-
Notifications
You must be signed in to change notification settings - Fork 0
/
FinalTrain.py
76 lines (56 loc) · 2.55 KB
/
FinalTrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
n_train = 75481
n_test = 11189
batch_size = 32
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Conv2D(32, (3, 3), input_shape = (256,256,3), activation = 'relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a second convolutional layer
classifier.add(Conv2D(16, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a third convolutional layer
classifier.add(Conv2D(8, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dense(units = 256, activation = 'relu'))
classifier.add(Dense(units = 125, activation = 'softmax'))
# classifier.add(Activation(tf.nn.softmax))
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('sketchyTrain/',
target_size = (256, 256),
batch_size = 32,
class_mode = 'categorical')
test_set = test_datagen.flow_from_directory('sketchyTest/',
target_size = (256, 256),
batch_size = 32,
class_mode = 'categorical')
from keras.utils import plot_model
plot_model(classifier, to_file='modelfinal125.png')
from IPython.display import display
from PIL import Image
classifier.fit_generator(training_set,
steps_per_epoch = 2*(n_train/batch_size),
epochs = 10,
validation_data = test_set,
validation_steps = 2000)
from keras.models import load_model
classifier.save('sketchmodel125final.h5') # creates a HDF5 file 'my_model.h5'
classifier.save('sketchmodel125final.hdf5')