [ 10, 2, 0 ], 91, 108, - "chain complex of a cubical complex and cubical pair", "X79E7A13E7DE9C412" ], [ "\033[1X\033[33X\033[0;-2YChain complex of a regular CW-complex\033[133X\033[101X", "10.3", [ 10, 3, 0 ], 140, - 109, "chain complex of a regular cw-complex", "X86C38E87817F2EAD" ], [ "\033[1X\033[33X\033[0;-2YChain Maps of simplicial and regular CW maps\033[133X\033[101X", "10.4", [ 10, 4, 0 ], 180, 110, - "chain maps of simplicial and regular cw maps", "X7F9662EF83A1FA76" ], [ "\033[1X\033[33X\033[0;-2YConstructions for chain complexes\033[133X\033[101X", "10.5", [ 10, 5, 0 ], 215, 110, - "constructions for chain complexes", "X8127E17383F45359" ], [ "\033[1X\033[33X\033[0;-2YFiltered chain complexes\033[133X\033[101X", "10.6", [ 10, 6, 0 ], 256, 111, "filtered chain complexes", - "X7AAAB26682CD8AC4" ], [ "\033[1X\033[33X\033[0;-2YSparse chain complexes\033[133X\033[101X", "10.7", [ 10, 7, 0 ], 297, 112, "sparse chain complexes", "X856F202D823280F8" ], - [ "\033[1X\033[33X\033[0;-2YResolutions\033[133X\033[101X", "11", [ 11, 0, 0 ], 1, 114, "resolutions", "X7C0B125E7D5415B4" ], - [ "\033[1X\033[33X\033[0;-2YResolutions for small finite groups\033[133X\033[101X", "11.1", [ 11, 1, 0 ], 10, 114, "resolutions for small finite groups", "X83E8F9DA7CDC0DA7" ], - [ "\033[1X\033[33X\033[0;-2YResolutions for very small finite groups\033[133X\033[101X", "11.2", [ 11, 2, 0 ], 26, 114, "resolutions for very small finite groups", "X7EEA738385CC3AEA" ], - [ "\033[1X\033[33X\033[0;-2YResolutions for finite groups acting on orbit polytopes\033[133X\033[101X", "11.3", [ 11, 3, 0 ], 91, 115, "resolutions for finite groups acting on orbit polytopes", + [ "\033[1X\033[33X\033[0;-2YThere are precisely 18 orientable cube manifolds\ +, of which 9 are spherical and 5 are euclidean\033[133X\033[101X", "4.12", + [ 4, 12, 0 ], 1055, 59, + "there are precisely 18 orientable cube manifolds of which 9 are spheric\ +al and 5 are euclidean", "X7B63C22C80E53758" ], + [ "\033[1X\033[33X\033[0;-2YCube manifolds with boundary\033[133X\033[101X", + "4.13", [ 4, 13, 0 ], 1123, 61, "cube manifolds with boundary", + "X796BF3817BD7F57D" ], + [ "\033[1X\033[33X\033[0;-2YOctahedral manifolds\033[133X\033[101X", + "4.14", [ 4, 14, 0 ], 1193, 62, "octahedral manifolds", + "X7EC4359B7DF208B0" ], + [ "\033[1X\033[33X\033[0;-2YDodecahedral manifolds\033[133X\033[101X", + "4.15", [ 4, 15, 0 ], 1232, 62, "dodecahedral manifolds", + "X85FFF9B97B7AD818" ], + [ "\033[1X\033[33X\033[0;-2YPrism manifolds\033[133X\033[101X", "4.16", + [ 4, 16, 0 ], 1281, 63, "prism manifolds", "X78B75E2E79FBCC54" ], + [ "\033[1X\033[33X\033[0;-2YBipyramid manifolds\033[133X\033[101X", "4.17", + [ 4, 17, 0 ], 1339, 64, "bipyramid manifolds", "X7F31DFDA846E8E75" ], + [ "\033[1X\033[33X\033[0;-2YTopological data analysis\033[133X\033[101X", + "5", [ 5, 0, 0 ], 1, 65, "topological data analysis", + "X7B7E077887694A9F" ], + [ "\033[1X\033[33X\033[0;-2YPersistent homology\033[133X\033[101X", "5.1", + [ 5, 1, 0 ], 4, 65, "persistent homology", "X80A70B20873378E0" ], + [ "\033[1X\033[33X\033[0;-2YBackground to the data\033[133X\033[101X", + "5.1-1", [ 5, 1, 1 ], 66, 66, "background to the data", + "X7D512DA37F789B4C" ], + [ "\033[1X\033[33X\033[0;-2YMapper clustering\033[133X\033[101X", "5.2", + [ 5, 2, 0 ], 73, 66, "mapper clustering", "X849556107A23FF7B" ], + [ "\033[1X\033[33X\033[0;-2YBackground to the data\033[133X\033[101X", + "5.2-1", [ 5, 2, 1 ], 117, 67, "background to the data", + "X7D512DA37F789B4C" ], + [ + "\033[1X\033[33X\033[0;-2YSome tools for handling pure complexes\033[133X\\ +033[101X", "5.3", [ 5, 3, 0 ], 123, 67, + "some tools for handling pure complexes", "X7BBDE0567DB8C5DA" ], + [ + "\033[1X\033[33X\033[0;-2YDigital image analysis and persistent homology\\ +033[133X\033[101X", "5.4", [ 5, 4, 0 ], 194, 68, + "digital image analysis and persistent homology", "X79616D12822FDB9A" ], + [ "\033[1X\033[33X\033[0;-2YNaive example of image segmentation by automatic\ + thresholding\033[133X\033[101X", "5.4-1", [ 5, 4, 1 ], 222, 68, + "naive example of image segmentation by automatic thresholding", + "X8066F9B17B78418E" ], + [ "\033[1X\033[33X\033[0;-2YRefining the filtration\033[133X\033[101X", + "5.4-2", [ 5, 4, 2 ], 246, 69, "refining the filtration", + "X7E6436E0856761F2" ], + [ "\033[1X\033[33X\033[0;-2YBackground to the data\033[133X\033[101X", + "5.4-3", [ 5, 4, 3 ], 270, 69, "background to the data", + "X7D512DA37F789B4C" ], + [ + "\033[1X\033[33X\033[0;-2YA second example of digital image segmentation\\ +033[133X\033[101X", "5.5", [ 5, 5, 0 ], 275, 69, + "a second example of digital image segmentation", "X7A8224DA7B00E0D9" ], + [ "\033[1X\033[33X\033[0;-2YA third example of digital image segmentation\ +\033[133X\033[101X", "5.6", [ 5, 6, 0 ], 327, 70, + "a third example of digital image segmentation", "X8290E7D287F69B98" ], + [ "\033[1X\033[33X\033[0;-2YNaive example of digital image contour extractio\ +n\033[133X\033[101X", "5.7", [ 5, 7, 0 ], 371, 71, + "naive example of digital image contour extraction", + "X7957F329835373E9" ], + [ + "\033[1X\033[33X\033[0;-2YAlternative approaches to computing persistent ho\ +mology\033[133X\033[101X", "5.8", [ 5, 8, 0 ], 456, 72, + "alternative approaches to computing persistent homology", + "X7D2CC9CB85DF1BAF" ], + [ "\033[1X\033[33X\033[0;-2YNon-trivial cup product\033[133X\033[101X", + "5.8-1", [ 5, 8, 1 ], 526, 73, "non-trivial cup product", + "X86FD0A867EC9E64F" ], + [ "\033[1X\033[33X\033[0;-2YExplicit homology generators\033[133X\033[101X", + "5.8-2", [ 5, 8, 2 ], 543, 73, "explicit homology generators", + "X783EF0F17B629C46" ], + [ "\033[1X\033[33X\033[0;-2YKnotted proteins\033[133X\033[101X", "5.9", + [ 5, 9, 0 ], 581, 74, "knotted proteins", "X80D0D8EB7BCD05E9" ], + [ "\033[1X\033[33X\033[0;-2YRandom simplicial complexes\033[133X\033[101X", + "5.10", [ 5, 10, 0 ], 660, 75, "random simplicial complexes", + "X87AF06677F05C624" ], + [ + "\033[1X\033[33X\033[0;-2YComputing homology of a clique complex (Vietoris-\ +Rips complex)\033[133X\033[101X", "5.11", [ 5, 11, 0 ], 763, 77, + "computing homology of a clique complex vietoris-rips complex", + "X875EE92F7DBA1E27" ], + [ "\033[1X\033[33X\033[0;-2YGroup theoretic computations\033[133X\033[101X", + "6", [ 6, 0, 0 ], 1, 79, "group theoretic computations", + "X7C07F4BD8466991A" ], + [ + "\033[1X\033[33X\033[0;-2YThird homotopy group of a supsension of an Eilenb\ +erg-MacLane space\033[133X\033[101X", "6.1", [ 6, 1, 0 ], 4, 79, + "third homotopy group of a supsension of an eilenberg-maclane space", + "X86D7FBBD7E5287C9" ], + [ + "\033[1X\033[33X\033[0;-2YRepresentations of knot quandles\033[133X\033[101\ +X", "6.2", [ 6, 2, 0 ], 23, 79, "representations of knot quandles", + "X803FDFFE78A08446" ], + [ "\033[1X\033[33X\033[0;-2YIdentifying knots\033[133X\033[101X", "6.3", + [ 6, 3, 0 ], 62, 80, "identifying knots", "X7E4EFB987DA22017" ], + [ + "\033[1X\033[33X\033[0;-2YAspherical \033[22X2\033[122X\033[101X\027\033[1X\ +\027-complexes\033[133X\033[101X", "6.4", [ 6, 4, 0 ], 80, 80, + "aspherical 2-complexes", "X8664E986873195E6" ], + [ + "\033[1X\033[33X\033[0;-2YGroup presentations and homotopical syzygies\033[\ +133X\033[101X", "6.5", [ 6, 5, 0 ], 102, 80, + "group presentations and homotopical syzygies", "X84C0CB8B7C21E179" ], + [ "\033[1X\033[33X\033[0;-2YBogomolov multiplier\033[133X\033[101X", "6.6", + [ 6, 6, 0 ], 186, 82, "bogomolov multiplier", "X7F719758856A443D" ], + [ + "\033[1X\033[33X\033[0;-2YSecond group cohomology and group extensions\033[\ +133X\033[101X", "6.7", [ 6, 7, 0 ], 205, 82, + "second group cohomology and group extensions", "X8333413B838D787D" ], + [ "\033[1X\033[33X\033[0;-2YSecond group cohomology and cocyclic Hadamard ma\ +trices\033[133X\033[101X", "6.8", [ 6, 8, 0 ], 350, 85, + "second group cohomology and cocyclic hadamard matrices", + "X7C60E2B578074532" ], + [ + "\033[1X\033[33X\033[0;-2YThird group cohomology and homotopy \033[22X2\\ +033[122X\033[101X\027\033[1X\027-types\033[133X\033[101X", "6.9", + [ 6, 9, 0 ], 373, 85, "third group cohomology and homotopy 2-types", + "X78040D8580D35D53" ], + [ + "\033[1X\033[33X\033[0;-2YCohomology of groups (and Lie Algebras)\033[133X\\ +033[101X", "7", [ 7, 0, 0 ], 1, 87, "cohomology of groups and lie algebras", + "X787E37187B7308C9" ], + [ "\033[1X\033[33X\033[0;-2YFinite groups\033[133X\033[101X", "7.1", + [ 7, 1, 0 ], 4, 87, "finite groups", "X807B265978F90E01" ], + [ + "\033[1X\033[33X\033[0;-2YNaive homology computation for a very small group\ +\033[133X\033[101X", "7.1-1", [ 7, 1, 1 ], 7, 87, + "naive homology computation for a very small group", + "X80A721AC7A8D30A3" ], + [ + "\033[1X\033[33X\033[0;-2YA more efficient homology computation\033[133X\\ +033[101X", "7.1-2", [ 7, 1, 2 ], 38, 87, + "a more efficient homology computation", "X838CEA3F850DFC82" ], + [ + "\033[1X\033[33X\033[0;-2YComputation of an induced homology homomorphism\\ +033[133X\033[101X", "7.1-3", [ 7, 1, 3 ], 61, 88, + "computation of an induced homology homomorphism", "X842E93467AD09EC1" ] + , + [ + "\033[1X\033[33X\033[0;-2YSome other finite group homology computations\\ +033[133X\033[101X", "7.1-4", [ 7, 1, 4 ], 89, 88, + "some other finite group homology computations", "X8754D2937E6FD7CE" ], + [ "\033[1X\033[33X\033[0;-2YNilpotent groups\033[133X\033[101X", "7.2", + [ 7, 2, 0 ], 208, 90, "nilpotent groups", "X8463EF6A821FFB69" ], + [ + "\033[1X\033[33X\033[0;-2YCrystallographic and Almost Crystallographic grou\ +ps\033[133X\033[101X", "7.3", [ 7, 3, 0 ], 227, 90, + "crystallographic and almost crystallographic groups", + "X82E8FAC67BC16C01" ], + [ "\033[1X\033[33X\033[0;-2YArithmetic groups\033[133X\033[101X", "7.4", + [ 7, 4, 0 ], 256, 91, "arithmetic groups", "X7AFFB32587D047FE" ], + [ "\033[1X\033[33X\033[0;-2YArtin groups\033[133X\033[101X", "7.5", + [ 7, 5, 0 ], 273, 91, "artin groups", "X800CB6257DC8FB3A" ], + [ "\033[1X\033[33X\033[0;-2YGraphs of groups\033[133X\033[101X", "7.6", + [ 7, 6, 0 ], 296, 91, "graphs of groups", "X7BAFCA3680E478AE" ], + [ + "\033[1X\033[33X\033[0;-2YLie algebra homology and free nilpotent groups\\ +033[133X\033[101X", "7.7", [ 7, 7, 0 ], 325, 92, + "lie algebra homology and free nilpotent groups", "X7CE849E58706796C" ], + [ "\033[1X\033[33X\033[0;-2YCohomology with coefficients in a module\033[133\ +X\033[101X", "7.8", [ 7, 8, 0 ], 397, 93, + "cohomology with coefficients in a module", "X7C3DEDD57BB4D537" ], + [ + "\033[1X\033[33X\033[0;-2YCohomology as a functor of the first variable\\ +033[133X\033[101X", "7.9", [ 7, 9, 0 ], 543, 95, + "cohomology as a functor of the first variable", "X7E573EA582CCEF2E" ], + [ "\033[1X\033[33X\033[0;-2YCohomology as a functor of the second variable a\ +nd the long exact coefficient sequence\033[133X\033[101X", "7.10", + [ 7, 10, 0 ], 575, 96, + "cohomology as a functor of the second variable and the long exact coeff\ +icient sequence", "X796731727A7EBE59" ], + [ "\033[1X\033[33X\033[0;-2YTransfer Homomorphism\033[133X\033[101X", + "7.11", [ 7, 11, 0 ], 655, 97, "transfer homomorphism", + "X80F6FD3E7C7E4E8D" ], + [ + "\033[1X\033[33X\033[0;-2YCohomology rings of finite fundamental groups of \ +3-manifolds\033[133X\033[101X", "7.12", [ 7, 12, 0 ], 688, 97, + "cohomology rings of finite fundamental groups of 3-manifolds", + "X79B1406C803FF178" ], + [ "\033[1X\033[33X\033[0;-2YExplicit cocycles\033[133X\033[101X", "7.13", + [ 7, 13, 0 ], 804, 99, "explicit cocycles", "X833A19F0791C3B06" ], + [ + "\033[1X\033[33X\033[0;-2YQuillen's complex and the \033[22Xp\033[122X\033[\ +101X\027\033[1X\027-part of homology\033[133X\033[101X", "7.14", + [ 7, 14, 0 ], 990, 102, "quillens complex and the p-part of homology", + "X7C5233E27D2D603E" ], + [ + "\033[1X\033[33X\033[0;-2YHomology of a Lie algebra with coefficients in a \ +module\033[133X\033[101X", "7.15", [ 7, 15, 0 ], 1126, 104, + "homology of a lie algebra with coefficients in a module", + "X83F9A1A184FB3475" ], + [ + "\033[1X\033[33X\033[0;-2YCohomology rings and Steenrod operations for fini\ +te groups\033[133X\033[101X", "8", [ 8, 0, 0 ], 1, 106, + "cohomology rings and steenrod operations for finite groups", + "X7EA6128E8703A13E" ], + [ + "\033[1X\033[33X\033[0;-2YMod-\033[22Xp\033[122X\033[101X\027\033[1X\027 co\ +homology rings of finite groups\033[133X\033[101X", "8.1", [ 8, 1, 0 ], 4, + 106, "mod-p cohomology rings of finite groups", "X877CAF8B7E64DE04" ], + [ "\033[1X\033[33X\033[0;-2YRing presentations (for the commutative \033[22X\ +p=2\033[122X\033[101X\027\033[1X\027 case)\033[133X\033[101X", "8.1-1", + [ 8, 1, 1 ], 44, 107, "ring presentations for the commutative p=2 case", + "X870E0299782638AF" ], + [ + "\033[1X\033[33X\033[0;-2YFunctorial ring homomorphisms in Mod-\033[22Xp\\ +033[122X\033[101X\027\033[1X\027 cohomology\033[133X\033[101X", "8.2", + [ 8, 2, 0 ], 72, 107, + "functorial ring homomorphisms in mod-p cohomology", + "X780DF87680C3F52B" ], + [ + "\033[1X\033[33X\033[0;-2YTesting homomorphism properties\033[133X\033[101X\ +", "8.2-1", [ 8, 2, 1 ], 95, 107, "testing homomorphism properties", + "X834CED9D7A104695" ], + [ "\033[1X\033[33X\033[0;-2YTesting functorial properties\033[133X\033[101X" + , "8.2-2", [ 8, 2, 2 ], 112, 108, "testing functorial properties", + "X7A0D505D844F0CD4" ], + [ "\033[1X\033[33X\033[0;-2YComputing with larger groups\033[133X\033[101X", + "8.2-3", [ 8, 2, 3 ], 148, 108, "computing with larger groups", + "X855764877FA44225" ], + [ + "\033[1X\033[33X\033[0;-2YCohomology rings of finite \033[22X2\033[122X\\ +033[101X\027\033[1X\027-groups\033[133X\033[101X", "8.3", [ 8, 3, 0 ], 201, + 109, "cohomology rings of finite 2-groups", "X80A9B7117D8EC0AB" ], + [ + "\033[1X\033[33X\033[0;-2YSteenrod operations for finite \033[22X2\033[122X\ +\033[101X\027\033[1X\027-groups\033[133X\033[101X", "8.4", [ 8, 4, 0 ], 229, + 110, "steenrod operations for finite 2-groups", "X80114B0483EF9A67" ], + [ "\033[1X\033[33X\033[0;-2YSteenrod operations on the classifying space of \ +a finite \033[22Xp\033[122X\033[101X\027\033[1X\027-group\033[133X\033[101X", + "8.5", [ 8, 5, 0 ], 311, 111, + "steenrod operations on the classifying space of a finite p-group", + "X7D5ACA56870A40E9" ], + [ "\033[1X\033[33X\033[0;-2YBredon homology\033[133X\033[101X", "9", + [ 9, 0, 0 ], 1, 112, "bredon homology", "X786DB80A8693779E" ], + [ "\033[1X\033[33X\033[0;-2YDavis complex\033[133X\033[101X", "9.1", + [ 9, 1, 0 ], 4, 112, "davis complex", "X7B0212F97F3D442A" ], + [ "\033[1X\033[33X\033[0;-2YArithmetic groups\033[133X\033[101X", "9.2", + [ 9, 2, 0 ], 28, 112, "arithmetic groups", "X7AFFB32587D047FE" ], + [ "\033[1X\033[33X\033[0;-2YCrystallographic groups\033[133X\033[101X", + "9.3", [ 9, 3, 0 ], 55, 113, "crystallographic groups", + "X7DEBF2BB7D1FB144" ], + [ "\033[1X\033[33X\033[0;-2YChain Complexes\033[133X\033[101X", "10", + [ 10, 0, 0 ], 1, 114, "chain complexes", "X7A06103979B92808" ], + [ + "\033[1X\033[33X\033[0;-2YChain complex of a simplicial complex and simplic\ +ial pair\033[133X\033[101X", "10.1", [ 10, 1, 0 ], 24, 114, + "chain complex of a simplicial complex and simplicial pair", + "X782DE78884DD6992" ], + [ + "\033[1X\033[33X\033[0;-2YChain complex of a cubical complex and cubical pa\ +ir\033[133X\033[101X", "10.2", [ 10, 2, 0 ], 91, 115, + "chain complex of a cubical complex and cubical pair", + "X79E7A13E7DE9C412" ], + [ + "\033[1X\033[33X\033[0;-2YChain complex of a regular CW-complex\033[133X\\ +033[101X", "10.3", [ 10, 3, 0 ], 140, 116, + "chain complex of a regular cw-complex", "X86C38E87817F2EAD" ], + [ + "\033[1X\033[33X\033[0;-2YChain Maps of simplicial and regular CW maps\033[\ +133X\033[101X", "10.4", [ 10, 4, 0 ], 180, 117, + "chain maps of simplicial and regular cw maps", "X7F9662EF83A1FA76" ], + [ "\033[1X\033[33X\033[0;-2YConstructions for chain complexes\033[133X\033[1\ +01X", "10.5", [ 10, 5, 0 ], 215, 117, "constructions for chain complexes", + "X8127E17383F45359" ], + [ "\033[1X\033[33X\033[0;-2YFiltered chain complexes\033[133X\033[101X", + "10.6", [ 10, 6, 0 ], 256, 118, "filtered chain complexes", + "X7AAAB26682CD8AC4" ], + [ "\033[1X\033[33X\033[0;-2YSparse chain complexes\033[133X\033[101X", + "10.7", [ 10, 7, 0 ], 297, 119, "sparse chain complexes", + "X856F202D823280F8" ], + [ "\033[1X\033[33X\033[0;-2YResolutions\033[133X\033[101X", "11", + [ 11, 0, 0 ], 1, 121, "resolutions", "X7C0B125E7D5415B4" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for small finite groups\033[133X\033[\ +101X", "11.1", [ 11, 1, 0 ], 10, 121, "resolutions for small finite groups", + "X83E8F9DA7CDC0DA7" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for very small finite groups\033[133X\ +\033[101X", "11.2", [ 11, 2, 0 ], 26, 121, + "resolutions for very small finite groups", "X7EEA738385CC3AEA" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for finite groups acting on orbit pol\ +ytopes\033[133X\033[101X", "11.3", [ 11, 3, 0 ], 120, 123, + "resolutions for finite groups acting on orbit polytopes", "X86C0983E81F706F5" ], - [ "\033[1X\033[33X\033[0;-2YMinimal resolutions for finite \033[22Xp\033[122X\033[101X\027\033[1X\027-groups over \033[22XF_p\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "11.4", - [ 11, 4, 0 ], 139, 116, "minimal resolutions for finite p-groups over f_p", "X85374EA47E3D97CF" ], [ "\033[1X\033[33X\033[0;-2YResolutions for abelian groups\033[133X\033[101X", "11.5", - [ 11, 5, 0 ], 178, 117, "resolutions for abelian groups", "X866C8D91871D1170" ], [ "\033[1X\033[33X\033[0;-2YResolutions for nilpotent groups\033[133X\033[101X", "11.6", [ 11, 6, 0 ], 198, 117, - "resolutions for nilpotent groups", "X7B332CBE85120B38" ], [ "\033[1X\033[33X\033[0;-2YResolutions for groups with subnormal series\033[133X\033[101X", "11.7", [ 11, 7, 0 ], 261, 118, - "resolutions for groups with subnormal series", "X7B03997084E00509" ], [ "\033[1X\033[33X\033[0;-2YResolutions for groups with normal series\033[133X\033[101X", "11.8", [ 11, 8, 0 ], 280, 118, - "resolutions for groups with normal series", "X814FFCE080B3A826" ], [ "\033[1X\033[33X\033[0;-2YResolutions for polycyclic (almost) crystallographic groups\033[133X\033[101X", "11.9", - [ 11, 9, 0 ], 301, 119, "resolutions for polycyclic almost crystallographic groups", "X81227BF185C417AF" ], [ "\033[1X\033[33X\033[0;-2YResolutions for Bieberbach groups\033[133X\033[101X", - "11.10", [ 11, 10, 0 ], 341, 120, "resolutions for bieberbach groups", "X814BCDD6837BB9C5" ], [ "\033[1X\033[33X\033[0;-2YResolutions for arbitrary crystallographic groups\033[133X\033[101X", - "11.11", [ 11, 11, 0 ], 416, 121, "resolutions for arbitrary crystallographic groups", "X87ADCB7D7FC0B4D3" ], - [ "\033[1X\033[33X\033[0;-2YResolutions for crystallographic groups admitting cubical fundamental domain\033[133X\033[101X", "11.12", [ 11, 12, 0 ], 435, 121, - "resolutions for crystallographic groups admitting cubical fundamental domain", "X7B9B3AF487338A9B" ], [ "\033[1X\033[33X\033[0;-2YResolutions for Coxeter groups\033[133X\033[101X", "11.13", - [ 11, 13, 0 ], 470, 122, "resolutions for coxeter groups", "X78DD8D068349065A" ], [ "\033[1X\033[33X\033[0;-2YResolutions for Artin groups\033[133X\033[101X", "11.14", [ 11, 14, 0 ], 496, 122, - "resolutions for artin groups", "X7C69E7227F919CC9" ], [ "\033[1X\033[33X\033[0;-2YResolutions for \033[22XG=SL_2( Z[1/m])\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "11.15", - [ 11, 15, 0 ], 514, 122, "resolutions for g=sl_2 z[1/m]", "X8032647F8734F4EB" ], - [ "\033[1X\033[33X\033[0;-2YResolutions for selected groups \033[22XG=SL_2( mathcal O( Q(sqrtd) )\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "11.16", [ 11, 16, 0 ], 529, 123, - "resolutions for selected groups g=sl_2 mathcal o q sqrtd", "X7BE4DE82801CD38E" ], - [ "\033[1X\033[33X\033[0;-2YResolutions for selected groups \033[22XG=PSL_2( mathcal O( Q(sqrtd) )\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "11.17", [ 11, 17, 0 ], 548, 123, - "resolutions for selected groups g=psl_2 mathcal o q sqrtd", "X7D9CCB2C7DAA2310" ], [ "\033[1X\033[33X\033[0;-2YResolutions for a few higher-dimensional arithmetic groups\033[133X\033[101X", - "11.18", [ 11, 18, 0 ], 567, 123, "resolutions for a few higher-dimensional arithmetic groups", "X7F699587845E6DB1" ], - [ "\033[1X\033[33X\033[0;-2YResolutions for finite-index subgroups\033[133X\033[101X", "11.19", [ 11, 19, 0 ], 589, 124, "resolutions for finite-index subgroups", "X7812EB3F7AC45F87" ], - [ "\033[1X\033[33X\033[0;-2YSimplifying resolutions\033[133X\033[101X", "11.20", [ 11, 20, 0 ], 616, 124, "simplifying resolutions", "X84CAAA697FAC8E0D" ], - [ "\033[1X\033[33X\033[0;-2YResolutions for graphs of groups and for groups with aspherical presentations\033[133X\033[101X", "11.21", [ 11, 21, 0 ], 639, 125, - "resolutions for graphs of groups and for groups with aspherical presentations", "X780C3F038148A1C7" ], - [ "\033[1X\033[33X\033[0;-2YResolutions for \033[22XFG\033[122X\033[101X\027\033[1X\027-modules\033[133X\033[101X", "11.22", [ 11, 22, 0 ], 687, 125, "resolutions for fg-modules", - "X85AB973F8566690A" ], [ "\033[1X\033[33X\033[0;-2YSimplicial groups\033[133X\033[101X", "12", [ 12, 0, 0 ], 1, 127, "simplicial groups", "X7D818E5F80F4CF63" ], - [ "\033[1X\033[33X\033[0;-2YCrossed modules\033[133X\033[101X", "12.1", [ 12, 1, 0 ], 4, 127, "crossed modules", "X808C6B357F8BADC1" ], - [ "\033[1X\033[33X\033[0;-2YEilenberg-MacLane spaces as simplicial groups (not recommended)\033[133X\033[101X", "12.2", [ 12, 2, 0 ], 76, 128, - "eilenberg-maclane spaces as simplicial groups not recommended", "X795E339978B42775" ], - [ "\033[1X\033[33X\033[0;-2YEilenberg-MacLane spaces as simplicial free abelian groups (recommended)\033[133X\033[101X", "12.3", [ 12, 3, 0 ], 100, 128, - "eilenberg-maclane spaces as simplicial free abelian groups recommended", "X7D91E64D7DD7F10F" ], - [ "\033[1X\033[33X\033[0;-2YElementary theoretical information on \033[22XH^\342\210\227(K(\317\200,n), Z)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "12.4", [ 12, 4, 0 ], 178, 130, - "elementary theoretical information on h^a\210\227 k i\200 n z", "X84ABCA497C577132" ], [ "\033[1X\033[33X\033[0;-2YThe first three non-trivial homotopy groups of spheres\033[133X\033[101X", - "12.5", [ 12, 5, 0 ], 252, 131, "the first three non-trivial homotopy groups of spheres", "X7F828D8D8463CC20" ], - [ "\033[1X\033[33X\033[0;-2YThe first two non-trivial homotopy groups of the suspension and double suspension of a \033[22XK(G,1)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "12.6", - [ 12, 6, 0 ], 319, 132, "the first two non-trivial homotopy groups of the suspension and double suspension of a k g 1", "X81E2F80384ADF8C2" ], - [ "\033[1X\033[33X\033[0;-2YPostnikov towers and \033[22X\317\200_5(S^3)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "12.7", [ 12, 7, 0 ], 372, 132, "postnikov towers and i\200_5 s^3", - "X83EAC40A8324571F" ], [ "\033[1X\033[33X\033[0;-2YTowards \033[22X\317\200_4(\316\243 K(G,1))\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "12.8", [ 12, 8, 0 ], 471, 134, - "towards i\200_4 i\244 k g 1", "X8227000D83B9A17F" ], [ "\033[1X\033[33X\033[0;-2YEnumerating homotopy 2-types\033[133X\033[101X", "12.9", [ 12, 9, 0 ], 532, 135, "enumerating homotopy 2-types", - "X7F5E6C067B2AE17A" ], [ "\033[1X\033[33X\033[0;-2YIdentifying cat\033[22X^1\033[122X\033[101X\027\033[1X\027-groups of low order\033[133X\033[101X", "12.10", [ 12, 10, 0 ], 623, 136, - "identifying cat^1-groups of low order", "X7D99B7AA780D8209" ], [ "\033[1X\033[33X\033[0;-2YIdentifying crossed modules of low order\033[133X\033[101X", "12.11", [ 12, 11, 0 ], 684, 137, - "identifying crossed modules of low order", "X7F386CF078CB9A20" ], [ "\033[1X\033[33X\033[0;-2YCongruence Subgroups, Cuspidal Cohomology and Hecke Operators\033[133X\033[101X", "13", - [ 13, 0, 0 ], 1, 139, "congruence subgroups cuspidal cohomology and hecke operators", "X86D5DB887ACB1661" ], [ "\033[1X\033[33X\033[0;-2YEichler-Shimura isomorphism\033[133X\033[101X", "13.1", - [ 13, 1, 0 ], 12, 139, "eichler-shimura isomorphism", "X79A1974B7B4987DE" ], - [ "\033[1X\033[33X\033[0;-2YGenerators for \033[22XSL_2( Z)\033[122X\033[101X\027\033[1X\027 and the cubic tree\033[133X\033[101X", "13.2", [ 13, 2, 0 ], 87, 140, - "generators for sl_2 z and the cubic tree", "X7BFA2C91868255D9" ], [ "\033[1X\033[33X\033[0;-2YOne-dimensional fundamental domains and generators for congruence subgroups\033[133X\033[101X", - "13.3", [ 13, 3, 0 ], 128, 141, "one-dimensional fundamental domains and generators for congruence subgroups", "X7D1A56967A073A8B" ], - [ "\033[1X\033[33X\033[0;-2YCohomology of congruence subgroups\033[133X\033[101X", "13.4", [ 13, 4, 0 ], 231, 142, "cohomology of congruence subgroups", "X818BFA9A826C0DB3" ], - [ "\033[1X\033[33X\033[0;-2YCohomology with rational coefficients\033[133X\033[101X", "13.4-1", [ 13, 4, 1 ], 327, 144, "cohomology with rational coefficients", "X7F55F8EA82FE9122" ], - [ "\033[1X\033[33X\033[0;-2YCuspidal cohomology\033[133X\033[101X", "13.5", [ 13, 5, 0 ], 361, 144, "cuspidal cohomology", "X84D30F1580CD42D1" ], - [ "\033[1X\033[33X\033[0;-2YHecke operators on forms of weight 2\033[133X\033[101X", "13.6", [ 13, 6, 0 ], 464, 146, "hecke operators on forms of weight 2", "X80861D3F87C29C43" ], - [ "\033[1X\033[33X\033[0;-2YHecke operators on forms of weight \033[22X\342\211\245 2\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "13.7", [ 13, 7, 0 ], 537, 147, - "hecke operators on forms of weight a\211\246 2", "X831BB0897B988DA3" ], [ "\033[1X\033[33X\033[0;-2YReconstructing modular forms from cohomology computations\033[133X\033[101X", "13.8", - [ 13, 8, 0 ], 556, 147, "reconstructing modular forms from cohomology computations", "X84CC51EE8525E0D9" ], [ "\033[1X\033[33X\033[0;-2YThe Picard group\033[133X\033[101X", "13.9", [ 13, 9, 0 ], - 675, 149, "the picard group", "X8180E53C834301EF" ], [ "\033[1X\033[33X\033[0;-2YBianchi groups\033[133X\033[101X", "13.10", [ 13, 10, 0 ], 816, 151, "bianchi groups", "X858B1B5D8506FE81" ], - [ "\033[1X\033[33X\033[0;-2YSome other infinite matrix groups\033[133X\033[101X", "13.11", [ 13, 11, 0 ], 956, 152, "some other infinite matrix groups", "X86A6858884B9C05B" ], - [ "\033[1X\033[33X\033[0;-2YIdeals and finite quotient groups\033[133X\033[101X", "13.12", [ 13, 12, 0 ], 1068, 154, "ideals and finite quotient groups", "X7EF5D97281EB66DA" ], - [ "\033[1X\033[33X\033[0;-2YCongruence subgroups for ideals\033[133X\033[101X", "13.13", [ 13, 13, 0 ], 1180, 156, "congruence subgroups for ideals", "X7D1F72287F14C5E1" ], - [ "\033[1X\033[33X\033[0;-2YFirst homology\033[133X\033[101X", "13.14", [ 13, 14, 0 ], 1252, 157, "first homology", "X85E912617AFE03F4" ], - [ "\033[1X\033[33X\033[0;-2YParallel computation\033[133X\033[101X", "14", [ 14, 0, 0 ], 1, 159, "parallel computation", "X7F571E8F7BBC7514" ], - [ "\033[1X\033[33X\033[0;-2YAn embarassingly parallel computation\033[133X\033[101X", "14.1", [ 14, 1, 0 ], 4, 159, "an embarassingly parallel computation", "X7EAE286B837D27BA" ], - [ "\033[1X\033[33X\033[0;-2YAn non-embarassingly parallel computation\033[133X\033[101X", "14.2", [ 14, 2, 0 ], 35, 159, "an non-embarassingly parallel computation", "X7AA9C5B27A8322D0" ], - [ "\033[1X\033[33X\033[0;-2YRegular CW-structure on knots (written by Kelvin Killeen)\033[133X\033[101X", "15", [ 15, 0, 0 ], 1, 161, "regular cw-structure on knots written by kelvin killeen", - "X7C57D4AB8232983E" ], [ "\033[1X\033[33X\033[0;-2YKnot complements in the 3-ball\033[133X\033[101X", "15.1", [ 15, 1, 0 ], 4, 161, "knot complements in the 3-ball", "X86F56A85848347FF" ], - [ "\033[1X\033[33X\033[0;-2YTubular neighbourhoods\033[133X\033[101X", "15.2", [ 15, 2, 0 ], 93, 162, "tubular neighbourhoods", "X83EA2A38801E7A4C" ], - [ "\033[1X\033[33X\033[0;-2YKnotted surface complements in the 4-ball\033[133X\033[101X", "15.3", [ 15, 3, 0 ], 265, 165, "knotted surface complements in the 4-ball", "X78C28038837300BD" ], - [ "Bibliography", "bib", [ "Bib", 0, 0 ], 1, 172, "bibliography", "X7A6F98FD85F02BFE" ], [ "References", "bib", [ "Bib", 0, 0 ], 1, 172, "references", "X7A6F98FD85F02BFE" ], - [ "Index", "ind", [ "Ind", 0, 0 ], 1, 175, "index", "X83A0356F839C696F" ] ] + [ + "\033[1X\033[33X\033[0;-2YMinimal resolutions for finite \033[22Xp\033[122X\ +\033[101X\027\033[1X\027-groups over \033[22XF_p\033[122X\033[101X\027\033[1X\ +\027\033[133X\033[101X", "11.4", [ 11, 4, 0 ], 168, 124, + "minimal resolutions for finite p-groups over f_p", "X85374EA47E3D97CF" + ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for abelian groups\033[133X\033[101X" + , "11.5", [ 11, 5, 0 ], 207, 124, "resolutions for abelian groups", + "X866C8D91871D1170" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for nilpotent groups\033[133X\033[101\ +X", "11.6", [ 11, 6, 0 ], 227, 125, "resolutions for nilpotent groups", + "X7B332CBE85120B38" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for groups with subnormal series\033[\ +133X\033[101X", "11.7", [ 11, 7, 0 ], 290, 126, + "resolutions for groups with subnormal series", "X7B03997084E00509" ], + [ "\033[1X\033[33X\033[0;-2YResolutions for groups with normal series\033[13\ +3X\033[101X", "11.8", [ 11, 8, 0 ], 309, 126, + "resolutions for groups with normal series", "X814FFCE080B3A826" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for polycyclic (almost) crystallograp\ +hic groups\033[133X\033[101X", "11.9", [ 11, 9, 0 ], 330, 126, + "resolutions for polycyclic almost crystallographic groups", + "X81227BF185C417AF" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for Bieberbach groups\033[133X\033[10\ +1X", "11.10", [ 11, 10, 0 ], 370, 127, "resolutions for bieberbach groups", + "X814BCDD6837BB9C5" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for arbitrary crystallographic groups\ +\033[133X\033[101X", "11.11", [ 11, 11, 0 ], 445, 128, + "resolutions for arbitrary crystallographic groups", + "X87ADCB7D7FC0B4D3" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for crystallographic groups admitting\ + cubical fundamental domain\033[133X\033[101X", "11.12", [ 11, 12, 0 ], 464, + 128, + "resolutions for crystallographic groups admitting cubical fundamental d\ +omain", "X7B9B3AF487338A9B" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for Coxeter groups\033[133X\033[101X" + , "11.13", [ 11, 13, 0 ], 499, 129, "resolutions for coxeter groups", + "X78DD8D068349065A" ], + [ "\033[1X\033[33X\033[0;-2YResolutions for Artin groups\033[133X\033[101X", + "11.14", [ 11, 14, 0 ], 525, 129, "resolutions for artin groups", + "X7C69E7227F919CC9" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for \033[22XG=SL_2( Z[1/m])\033[122X\\ +033[101X\027\033[1X\027\033[133X\033[101X", "11.15", [ 11, 15, 0 ], 543, 130, + "resolutions for g=sl_2 z[1/m]", "X8032647F8734F4EB" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for selected groups \033[22XG=SL_2( m\ +athcal O( Q(sqrtd) )\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", + "11.16", [ 11, 16, 0 ], 558, 130, + "resolutions for selected groups g=sl_2 mathcal o q sqrtd", + "X7BE4DE82801CD38E" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for selected groups \033[22XG=PSL_2( \ +mathcal O( Q(sqrtd) )\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", + "11.17", [ 11, 17, 0 ], 577, 130, + "resolutions for selected groups g=psl_2 mathcal o q sqrtd", + "X7D9CCB2C7DAA2310" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for a few higher-dimensional arithmet\ +ic groups\033[133X\033[101X", "11.18", [ 11, 18, 0 ], 596, 131, + "resolutions for a few higher-dimensional arithmetic groups", + "X7F699587845E6DB1" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for finite-index subgroups\033[133X\\ +033[101X", "11.19", [ 11, 19, 0 ], 618, 131, + "resolutions for finite-index subgroups", "X7812EB3F7AC45F87" ], + [ "\033[1X\033[33X\033[0;-2YSimplifying resolutions\033[133X\033[101X", + "11.20", [ 11, 20, 0 ], 645, 132, "simplifying resolutions", + "X84CAAA697FAC8E0D" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for graphs of groups and for groups w\ +ith aspherical presentations\033[133X\033[101X", "11.21", [ 11, 21, 0 ], 668, + 132, + "resolutions for graphs of groups and for groups with aspherical present\ +ations", "X780C3F038148A1C7" ], + [ + "\033[1X\033[33X\033[0;-2YResolutions for \033[22XFG\033[122X\033[101X\027\\ +033[1X\027-modules\033[133X\033[101X", "11.22", [ 11, 22, 0 ], 716, 133, + "resolutions for fg-modules", "X85AB973F8566690A" ], + [ "\033[1X\033[33X\033[0;-2YSimplicial groups\033[133X\033[101X", "12", + [ 12, 0, 0 ], 1, 134, "simplicial groups", "X7D818E5F80F4CF63" ], + [ "\033[1X\033[33X\033[0;-2YCrossed modules\033[133X\033[101X", "12.1", + [ 12, 1, 0 ], 4, 134, "crossed modules", "X808C6B357F8BADC1" ], + [ + "\033[1X\033[33X\033[0;-2YEilenberg-MacLane spaces as simplicial groups (no\ +t recommended)\033[133X\033[101X", "12.2", [ 12, 2, 0 ], 76, 135, + "eilenberg-maclane spaces as simplicial groups not recommended", + "X795E339978B42775" ], + [ + "\033[1X\033[33X\033[0;-2YEilenberg-MacLane spaces as simplicial free abeli\ +an groups (recommended)\033[133X\033[101X", "12.3", [ 12, 3, 0 ], 100, 135, + "eilenberg-maclane spaces as simplicial free abelian groups recommended" + , "X7D91E64D7DD7F10F" ], + [ + "\033[1X\033[33X\033[0;-2YElementary theoretical information on \033[22XH^\\ +342\210\227(K(\317\200,n), Z)\033[122X\033[101X\027\033[1X\027\033[133X\033[10\ +1X", "12.4", [ 12, 4, 0 ], 178, 137, + "elementary theoretical information on h^a\210\227 k i\200 n z", + "X84ABCA497C577132" ], + [ + "\033[1X\033[33X\033[0;-2YThe first three non-trivial homotopy groups of sp\ +heres\033[133X\033[101X", "12.5", [ 12, 5, 0 ], 252, 138, + "the first three non-trivial homotopy groups of spheres", + "X7F828D8D8463CC20" ], + [ + "\033[1X\033[33X\033[0;-2YThe first two non-trivial homotopy groups of the \ +suspension and double suspension of a \033[22XK(G,1)\033[122X\033[101X\027\033\ +[1X\027\033[133X\033[101X", "12.6", [ 12, 6, 0 ], 319, 139, + "the first two non-trivial homotopy groups of the suspension and double \ +suspension of a k g 1", "X81E2F80384ADF8C2" ], + [ + "\033[1X\033[33X\033[0;-2YPostnikov towers and \033[22X\317\200_5(S^3)\033[\ +122X\033[101X\027\033[1X\027\033[133X\033[101X", "12.7", [ 12, 7, 0 ], 372, + 139, "postnikov towers and i\200_5 s^3", "X83EAC40A8324571F" ], + [ + "\033[1X\033[33X\033[0;-2YTowards \033[22X\317\200_4(\316\243 K(G,1))\033[1\ +22X\033[101X\027\033[1X\027\033[133X\033[101X", "12.8", [ 12, 8, 0 ], 471, + 141, "towards i\200_4 i\244 k g 1", "X8227000D83B9A17F" ], + [ "\033[1X\033[33X\033[0;-2YEnumerating homotopy 2-types\033[133X\033[101X", + "12.9", [ 12, 9, 0 ], 532, 142, "enumerating homotopy 2-types", + "X7F5E6C067B2AE17A" ], + [ + "\033[1X\033[33X\033[0;-2YIdentifying cat\033[22X^1\033[122X\033[101X\027\\ +033[1X\027-groups of low order\033[133X\033[101X", "12.10", [ 12, 10, 0 ], + 623, 143, "identifying cat^1-groups of low order", "X7D99B7AA780D8209" ] + , + [ + "\033[1X\033[33X\033[0;-2YIdentifying crossed modules of low order\033[133X\ +\033[101X", "12.11", [ 12, 11, 0 ], 684, 144, + "identifying crossed modules of low order", "X7F386CF078CB9A20" ], + [ + "\033[1X\033[33X\033[0;-2YCongruence Subgroups, Cuspidal Cohomology and Hec\ +ke Operators\033[133X\033[101X", "13", [ 13, 0, 0 ], 1, 146, + "congruence subgroups cuspidal cohomology and hecke operators", + "X86D5DB887ACB1661" ], + [ "\033[1X\033[33X\033[0;-2YEichler-Shimura isomorphism\033[133X\033[101X", + "13.1", [ 13, 1, 0 ], 12, 146, "eichler-shimura isomorphism", + "X79A1974B7B4987DE" ], + [ + "\033[1X\033[33X\033[0;-2YGenerators for \033[22XSL_2( Z)\033[122X\033[101X\ +\027\033[1X\027 and the cubic tree\033[133X\033[101X", "13.2", [ 13, 2, 0 ], + 87, 147, "generators for sl_2 z and the cubic tree", + "X7BFA2C91868255D9" ], + [ + "\033[1X\033[33X\033[0;-2YOne-dimensional fundamental domains and generator\ +s for congruence subgroups\033[133X\033[101X", "13.3", [ 13, 3, 0 ], 128, + 148, + "one-dimensional fundamental domains and generators for congruence subgr\ +oups", "X7D1A56967A073A8B" ], + [ + "\033[1X\033[33X\033[0;-2YCohomology of congruence subgroups\033[133X\033[1\ +01X", "13.4", [ 13, 4, 0 ], 231, 149, "cohomology of congruence subgroups", + "X818BFA9A826C0DB3" ], + [ + "\033[1X\033[33X\033[0;-2YCohomology with rational coefficients\033[133X\\ +033[101X", "13.4-1", [ 13, 4, 1 ], 327, 151, + "cohomology with rational coefficients", "X7F55F8EA82FE9122" ], + [ "\033[1X\033[33X\033[0;-2YCuspidal cohomology\033[133X\033[101X", "13.5", + [ 13, 5, 0 ], 361, 151, "cuspidal cohomology", "X84D30F1580CD42D1" ], + [ + "\033[1X\033[33X\033[0;-2YHecke operators on forms of weight 2\033[133X\\ +033[101X", "13.6", [ 13, 6, 0 ], 464, 153, + "hecke operators on forms of weight 2", "X80861D3F87C29C43" ], + [ + "\033[1X\033[33X\033[0;-2YHecke operators on forms of weight \033[22X\342\\ +211\245 2\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "13.7", + [ 13, 7, 0 ], 537, 154, "hecke operators on forms of weight a\211\246 2" + , "X831BB0897B988DA3" ], + [ + "\033[1X\033[33X\033[0;-2YReconstructing modular forms from cohomology comp\ +utations\033[133X\033[101X", "13.8", [ 13, 8, 0 ], 556, 154, + "reconstructing modular forms from cohomology computations", + "X84CC51EE8525E0D9" ], + [ "\033[1X\033[33X\033[0;-2YThe Picard group\033[133X\033[101X", "13.9", + [ 13, 9, 0 ], 675, 156, "the picard group", "X8180E53C834301EF" ], + [ "\033[1X\033[33X\033[0;-2YBianchi groups\033[133X\033[101X", "13.10", + [ 13, 10, 0 ], 816, 158, "bianchi groups", "X858B1B5D8506FE81" ], + [ + "\033[1X\033[33X\033[0;-2YSome other infinite matrix groups\033[133X\033[10\ +1X", "13.11", [ 13, 11, 0 ], 956, 159, "some other infinite matrix groups", + "X86A6858884B9C05B" ], + [ + "\033[1X\033[33X\033[0;-2YIdeals and finite quotient groups\033[133X\033[10\ +1X", "13.12", [ 13, 12, 0 ], 1068, 161, "ideals and finite quotient groups", + "X7EF5D97281EB66DA" ], + [ + "\033[1X\033[33X\033[0;-2YCongruence subgroups for ideals\033[133X\033[101X\ +", "13.13", [ 13, 13, 0 ], 1180, 163, "congruence subgroups for ideals", + "X7D1F72287F14C5E1" ], + [ "\033[1X\033[33X\033[0;-2YFirst homology\033[133X\033[101X", "13.14", + [ 13, 14, 0 ], 1252, 164, "first homology", "X85E912617AFE03F4" ], + [ "\033[1X\033[33X\033[0;-2YParallel computation\033[133X\033[101X", "14", + [ 14, 0, 0 ], 1, 166, "parallel computation", "X7F571E8F7BBC7514" ], + [ + "\033[1X\033[33X\033[0;-2YAn embarassingly parallel computation\033[133X\\ +033[101X", "14.1", [ 14, 1, 0 ], 4, 166, + "an embarassingly parallel computation", "X7EAE286B837D27BA" ], + [ + "\033[1X\033[33X\033[0;-2YAn non-embarassingly parallel computation\033[133\ +X\033[101X", "14.2", [ 14, 2, 0 ], 35, 166, + "an non-embarassingly parallel computation", "X7AA9C5B27A8322D0" ], + [ + "\033[1X\033[33X\033[0;-2YRegular CW-structure on knots (written by Kelvin \ +Killeen)\033[133X\033[101X", "15", [ 15, 0, 0 ], 1, 168, + "regular cw-structure on knots written by kelvin killeen", + "X7C57D4AB8232983E" ], + [ + "\033[1X\033[33X\033[0;-2YKnot complements in the 3-ball\033[133X\033[101X" + , "15.1", [ 15, 1, 0 ], 4, 168, "knot complements in the 3-ball", + "X86F56A85848347FF" ], + [ "\033[1X\033[33X\033[0;-2YTubular neighbourhoods\033[133X\033[101X", + "15.2", [ 15, 2, 0 ], 93, 169, "tubular neighbourhoods", + "X83EA2A38801E7A4C" ], + [ + "\033[1X\033[33X\033[0;-2YKnotted surface complements in the 4-ball\033[133\ +X\033[101X", "15.3", [ 15, 3, 0 ], 265, 172, + "knotted surface complements in the 4-ball", "X78C28038837300BD" ], + [ "Bibliography", "bib", [ "Bib", 0, 0 ], 1, 179, "bibliography", + "X7A6F98FD85F02BFE" ], + [ "References", "bib", [ "Bib", 0, 0 ], 1, 179, "references", + "X7A6F98FD85F02BFE" ], + [ "Index", "ind", [ "Ind", 0, 0 ], 1, 182, "index", "X83A0356F839C696F" ] ] ); diff --git a/tutorial/mybib.xml b/tutorial/mybib.xml index 58a1212a..e6a60f9d 100644 --- a/tutorial/mybib.xml +++ b/tutorial/mybib.xml @@ -53,6 +53,40 @@ResolutionSmallGroup(G,n)
is very sensistive to the choice of presentation for the input group PureCubicalComplex(binary array)
PurePermutahedralComplex(binary array)
ReadImageAsPureCubicalComplex(file,threshold)
ReadImageSquenceAsPureCubicalComplex(file,threshold)
PureComplexBoundary(M)
PureComplexComplement(M)
PureComplexRandomCell(M)
PureComplexThickened(M)
ContractedComplex(M, optional subcomplex of M)
ExpandedComplex(M, optional supercomplex of M)
PureComplexUnion(M,N)
PureComplexIntersection(M,N)
PureComplexDifference(M,N)
FiltrationTerm(F,n)
PureComplexThickeningFiltration(M,length)
ReadImageAsFilteredPureCubicalComplex(file,length)
W:=PureComplexComplement(FiltrationTerm(T,25))
has the correct number of path
+ components, namely Basins(L)
available Basins(L)
available circularGradientNoise.png
, containing noise, available
+ from
+ the PersistentBettiNumbersAlt
has been used. This command is explained in the following section.
+
+ The follwowing commands use a watershed method to partition the digital image into regions, one region per light source.
+ A makeshift
+ function Basins(L)
, available