forked from PlayVoice/whisper-vits-svc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
444 lines (365 loc) · 21 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import os
import subprocess
import yaml
import sys
import webbrowser
import gradio as gr
from ruamel.yaml import YAML
import shutil
import soundfile
import shlex
import locale
class WebUI:
def __init__(self):
self.train_config_path = 'configs/train.yaml'
self.info = Info()
self.names = []
self.names2 = []
self.voice_names = []
self.base_config_path = 'configs/base.yaml'
if not os.path.exists(self.train_config_path):
shutil.copyfile(self.base_config_path, self.train_config_path)
print(i18n("初始化成功"))
else:
print(i18n("就绪"))
self.main_ui()
def main_ui(self):
with gr.Blocks(theme=gr.themes.Base(primary_hue=gr.themes.colors.green)) as ui:
gr.Markdown('# so-vits-svc5.0 WebUI')
with gr.Tab(i18n("预处理-训练")):
with gr.Accordion(i18n('训练说明'), open=False):
gr.Markdown(self.info.train)
gr.Markdown(i18n('### 预处理参数设置'))
with gr.Row():
self.model_name = gr.Textbox(value='sovits5.0', label='model', info=i18n('模型名称'), interactive=True) #建议设置为不可修改
self.f0_extractor = gr.Textbox(value='crepe', label='f0_extractor', info=i18n('f0提取器'), interactive=False)
self.thread_count = gr.Slider(minimum=1, maximum=os.cpu_count(), step=1, value=2, label='thread_count', info=i18n('预处理线程数'), interactive=True)
gr.Markdown(i18n('### 训练参数设置'))
with gr.Row():
self.learning_rate = gr.Number(value=5e-5, label='learning_rate', info=i18n('学习率'), interactive=True)
self.batch_size = gr.Slider(minimum=1, maximum=50, step=1, value=6, label='batch_size', info=i18n('批大小'), interactive=True)
with gr.Row():
self.info_interval = gr.Number(value=50, label='info_interval', info=i18n('训练日志记录间隔(step)'), interactive=True)
self.eval_interval = gr.Number(value=1, label='eval_interval', info=i18n('验证集验证间隔(epoch)'), interactive=True)
self.save_interval = gr.Number(value=5, label='save_interval', info=i18n('检查点保存间隔(epoch)'), interactive=True)
self.keep_ckpts = gr.Number(value=0, label='keep_ckpts', info=i18n('保留最新的检查点文件(0保存全部)'),interactive=True)
with gr.Row():
self.slow_model = gr.Checkbox(label=i18n("是否添加底模"), value=True, interactive=True)
gr.Markdown(i18n('### 开始训练'))
with gr.Row():
self.bt_open_dataset_folder = gr.Button(value=i18n('打开数据集文件夹'))
self.bt_onekey_train = gr.Button(i18n('一键训练'), variant="primary")
self.bt_tb = gr.Button(i18n('启动Tensorboard'), variant="primary")
gr.Markdown(i18n('### 恢复训练'))
with gr.Row():
self.resume_model = gr.Dropdown(choices=sorted(self.names), label='Resume training progress from checkpoints', info=i18n('从检查点恢复训练进度'), interactive=True)
with gr.Column():
self.bt_refersh = gr.Button(i18n('刷新'))
self.bt_resume_train = gr.Button(i18n('恢复训练'), variant="primary")
with gr.Tab(i18n("推理")):
with gr.Accordion(i18n('推理说明'), open=False):
gr.Markdown(self.info.inference)
gr.Markdown(i18n('### 推理参数设置'))
with gr.Row():
with gr.Column():
self.keychange = gr.Slider(-24, 24, value=0, step=1, label=i18n('变调'))
self.file_list = gr.Markdown(value="", label=i18n("文件列表"))
with gr.Row():
self.resume_model2 = gr.Dropdown(choices=sorted(self.names2), label='Select the model you want to export',
info=i18n('选择要导出的模型'), interactive=True)
with gr.Column():
self.bt_refersh2 = gr.Button(value=i18n('刷新模型和音色'))
self.bt_out_model = gr.Button(value=i18n('导出模型'), variant="primary")
with gr.Row():
self.resume_voice = gr.Dropdown(choices=sorted(self.voice_names), label='Select the sound file',
info=i18n('选择音色文件'), interactive=True)
with gr.Row():
self.input_wav = gr.Audio(type='filepath', label=i18n('选择待转换音频'), source='upload')
with gr.Row():
self.bt_infer = gr.Button(value=i18n('开始转换'), variant="primary")
with gr.Row():
self.output_wav = gr.Audio(label=i18n('输出音频'), interactive=False)
self.bt_open_dataset_folder.click(fn=self.openfolder)
self.bt_onekey_train.click(fn=self.onekey_training,inputs=[self.model_name, self.thread_count,self.learning_rate,self.batch_size, self.info_interval, self.eval_interval,self.save_interval, self.keep_ckpts, self.slow_model])
self.bt_out_model.click(fn=self.out_model, inputs=[self.model_name, self.resume_model2])
self.bt_tb.click(fn=self.tensorboard)
self.bt_refersh.click(fn=self.refresh_model, inputs=[self.model_name], outputs=[self.resume_model])
self.bt_resume_train.click(fn=self.resume_train, inputs=[self.model_name, self.resume_model, self.learning_rate,self.batch_size, self.info_interval, self.eval_interval,self.save_interval, self.keep_ckpts, self.slow_model])
self.bt_infer.click(fn=self.inference, inputs=[self.input_wav, self.resume_voice, self.keychange], outputs=[self.output_wav])
self.bt_refersh2.click(fn=self.refresh_model_and_voice, inputs=[self.model_name],outputs=[self.resume_model2, self.resume_voice])
ui.launch(inbrowser=True, server_port=2333, share=True)
def openfolder(self):
try:
if sys.platform.startswith('win'):
os.startfile('dataset_raw')
elif sys.platform.startswith('linux'):
subprocess.call(['xdg-open', 'dataset_raw'])
elif sys.platform.startswith('darwin'):
subprocess.call(['open', 'dataset_raw'])
else:
print(i18n('打开文件夹失败!'))
except BaseException:
print(i18n('打开文件夹失败!'))
def preprocessing(self, thread_count):
print(i18n('开始预处理'))
train_process = subprocess.Popen('python -u svc_preprocessing.py -t ' + str(thread_count), stdout=subprocess.PIPE)
while train_process.poll() is None:
output = train_process.stdout.readline().decode('utf-8')
print(output, end='')
def create_config(self, model_name, learning_rate, batch_size, info_interval, eval_interval, save_interval,
keep_ckpts, slow_model):
yaml = YAML()
yaml.preserve_quotes = True
yaml.width = 1024
with open("configs/train.yaml", "r") as f:
config = yaml.load(f)
config['train']['model'] = model_name
config['train']['learning_rate'] = learning_rate
config['train']['batch_size'] = batch_size
config["log"]["info_interval"] = int(info_interval)
config["log"]["eval_interval"] = int(eval_interval)
config["log"]["save_interval"] = int(save_interval)
config["log"]["keep_ckpts"] = int(keep_ckpts)
if slow_model:
config["train"]["pretrain"] = "vits_pretrain\sovits5.0.pretrain.pth"
else:
config["train"]["pretrain"] = ""
with open("configs/train.yaml", "w") as f:
yaml.dump(config, f)
return f"{config['log']}"
def training(self, model_name):
print(i18n('开始训练'))
train_process = subprocess.Popen('python -u svc_trainer.py -c ' + self.train_config_path + ' -n ' + str(model_name), stdout=subprocess.PIPE, creationflags=subprocess.CREATE_NEW_CONSOLE)
while train_process.poll() is None:
output = train_process.stdout.readline().decode('utf-8')
print(output, end='')
def onekey_training(self, model_name, thread_count, learning_rate, batch_size, info_interval, eval_interval, save_interval, keep_ckpts, slow_model):
print(self, model_name, thread_count, learning_rate, batch_size, info_interval, eval_interval,
save_interval, keep_ckpts)
self.create_config(model_name, learning_rate, batch_size, info_interval, eval_interval, save_interval, keep_ckpts, slow_model)
self.preprocessing(thread_count)
self.training(model_name)
def out_model(self, model_name, resume_model2):
print(i18n('开始导出模型'))
try:
subprocess.Popen('python -u svc_export.py -c {} -p "chkpt/{}/{}"'.format(self.train_config_path, model_name, resume_model2),stdout=subprocess.PIPE)
print(i18n('导出模型成功'))
except Exception as e:
print(i18n("出现错误:"), e)
def tensorboard(self):
if sys.platform.startswith('win'):
tb_process = subprocess.Popen('tensorboard --logdir=logs --port=6006', stdout=subprocess.PIPE)
webbrowser.open("http://localhost:6006")
else:
p1 = subprocess.Popen(["ps", "-ef"], stdout=subprocess.PIPE) #ps -ef | grep tensorboard | awk '{print $2}' | xargs kill -9
p2 = subprocess.Popen(["grep", "tensorboard"], stdin=p1.stdout, stdout=subprocess.PIPE)
p3 = subprocess.Popen(["awk", "{print $2}"], stdin=p2.stdout, stdout=subprocess.PIPE)
p4 = subprocess.Popen(["xargs", "kill", "-9"], stdin=p3.stdout)
p1.stdout.close()
p2.stdout.close()
p3.stdout.close()
p4.communicate()
tb_process = subprocess.Popen('tensorboard --logdir=logs --port=6007', stdout=subprocess.PIPE) # AutoDL端口设置为6007
while tb_process.poll() is None:
output = tb_process.stdout.readline().decode('utf-8')
print(output)
def refresh_model(self, model_name):
self.script_dir = os.path.dirname(os.path.abspath(__file__))
self.model_root = os.path.join(self.script_dir, f"chkpt/{model_name}")
self.names = []
try:
for self.name in os.listdir(self.model_root):
if self.name.endswith(".pt"):
self.names.append(self.name)
return {"choices": sorted(self.names), "__type__": "update"}
except FileNotFoundError:
return {"label": i18n("缺少模型文件"), "__type__": "update"}
def refresh_model2(self, model_name):
self.script_dir = os.path.dirname(os.path.abspath(__file__))
self.model_root = os.path.join(self.script_dir, f"chkpt/{model_name}")
self.names2 = []
try:
for self.name in os.listdir(self.model_root):
if self.name.endswith(".pt"):
self.names2.append(self.name)
return {"choices": sorted(self.names2), "__type__": "update"}
except FileNotFoundError:
return {"label": i18n("缺少模型文件"), "__type__": "update"}
def refresh_voice(self):
self.script_dir = os.path.dirname(os.path.abspath(__file__))
self.model_root = os.path.join(self.script_dir, "data_svc/singer")
self.voice_names = []
try:
for self.name in os.listdir(self.model_root):
if self.name.endswith(".npy"):
self.voice_names.append(self.name)
return {"choices": sorted(self.voice_names), "__type__": "update"}
except FileNotFoundError:
return {"label": i18n("缺少文件"), "__type__": "update"}
def refresh_model_and_voice(self, model_name):
model_update = self.refresh_model2(model_name)
voice_update = self.refresh_voice()
return model_update, voice_update
def resume_train(self, model_name, resume_model ,learning_rate, batch_size, info_interval, eval_interval, save_interval, keep_ckpts, slow_model):
print(i18n('开始恢复训练'))
self.create_config(model_name, learning_rate, batch_size, info_interval, eval_interval, save_interval,keep_ckpts, slow_model)
train_process = subprocess.Popen('python -u svc_trainer.py -c {} -n {} -p "chkpt/{}/{}"'.format(self.train_config_path, model_name, model_name, resume_model), stdout=subprocess.PIPE, creationflags=subprocess.CREATE_NEW_CONSOLE)
while train_process.poll() is None:
output = train_process.stdout.readline().decode('utf-8')
print(output, end='')
def inference(self, input, resume_voice, keychange):
if os.path.exists("test.wav"):
os.remove("test.wav")
print(i18n("已清理残留文件"))
else:
print(i18n("无需清理残留文件"))
self.train_config_path = 'configs/train.yaml'
print(i18n('开始推理'))
shutil.copy(input, ".")
input_name = os.path.basename(input)
os.rename(input_name, "test.wav")
input_name = "test.wav"
if not input_name.endswith(".wav"):
data, samplerate = soundfile.read(input_name)
input_name = input_name.rsplit(".", 1)[0] + ".wav"
soundfile.write(input_name, data, samplerate)
train_config_path = shlex.quote(self.train_config_path)
keychange = shlex.quote(str(keychange))
cmd = ["python", "-u", "svc_inference.py", "--config", train_config_path, "--model", "sovits5.0.pth", "--spk",
f"data_svc/singer/{resume_voice}", "--wave", "test.wav", "--shift", keychange]
train_process = subprocess.run(cmd, shell=False, capture_output=True, text=True)
print(train_process.stdout)
print(train_process.stderr)
print(i18n("推理成功"))
return "svc_out.wav"
class Info:
def __init__(self) -> None:
self.train = i18n('### 2023.7.11|[@OOPPEENN](https://github.com/OOPPEENN)第一次编写|[@thestmitsuk](https://github.com/thestmitsuki)二次补完')
self.inference = i18n('### 2023.7.11|[@OOPPEENN](https://github.com/OOPPEENN)第一次编写|[@thestmitsuk](https://github.com/thestmitsuki)二次补完')
LANGUAGE_LIST = ['zh_CN', 'en_US']
LANGUAGE_ALL = {
'zh_CN': {
'SUPER': 'END',
'LANGUAGE': 'zh_CN',
'初始化成功': '初始化成功',
'就绪': '就绪',
'预处理-训练': '预处理-训练',
'训练说明': '训练说明',
'### 预处理参数设置': '### 预处理参数设置',
'模型名称': '模型名称',
'f0提取器': 'f0提取器',
'预处理线程数': '预处理线程数',
'### 训练参数设置': '### 训练参数设置',
'学习率': '学习率',
'批大小': '批大小',
'训练日志记录间隔(step)': '训练日志记录间隔(step)',
'验证集验证间隔(epoch)': '验证集验证间隔(epoch)',
'检查点保存间隔(epoch)': '检查点保存间隔(epoch)',
'保留最新的检查点文件(0保存全部)': '保留最新的检查点文件(0保存全部)',
'是否添加底模': '是否添加底模',
'### 开始训练': '### 开始训练',
'打开数据集文件夹': '打开数据集文件夹',
'一键训练': '一键训练',
'启动Tensorboard': '启动Tensorboard',
'### 恢复训练': '### 恢复训练',
'从检查点恢复训练进度': '从检查点恢复训练进度',
'刷新': '刷新',
'恢复训练': '恢复训练',
'推理': '推理',
'推理说明': '推理说明',
'### 推理参数设置': '### 推理参数设置',
'变调': '变调',
'文件列表': '文件列表',
'选择要导出的模型': '选择要导出的模型',
'刷新模型和音色': '刷新模型和音色',
'导出模型': '导出模型',
'选择音色文件': '选择音色文件',
'选择待转换音频': '选择待转换音频',
'开始转换': '开始转换',
'输出音频': '输出音频',
'打开文件夹失败!': '打开文件夹失败!',
'开始预处理': '开始预处理',
'开始训练': '开始训练',
'开始导出模型': '开始导出模型',
'导出模型成功': '导出模型成功',
'出现错误:': '出现错误:',
'缺少模型文件': '缺少模型文件',
'缺少文件': '缺少文件',
'已清理残留文件': '已清理残留文件',
'无需清理残留文件': '无需清理残留文件',
'开始推理': '开始推理',
'推理成功': '推理成功',
'### 2023.7.11|[@OOPPEENN](https://github.com/OOPPEENN)第一次编写|[@thestmitsuk](https://github.com/thestmitsuki)二次补完': '### 2023.7.11|[@OOPPEENN](https://github.com/OOPPEENN)第一次编写|[@thestmitsuk](https://github.com/thestmitsuki)二次补完'
},
'en_US': {
'SUPER': 'zh_CN',
'LANGUAGE': 'en_US',
'初始化成功': 'Initialization successful',
'就绪': 'Ready',
'预处理-训练': 'Preprocessing-Training',
'训练说明': 'Training instructions',
'### 预处理参数设置': '### Preprocessing parameter settings',
'模型名称': 'Model name',
'f0提取器': 'f0 extractor',
'预处理线程数': 'Preprocessing thread number',
'### 训练参数设置': '### Training parameter settings',
'学习率': 'Learning rate',
'批大小': 'Batch size',
'训练日志记录间隔(step)': 'Training log recording interval (step)',
'验证集验证间隔(epoch)': 'Validation set validation interval (epoch)',
'检查点保存间隔(epoch)': 'Checkpoint save interval (epoch)',
'保留最新的检查点文件(0保存全部)': 'Keep the latest checkpoint file (0 save all)',
'是否添加底模': 'Whether to add the base model',
'### 开始训练': '### Start training',
'打开数据集文件夹': 'Open the dataset folder',
'一键训练': 'One-click training',
'启动Tensorboard': 'Start Tensorboard',
'### 恢复训练': '### Resume training',
'从检查点恢复训练进度': 'Restore training progress from checkpoint',
'刷新': 'Refresh',
'恢复训练': 'Resume training',
"推理": "Inference",
"推理说明": "Inference instructions",
"### 推理参数设置": "### Inference parameter settings",
"变调": "Pitch shift",
"文件列表": "File list",
"选择要导出的模型": "Select the model to export",
"刷新模型和音色": "Refresh model and timbre",
"导出模型": "Export model",
"选择音色文件": "Select timbre file",
"选择待转换音频": "Select audio to be converted",
"开始转换": "Start conversion",
"输出音频": "Output audio",
"打开文件夹失败!": "Failed to open folder!",
"开始预处理": "Start preprocessing",
"开始训练": "Start training",
"开始导出模型": "Start exporting model",
"导出模型成功": "Model exported successfully",
"出现错误:": "An error occurred:",
"缺少模型文件": "Missing model file",
'缺少文件': 'Missing file',
"已清理残留文件": "Residual files cleaned up",
"无需清理残留文件": "No need to clean up residual files",
"开始推理": "Start inference",
'### 2023.7.11|[@OOPPEENN](https://github.com/OOPPEENN)第一次编写|[@thestmitsuk](https://github.com/thestmitsuki)二次补完': '### 2023.7.11|[@OOPPEENN](https://github.com/OOPPEENN)first writing|[@thestmitsuk](https://github.com/thestmitsuki)second completion'
}
}
class I18nAuto:
def __init__(self, language=None):
self.language_list = LANGUAGE_LIST
self.language_all = LANGUAGE_ALL
self.language_map = {}
self.language = language or locale.getdefaultlocale()[0]
if self.language not in self.language_list:
self.language = 'zh_CN'
self.read_language(self.language_all['zh_CN'])
while self.language_all[self.language]['SUPER'] != 'END':
self.read_language(self.language_all[self.language])
self.language = self.language_all[self.language]['SUPER']
def read_language(self, lang_dict: dict):
self.language_map.update(lang_dict)
def __call__(self, key):
return self.language_map[key]
if __name__ == "__main__":
i18n = I18nAuto()
webui = WebUI()