-
Notifications
You must be signed in to change notification settings - Fork 33
/
main_snapshot_ensemble.lua
81 lines (66 loc) · 2.67 KB
/
main_snapshot_ensemble.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
--
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- Code modified for Snapshot Ensembles by Gao Huang
require 'torch'
require 'paths'
require 'optim'
require 'nn'
local DataLoader = require 'dataloader'
local models = require 'models/init'
local Trainer = require 'train'
local EnsembleTester = require 'test_ensemble'
local opts = require 'opts'
local checkpoints = require 'checkpoints'
torch.setdefaulttensortype('torch.FloatTensor')
torch.setnumthreads(1)
local opt = opts.parse(arg)
torch.manualSeed(opt.manualSeed)
cutorch.manualSeedAll(opt.manualSeed)
-- Load previous checkpoint, if it exists
local checkpoint, optimState = checkpoints.latest(opt)
-- Create model
local model, criterion = models.setup(opt, checkpoint)
-- Data loading
local trainLoader, valLoader = DataLoader.create(opt)
-- The trainer handles the training loop and evaluation on validation set
local trainer = Trainer(model, criterion, opt, optimState)
if opt.testOnly then
local top1Err, top5Err = trainer:test(0, valLoader)
print(string.format(' * Results top1: %6.3f top5: %6.3f', top1Err, top5Err))
return
end
local startEpoch = checkpoint and checkpoint.epoch + 1 or opt.epochNumber
local bestTop1 = math.huge
local bestTop5 = math.huge
for epoch = startEpoch, opt.nEpochs do
-- Train for a single epoch
local trainTop1, trainTop5, trainLoss = trainer:train(epoch, trainLoader)
-- Run model on validation set
local testTop1, testTop5 = trainer:test(epoch, valLoader)
local bestModel = false
if testTop1 < bestTop1 then
bestModel = true
bestTop1 = testTop1
bestTop5 = testTop5
print(' * Best model ', testTop1, testTop5)
end
checkpoints.save(epoch, model, trainer.optimState, bestModel, opt)
end
-- Test Snapshot Ensembles
local model_ensemble_fw = {}
local model_ensemble_bw = {}
for cycle = 1, opt.nCycles do
local idx = (cycle == opt.nCycles) and opt.nEpochs or cycle * torch.floor(opt.nEpochs / opt.nCycles)
model_ensemble_fw[#model_ensemble_fw+1] = torch.load(opt.save..'/model_'..idx..'.t7')
model_ensemble_bw[opt.nCycles-cycle+1] = model_ensemble_fw[#model_ensemble_fw]
end
local tester_fw = EnsembleTester(model_ensemble_fw, opt)
local SingleTop1_fw, SingleTop5_fw, EnsembleTop1Evolve_fw, EnsembleTop5Evolove_fw = tester_fw:test(valLoader)
local tester_bw = EnsembleTester(model_ensemble_bw, opt)
local SingleTop1_bw, SingleTop5_bw, EnsembleTop1Evolve_bw, EnsembleTop5Evolove_bw = tester_bw:test(valLoader)