-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
475 lines (412 loc) · 20.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# Copyright 2019 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Main method to train the DWC model."""
# !/usr/bin/python
import json
import os
import argparse
import logging
import sys
import gc
import time
import PIL.Image
import datasets
import Our_global as composition_g
import Our_local as composition_l
import numpy as np
from torch.autograd import Variable
import test2
import test
import torch
import torch.utils.data
import torchvision
from tqdm import tqdm as tqdm
from copy import deepcopy
import socket
import os
from datetime import datetime
from torch.utils.data import dataloader
from torch.cuda.amp import autocast as autocast, GradScaler
import torch.nn.functional as F
torch.set_num_threads(8)
def parse_opt():
"""Parses the input arguments."""
parser = argparse.ArgumentParser()
parser.add_argument('-f', type=str, default='')
parser.add_argument('--dataset', type=str, default='fashionIQ')# fashionIQ fashion200k css3d shoes
parser.add_argument('--dataset_path', type=str, default='/media/cqu/D/HFX/datasets/fashionIQ/')
#'/media/cqu/D/HFX/datasets/CSS'
#'/media/cqu/D/HFX/datasets/Fashion200k'
#'/media/cqu/D/HFX/datasets/shoes/'
#'/media/cqu/D/HFX/datasets/fashionIQ/'
parser.add_argument('--model', type=str, default='DWC')# direct_sum Our Our_global Combiner
parser.add_argument('--backbone', type=str, default='RN50')#'RN50' 'RN101' 'RN50x4' 'RN50x16' 'ViT-B/32' 'ViT-B/16'
parser.add_argument('--resize_dim', type=int, default=224)#224 288 384
parser.add_argument('--image_embed_dim', type=int, default=1024)
parser.add_argument('--seed', type=int, default=599)
parser.add_argument('--learning_rate', type=float, default=1e-4)#1e-2
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--eps', type=float, default=1e-8)
parser.add_argument('--weight_decay', type=float, default=1e-6)
parser.add_argument('--name', default = 'css3d', help = "data set type")#'all', 'dress', 'shirt', 'toptee'
parser.add_argument('--epoch', type=int, default=200)
parser.add_argument('--loader_num_workers', type=int, default=0)
parser.add_argument('--log_dir', type=str, default='./experiment/')
parser.add_argument('--test_only', type=bool, default=False)
parser.add_argument('--global_model_checkpoint', type=str, default='/media/dlc/ssd_data/HFX/new_31/experiment/dress/best_global_checkpoint.pth')
parser.add_argument('--local_model_checkpoint', type=str, default='/media/dlc/ssd_data/HFX/new_31/experiment/dress/best_local_checkpoint.pth')
args = parser.parse_args()
return args
def load_dataset(opt):
"""Loads the input datasets."""
print('Reading dataset ', opt.dataset)
resize_dim = opt.resize_dim
if opt.dataset == 'css3d':
trainset = datasets.CSSDataset(
path=opt.dataset_path,
split='train',
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(resize_dim,interpolation=PIL.Image.BICUBIC),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
]))
testset = datasets.CSSDataset(
path=opt.dataset_path,
split='test',
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(resize_dim,interpolation=PIL.Image.BICUBIC),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
]))
elif opt.dataset == 'fashion200k':
trainset = datasets.Fashion200k(
path=opt.dataset_path,
split='train',
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(resize_dim,interpolation=PIL.Image.BICUBIC),
torchvision.transforms.CenterCrop(resize_dim),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
]))
testset = datasets.Fashion200k(
path=opt.dataset_path,
split='test',
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(resize_dim,interpolation=PIL.Image.BICUBIC),
torchvision.transforms.CenterCrop(resize_dim),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
]))
elif opt.dataset == 'fashionIQ':
trainset = datasets.FashionIQ(
path = opt.dataset_path,
name = opt.name,
split = 'train',
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(resize_dim,interpolation=PIL.Image.BICUBIC),
torchvision.transforms.CenterCrop(resize_dim),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
]))
testset = datasets.FashionIQ(
path = opt.dataset_path,
name = opt.name,
split = 'val',
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(resize_dim,interpolation=PIL.Image.BICUBIC),
torchvision.transforms.CenterCrop(resize_dim),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
]))
elif opt.dataset == 'shoes':
trainset = datasets.Shoes(
path = opt.dataset_path,
split = 'train',
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(resize_dim,interpolation=PIL.Image.BICUBIC),
torchvision.transforms.CenterCrop(resize_dim),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
]))
testset = datasets.Shoes(
path = opt.dataset_path,
split = 'test',
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(resize_dim,interpolation=PIL.Image.BICUBIC),
torchvision.transforms.CenterCrop(resize_dim),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
]))
else:
print('Invalid dataset', opt.dataset)
sys.exit()
print('trainset size:', len(trainset))
print('testset size:', len(testset))
return trainset, testset
def create_model_and_optimizer(opt, texts):
"""Builds the model and related optimizer."""
print("Creating model and optimizer for", opt.model)
text_embed_dim = opt.image_embed_dim
if opt.model == 'model':
global_model = composition_g.Our_global1(texts,
image_embed_dim=opt.image_embed_dim,
text_embed_dim=text_embed_dim,
backbone = opt.backbone)
local_model = composition_l.Our_local1(texts,
image_embed_dim=opt.image_embed_dim,
text_embed_dim=text_embed_dim,
backbone = opt.backbone)
elif opt.model == 'DWC':
global_model = composition_g.Our_global6(texts,
image_embed_dim=opt.image_embed_dim,
text_embed_dim=text_embed_dim,
backbone = opt.backbone)
local_model = composition_l.Our_local3(texts,
image_embed_dim=opt.image_embed_dim,
text_embed_dim=text_embed_dim,
backbone = opt.backbone)
global_model = global_model.cuda()
local_model = local_model.cuda()
'''optimizer = torch.optim.SGD(params,
lr=opt.learning_rate,
momentum=0.9,
weight_decay=opt.weight_decay)'''
global_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, global_model.parameters()),
lr=opt.learning_rate,
eps=opt.eps,
weight_decay=opt.weight_decay)
local_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, local_model.parameters()),
lr=opt.learning_rate,
eps=opt.eps,
weight_decay=opt.weight_decay)
return global_model, local_model, global_optimizer, local_optimizer
def train_loop(opt, loss_weights, logdir, trainset, testset, global_model, local_model, global_optimizer, local_optimizer):
"""Function for train loop"""
print('Begin training')
scaler = GradScaler()
losses_tracking = {}
epoch = -1
tic = time.time()
all_Rmean_max = 0.0
loc_Rmean_max = 0.0
while epoch < opt.epoch:
epoch += 1
# show/log stats
print('The epoch', epoch, 'Elapsed time', round(time.time() - tic,
4), opt.dataset)
tic = time.time()
for loss_name in losses_tracking:
avg_loss = np.mean(losses_tracking[loss_name][-len(trainloader):])
print(' Loss', loss_name, round(avg_loss, 4))
if epoch % 1 == 0:
gc.collect()
# test
if epoch % 1 == 0:# and epoch > 0:
#test on the all model
testsall = []
all_Rmean = 0.0
all_a = 0.0
testsloc = []
loc_Rmean = 0.0
loc_a = 0.0
#for name, dataset in [('train', trainset), ('test', testset)]:
for name, dataset in [('test', testset)]:
if opt.dataset == 'fashionIQ' or opt.dataset == 'shoes':
tall = test2.fiq_test(opt, global_model, local_model, dataset)
tloc = test.fiq_test(opt, local_model, dataset)
else:
tall = test2.test(opt, global_model, local_model, dataset)
tloc = test.test(opt, local_model, dataset)
testsall += [(name + ' ' + metric_name, metric_value)
for metric_name, metric_value in tall]
testsloc += [(name + ' ' + metric_name, metric_value)
for metric_name, metric_value in tloc]
for metric_name, metric_value in testsall:
all_a += 1
all_Rmean += metric_value
print(' all ', metric_name, round(metric_value, 4))
all_Rmean /= all_a
print('The epoch', epoch, 'all_Rmean = ', round(all_Rmean, 4))
all_is_best = all_Rmean > all_Rmean_max
if all_is_best:
all_Rmean_max = all_Rmean
print ('save all model and all_Rmean_max = ', round(all_Rmean_max, 4))
print(testsall)
best_json_path_combine = os.path.join(
logdir, "metrics_best_all.txt"
)
test_metrics = {}
for metric_name, metric_value in testsall:
test_metrics[metric_name] = metric_value
save_dict_to_json(test_metrics, best_json_path_combine)
# save checkpoint
torch.save({
'model_state_dict': local_model.state_dict(),
},
logdir + '/all_local_checkpoint.pth')
torch.save({
'model_state_dict': global_model.state_dict(),
},
logdir + '/all_global_checkpoint.pth')
for metric_name, metric_value in testsloc:
loc_a += 1
loc_Rmean += metric_value
print(' local ', metric_name, round(metric_value, 4))
loc_Rmean /= loc_a
print('The epoch', epoch, 'loc_Rmean = ', round(loc_Rmean, 4))
loc_is_best = loc_Rmean > loc_Rmean_max
if loc_is_best:
loc_Rmean_max = loc_Rmean
print ('save local model and loc_Rmean_max = ', round(loc_Rmean_max, 4))
print(testsloc)
best_json_path_combine = os.path.join(
logdir, "metrics_best_local.txt"
)
test_metrics = {}
for metric_name, metric_value in testsloc:
test_metrics[metric_name] = metric_value
save_dict_to_json(test_metrics, best_json_path_combine)
# save checkpoint
torch.save({
'model_state_dict': local_model.state_dict(),
},
logdir + '/best_local_checkpoint.pth')
# run training for 1 epoch
global_model.train()
local_model.train()
if opt.dataset == 'fashion200k' or opt.dataset == 'css3d':
trainloader = trainset.get_loader(
batch_size=opt.batch_size,
shuffle=True,
drop_last=True,
num_workers=opt.loader_num_workers)
else:
trainloader = dataloader.DataLoader(trainset,
batch_size=opt.batch_size,
shuffle=True,
drop_last=True,
num_workers=opt.loader_num_workers)
def training_1_iter(data):
if opt.dataset == 'fashion200k':
assert type(data) is list
img1 = np.stack([d['source_img_data'] for d in data])
img1 = torch.from_numpy(img1).float()
img1 = torch.autograd.Variable(img1).cuda()
img2 = np.stack([d['target_img_data'] for d in data])
img2 = torch.from_numpy(img2).float()
img2 = torch.autograd.Variable(img2).cuda()
text_query = [str(d['mod']['str']) for d in data]
target_label = np.stack([d['target_label'] for d in data])
target_label = torch.from_numpy(target_label).float()
target_label = torch.autograd.Variable(target_label).cuda()
else:
img1 = data['source_img_data'].cuda()
img2 = data['target_img_data'].cuda()
text_query = data['mod']['str']
target_label = data['target_img_id'].cuda()
#train global
global_optimizer.zero_grad()
with autocast():
com_local = local_model.compose_img_text(img1, text_query)["repres"].detach()
tar_local = local_model.extract_tar_feature(img1)["repres"].detach()
global_losses = global_model.compute_loss(img1, text_query, img2, com_local, tar_local, target_label, loss_weights)
global_total_loss = sum([
loss_weight * loss_value
for loss_name, loss_weight, loss_value in global_losses
])
scaler.scale(global_total_loss).backward()
scaler.step(global_optimizer)
scaler.update()
# train local
local_optimizer.zero_grad()
with autocast():
com_global = global_model.compose_img_text(img1, text_query)["repres"].detach()
tar_global = global_model.extract_tar_feature(img1)["repres"].detach()
local_losses = local_model.compute_loss(img1, text_query, img2, com_global, tar_global, target_label, loss_weights)
local_total_loss = sum([
loss_weight * loss_value
for loss_name, loss_weight, loss_value in local_losses
])
scaler.scale(local_total_loss).backward()
scaler.step(local_optimizer)
scaler.update()
losses = global_losses
assert not torch.isnan(global_total_loss)
losses += [('global total training loss', None, global_total_loss.item())]
losses += local_losses
assert not torch.isnan(local_total_loss)
losses += [('local total training loss', None, local_total_loss.item())]
# track losses
for loss_name, loss_weight, loss_value in losses:
if loss_name not in losses_tracking:
losses_tracking[loss_name] = []
losses_tracking[loss_name].append(float(loss_value))
for data in tqdm(trainloader, desc='Training for epoch ' + str(epoch)):
training_1_iter(data)
print('Finished training')
def save_dict_to_json(d, json_path):
"""Saves dict of floats in json file
Args:
d: (dict) of float-castable values (np.float, int, float, etc.)
json_path: (string) path to json file
"""
with open(json_path, 'w') as f:
# We need to convert the values to float for json (it doesn't accept np.array, np.float, )
d = {k: float(v) for k, v in d.items()}
json.dump(d, f, indent=4)
def main():
print(' ------start-----')
opt = parse_opt()
print('Arguments:')
#torch.cuda.set_device(opt.choose_device) #bert-serving-start -model_dir /media/dlc/ssd_data/HFX/ComposeAE-master_bert/uncased_L-12_H-768_A-12 -device_map 3
for k in opt.__dict__.keys():
print(' ', k, ':', str(opt.__dict__[k]))
seed = opt.seed
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed) # Numpy module.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
loss_weights = [1.0, 1.0, 1.0, 1.0, 0.0, 1.0]
logdir = os.path.join(opt.log_dir, opt.name)
trainset, testset = load_dataset(opt)
global_model, local_model, global_optimizer, local_optimizer = create_model_and_optimizer(opt, [t for t in trainset.get_all_texts()])
if opt.test_only:
print('Doing test only')
global_model_checkpoint = opt.global_model_checkpoint
checkpoint = torch.load(global_model_checkpoint)
global_model.load_state_dict(checkpoint['model_state_dict'])
local_model_checkpoint = opt.local_model_checkpoint
checkpoint1 = torch.load(local_model_checkpoint)
local_model.load_state_dict(checkpoint1['model_state_dict'])
global_model.eval()
local_model.eval()
tests = []
for name, dataset in [('test', testset)]: #[('train', trainset), ('test', testset)]:
if opt.dataset == 'fashionIQ' or opt.dataset == 'shoes':
t = test2.fiq_test(opt, global_model, local_model, dataset)
else:
t = test2.test(opt, global_model, local_model, dataset)
#t = test_retrieval.test1(opt, model, dataset)#save top 10 images
tests += [(name + ' ' + metric_name, metric_value) for metric_name, metric_value in t]
for metric_name, metric_value in tests:
print(' test all ', metric_name, round(metric_value, 4))
return 0
train_loop(opt, loss_weights, logdir, trainset, testset, global_model, local_model, global_optimizer, local_optimizer)
if __name__ == '__main__':
main()