-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_classification.py
486 lines (380 loc) · 17.2 KB
/
train_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import os
import logging
import pandas as pd
import numpy as np
import cv2
import matplotlib.pyplot as plt
import seaborn as sns
import torch
from torch import nn
from torch.optim import AdamW
from torch.optim.lr_scheduler import ReduceLROnPlateau, CosineAnnealingWarmRestarts, CosineAnnealingLR
import torch.nn.functional as F
from segmentation_models_pytorch.unetplusplus.model import UnetPlusPlus
from segmentation_models_pytorch.losses import DiceLoss
from segmentation_models_pytorch.utils.metrics import IoU
import pandas as pd
from tqdm import tqdm
import numpy as np
import torch
from torch import nn
import gc
from sklearn.metrics import roc_auc_score, accuracy_score
import json
import argparse
parser = argparse.ArgumentParser(description='Insert some arguments')
parser.add_argument('--mri_type', type=str,
help='Train your model on which MRI type. Should be one of: FLAIR, T1w, T1wCE, T2w, All (All means sequentially training the above 4 mri types)', default='FLAIR')
parser.add_argument('--gpu', type=int,
help='GPU ID', default=0)
parser.add_argument('--batch_size', type=int,
help='Batch size', default=4)
parser.add_argument('--n_workers', type=int,
help='Number of parrallel workers', default=8)
args = parser.parse_args()
with open('SETTINGS.json', 'r') as f:
SETTINGS = json.load(f)
DATA_FOLDER = SETTINGS['CLASSIFICATION_DATA_DIR']
META_FILE_PATH = f'{DATA_FOLDER}/meta_classification.csv'
KFOLD_FILE_PATH = SETTINGS['KFOLD_PATH']
RUN_FOLDS = [0]
MRI_TYPES = ['FLAIR','T1w', 'T1wCE', 'T2w'] if args.mri_type == 'All' else [args.mri_type]
STRIDE = 5
SEQ_LEN = 35
LSTM_HIDDEN_SIZE = 128
LSTM_LAYERS = 1
SEED = 67
DIM = (224, 224, 3)
N_WORKERS = args.n_workers
BATCH_SIZE = args.batch_size
BASE_LR = 1e-6
NUM_EPOCHS = 80
PATIENT = 10
SAMPLE = None
DEVICE = torch.device(f'cuda:{args.gpu}')
PARENT_OUT_FOLDER = 'models/'
CANDIDATES = [
{
'backbone_name':'eca_nfnet_l0',
'ver_note':'2d_classification',
'backbone_pretrained':'pretrained_models/eca_nfnet_l0.pth',
'batch_size':BATCH_SIZE,
'warm_up_epochs':5,
},
]
import sys
from utils.general import seed_torch, init_progress_dict, log_to_progress_dict, save_progress, log_and_print, get_logger
# seed every thing
seed_torch(SEED)
def chunk_slices(list_files):
list_files = sorted(list_files)
chunks = []
n_chunks = max(int(np.ceil((len(list_files) - SEQ_LEN) / STRIDE ) + 1),1)
for i in range(n_chunks):
s = i*STRIDE
e = min(s+SEQ_LEN, len(list_files))
chunks.append(list_files[s:e])
return chunks
def expand(row):
list_files = row['chunk_file_paths']
return pd.DataFrame({
'BraTS21ID':[row['BraTS21ID']]*len(list_files),
'MGMT_value':[row['MGMT_value']]*len(list_files),
'mri_type':[row['mri_type']]*len(list_files),
'file_path':list_files,
'fold':[row['fold']]*len(list_files)
})
def get_first_value(df, col_name):
df[col_name] = df[col_name].map(lambda x: list(x)[0])
def process_df_mri_type(df_mri):
df_mri_group = df_mri.groupby('BraTS21ID').agg(list)
df_mri_group = df_mri_group.reset_index()
df_mri_group['chunk_file_paths'] = df_mri_group.file_path.map(chunk_slices)
df_mri_group['chunk_count'] = df_mri_group['chunk_file_paths'].map(lambda x: len(x))
df_mri_group['chunk_cum_count'] = df_mri_group['chunk_count'].cumsum()
df_mri_group_expand = df_mri_group.apply(expand, axis=1).tolist()
df_mri_group_expand = pd.concat(df_mri_group_expand)
for col_name in ['MGMT_value', 'mri_type', 'fold']:
get_first_value(df_mri_group_expand, col_name)
return df_mri_group_expand
class BrainClassification2DDataset(torch.utils.data.Dataset):
def __init__(self, csv, transforms=None):
self.csv = csv.reset_index(drop=True)
self.augmentations = transforms
def __len__(self):
return self.csv.shape[0]
def __getitem__(self, index):
row = self.csv.iloc[index]
list_file_path = row['file_path']
list_images = []
label = row['MGMT_value']
for i, path in enumerate(list_file_path):
image = np.load(path)
label = row['MGMT_value']
list_images.append(image)
images = np.stack(list_images, axis=0)
if(images.shape[0] < SEQ_LEN):
n_pad = SEQ_LEN - images.shape[0]
pad_matrix = np.zeros(shape=(n_pad, images.shape[1], images.shape[2], images.shape[3]))
images = np.concatenate([images, pad_matrix], axis=0)
if self.augmentations:
images_dict = dict()
for i in range(len(images)):
if(i==0):
images_dict['image'] = images[i]
else:
images_dict[f'image{i-1}'] = images[i]
augmented = self.augmentations(**images_dict)
transformed_images = []
for i in range(len(images)):
if(i==0):
transformed_images.append(augmented['image'])
else:
transformed_images.append(augmented[f'image{i-1}'])
transformed_images = np.stack(transformed_images, axis=0)
return transformed_images, torch.tensor(label)
return images, torch.tensor(label)
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2
def get_train_transforms(candidate):
dim = candidate.get('dim', DIM)
seq_len = candidate.get('seq_len', SEQ_LEN)
additional_targets = {f'image{i}':'image' for i in range(SEQ_LEN-1)}
return A.Compose(
[
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.ShiftScaleRotate(p=0.5),
A.Resize(width=dim[1], height=dim[0], always_apply=True),
A.Normalize(),
ToTensorV2(p=1.0)
],
additional_targets=additional_targets
)
def get_valid_transforms(candidate):
dim = candidate.get('dim', DIM)
additional_targets = {f'image{i}':'image' for i in range(SEQ_LEN-1)}
return A.Compose(
[
A.Resize(width=dim[1], height=dim[0], always_apply=True),
A.Normalize(),
ToTensorV2(p=1.0)
],
additional_targets=additional_targets
)
def dfs_freeze(module):
for name, child in module.named_children():
for param in child.parameters():
param.requires_grad = False
dfs_freeze(child)
def dfs_unfreeze(module):
for name, child in module.named_children():
for param in child.parameters():
param.requires_grad = True
dfs_unfreeze(child)
import timm
class BrainSequenceModelNFNet(nn.Module):
def __init__(self, backbone_name, backbone_pretrained,
lstm_dim=64, lstm_layers=1, lstm_dropout=0.,
n_classes=1):
super(BrainSequenceModelNFNet, self).__init__()
self.backbone = timm.create_model(backbone_name, pretrained=False)
self.backbone.load_state_dict(torch.load(backbone_pretrained))
lstm_inp_dim = self.backbone.head.fc.in_features
self.backbone.head.fc = nn.Identity()
self.lstm = nn.LSTM(lstm_inp_dim, lstm_dim, num_layers=lstm_layers,
batch_first=True, bidirectional=True,
dropout=lstm_dropout)
self.clf_head = nn.Linear(lstm_dim*2*SEQ_LEN, n_classes)
def forward(self, x):
n = x.shape[0]
seq_length = x.shape[1]
concat_x = torch.cat([x[i] for i in range(n)], axis=0)
concat_x = self.backbone(concat_x)
stacked_x = torch.stack([concat_x[i*seq_length:i*seq_length+seq_length] for i in range(n)], axis=0)
seq_features, _ = self.lstm(stacked_x)
seq_features = seq_features.reshape(n,-1)
logits = self.clf_head(seq_features)
return logits
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def train_valid_fn(dataloader,model, criterion, scaler, optimizer=None,device='cuda:0',scheduler=None,
epoch=0,mode='train', metric='auc'):
'''Perform model training'''
if(mode=='train'):
model.train()
elif(mode=='valid'):
model.eval()
else:
raise ValueError('No such mode')
loss_score = AverageMeter()
tk0 = tqdm(enumerate(dataloader), total=len(dataloader))
all_predictions = []
all_labels = []
for i, batch in tk0:
if(mode=='train'):
optimizer.zero_grad()
# input, gt
voxels, labels = batch
voxels = voxels.to(device)
labels = labels.to(device).float()
# prediction
with torch.cuda.amp.autocast():
logits = model(voxels)
logits = logits.view(-1)
probs = logits.sigmoid()
# compute loss
loss = criterion(logits, labels)
if(mode=='train'):
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
loss_score.update(loss.detach().cpu().item(), dataloader.batch_size)
# append for metric calculation
all_predictions.append(probs.detach().cpu().numpy())
all_labels.append(labels.detach().cpu().numpy())
if(mode=='train'):
tk0.set_postfix(Loss_Train=loss_score.avg, Epoch=epoch, LR=optimizer.param_groups[0]['lr'])
elif(mode=='valid'):
tk0.set_postfix(Loss_Valid=loss_score.avg, Epoch=epoch)
del batch, voxels, labels, logits, probs, loss
torch.cuda.empty_cache()
if(mode=='train'):
if(scheduler.__class__.__name__ == 'CosineAnnealingWarmRestarts'):
scheduler.step(epoch=epoch)
elif(scheduler.__class__.__name__ == 'ReduceLROnPlateau'):
scheduler.step(loss_score.avg)
all_predictions = np.concatenate(all_predictions)
all_labels = np.concatenate(all_labels)
if(metric == 'auc'):
auc = roc_auc_score(y_true=all_labels, y_score=all_predictions)
return loss_score.avg, auc
return loss_score.avg
# ============ Read metadata ==============
df = pd.read_csv(META_FILE_PATH)
kfold_df = pd.read_csv(KFOLD_FILE_PATH)
df = df.merge(kfold_df, on='BraTS21ID')
df_flair = df[df.mri_type=='FLAIR']
df_t1 = df[df.mri_type=='T1w']
df_t1ce = df[df.mri_type=='T1wCE']
df_t2 = df[df.mri_type=='T2w']
# =========================================
# ================================ Training ==================================
for candidate in CANDIDATES:
print(f"######################### Candidate: {candidate['backbone_name']} ############################")
run_folds = candidate.get('run_folds', RUN_FOLDS)
parent_out_folder = candidate.get('parent_out_folder', PARENT_OUT_FOLDER)
ver_note = candidate['ver_note']
for mri_type in MRI_TYPES:
out_folder_name = f"{candidate['backbone_name']}_{ver_note}"
out_folder = os.path.join(parent_out_folder, out_folder_name, mri_type)
os.makedirs(out_folder, exist_ok=True)
for valid_fold in run_folds:
# Read data
if(SAMPLE):
df = df.sample(SAMPLE, random_state=SEED)
if(mri_type != 'all'):
df_mri = df[df.mri_type==mri_type]
# process data
df_mri = process_df_mri_type(df_mri)
train_df = df_mri[df_mri.fold!=valid_fold]
valid_df = df_mri[df_mri.fold==valid_fold]
print(f'\n\n================= Fold {valid_fold}. MRI: {mri_type} ==================')
print(f'Number of training samples: {len(train_df)}. Number of valid samples: {len(valid_df)}')
# train and valid transforms
train_transforms = get_train_transforms(candidate)
valid_transforms = get_valid_transforms(candidate)
# create data loader
train_dataset = BrainClassification2DDataset(train_df, train_transforms)
valid_dataset = BrainClassification2DDataset(valid_df, valid_transforms)
batch_size = candidate.get('batch_size', BATCH_SIZE)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True,
num_workers=N_WORKERS, pin_memory=torch.cuda.is_available())
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=batch_size, shuffle=False,
num_workers=N_WORKERS, pin_memory=torch.cuda.is_available())
# Model
model = BrainSequenceModelNFNet(candidate['backbone_name'],
candidate['backbone_pretrained'],
lstm_dim=LSTM_HIDDEN_SIZE,lstm_layers=LSTM_LAYERS)
model.to(DEVICE)
print()
warm_start_weight = candidate.get('warm_start_weight')
if(warm_start_weight):
print('Load warm start weight:', warm_start_weight)
# freeze pretrained layers
dfs_freeze(model.backbone)
print(' -------- Start warm up process ----------')
print('Freeze backbone')
model = model.to(DEVICE)
print()
# Optimizer and scheduler
base_lr = candidate.get('base_lr', BASE_LR)
optim = AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=BASE_LR)
num_training_steps = NUM_EPOCHS * len(train_loader)
lr_scheduler = ReduceLROnPlateau(optimizer=optim, factor=0.67, patience=3, verbose=True)
# loss
criterion = nn.BCEWithLogitsLoss()
# use amp to accelerate training
scaler = torch.cuda.amp.GradScaler()
# Logging
logger = get_logger(
name = f'training_log_fold{valid_fold}.txt',
path=os.path.join(out_folder, f'training_log_fold{valid_fold}.txt')
)
best_valid_loss = 9999
best_valid_ep = 0
patient = PATIENT
progress_dict = init_progress_dict(['loss', 'AUC'])
start_ep = candidate.get('warm_start_ep', 1)
print('Start ep:', start_ep)
# warm up epochs
warm_up_epochs = candidate.get('warm_up_epochs', 0)
for epoch in range(start_ep, NUM_EPOCHS+1):
if(epoch==warm_up_epochs+1):
print(' -------- Finish warm up process ----------')
print('Unfreeze backbone')
dfs_unfreeze(model.backbone)
optim = AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=BASE_LR)
lr_scheduler = ReduceLROnPlateau(optimizer=optim)
# =============== Training ==============
train_loss, train_auc = train_valid_fn(train_loader,model,criterion, scaler, optimizer=optim,device=DEVICE,
scheduler=lr_scheduler,epoch=epoch,mode='train', metric='auc')
valid_loss, valid_auc = train_valid_fn(valid_loader,model,criterion, scaler, device=DEVICE,epoch=epoch,mode='valid', metric='auc')
current_lr = optim.param_groups[0]['lr']
log_line = f'Model: {out_folder_name}. Epoch: {epoch}. '
log_line += f'Train loss:{train_loss} - Valid loss: {valid_loss}. '
log_line += f'Train AUC:{train_auc} - Valid AUC: {valid_auc}. '
log_line += f'Lr: {current_lr}.'
log_and_print(logger, log_line)
metric_dict = {'train_loss':train_loss,'valid_loss':valid_loss,
'train_AUC':train_auc, 'valid_AUC':valid_auc,
}
progress_dict = log_to_progress_dict(progress_dict, metric_dict)
# plot figure and save the progress chart
save_progress(progress_dict, out_folder, out_folder_name, valid_fold, show=False)
if(valid_loss < best_valid_loss):
best_valid_loss = valid_loss
best_valid_ep = epoch
patient = PATIENT # reset patient
# save model
name = os.path.join(out_folder, f'%s_Fold%d_%s.pth'%(mri_type, valid_fold, out_folder_name))
log_and_print(logger, 'Saving model to: ' + name)
torch.save(model.state_dict(), name)
else:
patient -= 1
log_and_print(logger, 'Decrease early-stopping patient by 1 due valid loss not decreasing. Patient='+ str(patient))
if(patient == 0):
log_and_print(logger, 'Early stopping patient = 0. Early stop')
break
# =============================================================================