forked from hirowatari-s/ExploreSearchSystem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtsom.py
234 lines (203 loc) · 11 KB
/
tsom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# -*- coding: utf-8 -*-
import numpy as np
from scipy.spatial import distance as dist
from tensorly.decomposition import parafac
class ManifoldModeling:
def __init__(self, X, latent_dim, resolution, sigma_max, sigma_min, tau, model_name, model=None, gamma=None, init='random'):
# 入力データXについて
if X.ndim == 2:
self.X = X.reshape((X.shape[0], X.shape[1], 1))
self.N1 = self.X.shape[0]
self.N2 = self.X.shape[1]
self.observed_dim = self.X.shape[2] # 観測空間の次元
elif X.ndim == 3:
self.X = X
self.N1 = self.X.shape[0]
self.N2 = self.X.shape[1]
self.observed_dim = self.X.shape[2] # 観測空間の次元
else:
raise ValueError("invalid X: {}\nX must be 2d or 3d ndarray".format(X))
if gamma is not None: # gammaが指定されている時
# 欠損値アルゴリズム処理
if X.shape != gamma.shape:
raise ValueError("invalid gamma: {}\ndata size and gamma size is not match. ".format(gamma))
elif X.shape == gamma.shape:
if np.any(np.isnan(self.X)) == 1: # gamma指定してデータに欠損がある場合
temp_gamma = np.where(np.isnan(self.X) == 1, 0, 1) # データに基づいてgammaを作る
temp_is_missing = np.allclose(temp_gamma, gamma)
self.X[np.isnan(self.X)] = 0 # 欠損値の部分を0で置換
if temp_is_missing is True: # データの欠損しているところとgammaの0の値が一致する時
self.gamma = gamma
self.is_missing = 1
else:
raise ValueError("invalid gamma: {}\ndata size and gamma size is not match. ".format(gamma))
elif np.any(np.isnan(self.X)) == 0: # 観測データの一部を無視したい時
self.gamma = gamma
self.is_missing = 1
elif gamma is None:#データXに欠損がある場合はそれに基づいてgammaを作成する
self.is_missing=np.any(np.isnan(self.X))# 欠損値があるかを判定.欠損があれば1,欠損がなければ0
# 欠損値がある場合
if self.is_missing == 1:
gamma = np.where(np.isnan(self.X) == 1, 0, 1)#nan格納されているindexを返す
self.gamma = gamma
self.X[np.isnan(self.X)] = 0#欠損値の部分を0で置換
elif self.is_missing==0:#欠損値がない場合はgammaは作らない
pass
# 1次モデル型と直接型を選択する引数
if model=="direct":
self.model = "direct"
elif model==None or model=="indirect":
self.model="indirect"
else:
raise ValueError("invalid model: {}\nmodel is only direct or indirect. ".format(model))
# 最大近傍半径(SIGMAX)の設定
if type(sigma_max) is float:
self.SIGMA1_MAX = sigma_max
self.SIGMA2_MAX = sigma_max
elif isinstance(sigma_max, (list, tuple)):
self.SIGMA1_MAX = sigma_max[0]
self.SIGMA2_MAX = sigma_max[1]
else:
raise ValueError("invalid sigma_max: {}".format(sigma_max))
# 最小近傍半径(sigma_min)の設定
if type(sigma_min) is float:
self.SIGMA1_MIN = sigma_min
self.SIGMA2_MIN = sigma_min
elif isinstance(sigma_min, (list, tuple)):
self.SIGMA1_MIN = sigma_min[0]
self.SIGMA2_MIN = sigma_min[1]
else:
raise ValueError("invalid sigma_min: {}".format(sigma_min))
# 時定数(tau)の設定
if type(tau) is int:
self.tau1 = tau
self.tau2 = tau
elif isinstance(tau, (list, tuple)):
self.tau1 = tau[0]
self.tau2 = tau[1]
else:
raise ValueError("invalid tau: {}".format(tau))
# 潜在空間の設定
resolution1 = resolution
resolution2 = resolution
self.resoluton = resolution
self.latent_dim1 = latent_dim
self.latent_dim2 = latent_dim
zeta = np.meshgrid(np.linspace(-1, 1, resolution), np.linspace(-1, 1, resolution))
self.Zeta1 = np.dstack(zeta).reshape(resolution**2, latent_dim)
self.Zeta2 = np.dstack(zeta).reshape(resolution**2, latent_dim)
self.K1 = self.Zeta1.shape[0]
self.K2 = self.Zeta2.shape[0]
# 勝者ノードの初期化
self.Z1 = None
self.Z2 = None
if isinstance(init, str) and init in 'random':
self.Z1 = np.random.rand(self.N1, self.latent_dim1) * 2.0 - 1.0
self.Z2 = np.random.rand(self.N2, self.latent_dim2) * 2.0 - 1.0
elif isinstance(init, str) and init in 'parafac':
model_z = parafac(self.X.reshape(self.N1, self.N2), rank=2)
self.Z1, self.Z2 = model_z.factors
elif isinstance(init, (tuple, list)) and len(init) == 2:
if isinstance(init[0], np.ndarray) and init[0].shape == (self.N1, self.latent_dim1):
self.Z1 = init[0].copy()
else:
raise ValueError("invalid inits[0]: {}".format(init))
if isinstance(init[1], np.ndarray) and init[1].shape == (self.N2, self.latent_dim2):
self.Z2 = init[1].copy()
else:
raise ValueError("invalid inits[1]: {}".format(init))
else:
raise ValueError("invalid inits: {}".format(init))
self.history = {}
def fit(self, nb_epoch=200):
self.history['y'] = np.zeros((nb_epoch, self.K1, self.K2, self.observed_dim))
self.history['z1'] = np.zeros((nb_epoch, self.N1, self.latent_dim1))
self.history['z2'] = np.zeros((nb_epoch, self.N2, self.latent_dim2))
self.history['sigma1'] = np.zeros(nb_epoch)
self.history['sigma2'] = np.zeros(nb_epoch)
self.history['sigma'] = np.zeros(nb_epoch)
for epoch in range(nb_epoch):
# 学習量の決定
# sigma1 = self.SIGMA1_MIN + (self.SIGMA1_MAX - self.SIGMA1_MIN) * np.exp(-epoch / self.tau1)
sigma1 = max(self.SIGMA1_MIN, self.SIGMA1_MIN + (self.SIGMA1_MAX - self.SIGMA1_MIN) * (1 - (epoch / self.tau1)))
distance1 = dist.cdist(self.Zeta1, self.Z1, 'sqeuclidean') # 距離行列をつくるDはN*K行列
H1 = np.exp(-distance1 / (2 * pow(sigma1, 2))) # かっこに気を付ける
G1 = np.sum(H1, axis=1) # Gは行ごとの和をとったベクトル
R1 = (H1.T / G1).T # 行列の計算なので.Tで転置を行う
# sigma2 = self.SIGMA2_MIN + (self.SIGMA2_MAX - self.SIGMA2_MIN) * np.exp(-epoch / self.tau2)
sigma2 = max(self.SIGMA2_MIN, self.SIGMA2_MIN + (self.SIGMA2_MAX - self.SIGMA2_MIN) * (1 - (epoch / self.tau2)))
distance2 = dist.cdist(self.Zeta2, self.Z2, 'sqeuclidean') # 距離行列をつくるDはN*K行列
H2 = np.exp(-distance2 / (2 * pow(sigma2, 2))) # かっこに気を付ける
G2 = np.sum(H2, axis=1) # Gは行ごとの和をとったベクトル
R2 = (H2.T / G2).T # 行列の計算なので.Tで転置を行う
if self.is_missing == 1: # 欠損値有り
# 2次モデルの決定
G = np.einsum("ik,jl,ijd->kld", H1.T, H2.T, self.gamma)#K1*K2*D
self.Y = np.einsum('ik,jl,ijd,ijd->kld', H1.T, H2.T, self.gamma, self.X) / G
if self.model == "indirect": # 1次モデル型
# 1次モデル,2次モデルの決定
self.U = np.einsum('jl,ijd,ijd->ild', H2.T, self.gamma, self.X)/np.einsum('ijd,jl->ild', self.gamma, H2.T)
self.V = np.einsum('ik,ijd,ijd->kjd', H1.T, self.gamma, self.X)/np.einsum('ijd,ik->kjd', self.gamma, H1.T)
# 勝者決定
self.k_star1 = np.argmin(
np.sum(np.square(self.U[:, None, :, :] - self.Y[None, :, :, :]), axis=(2, 3)), axis=1)
self.k_star2 = np.argmin(
np.sum(np.square(self.V[:, :, None, :] - self.Y[:, None, :, :]), axis=(0, 3)), axis=1)
elif self.model == "direct": # 直接型
# 勝者決定
Dist = self.gamma[:, :, None, None, :] * np.square(
self.X[:, :, None, None, :] - self.Y[None, None, :, :, :])
self.k_star1 = np.argmin(np.einsum("jl,ijklm->ik", H2.T, Dist), axis=1)
self.k_star2 = np.argmin(np.einsum("ik,ijklm->jl", H1.T, Dist), axis=1)
else:
raise ValueError("invalid model: {}\nmodel must be None or direct".format(self.model))
else: # 欠損値無し
#2次モデルの決定
self.Y = np.einsum('ki,lj,ijd->kld', R1, R2, self.X)
if self.model == "indirect": # 1次モデル型
# 1次モデル,2次モデルの決定
self.U = np.einsum('lj,ijd->ild', R2, self.X)
self.V = np.einsum('ki,ijd->kjd', R1, self.X)
# 勝者決定
self.k_star1 = np.argmin(
np.sum(np.square(self.U[:, None, :, :] - self.Y[None, :, :, :]), axis=(2, 3)), axis=1)
self.k_star2 = np.argmin(
np.sum(np.square(self.V[:, :, None, :] - self.Y[:, None, :, :]), axis=(0, 3)), axis=1)
elif self.model == "direct": # 直接型
# 勝者決定
Dist = np.square(
self.X[:, :, None, None, :] - self.Y[None, None, :, :, :])
self.k_star1 = np.argmin(np.einsum("jl,ijklm->ik", H2.T, Dist), axis=1)
self.k_star2 = np.argmin(np.einsum("ik,ijklm->jl", H1.T, Dist), axis=1)
else:
raise ValueError("invalid model: {}\nmodel must be None or direct".format(self.model))
self.Z1 = self.Zeta1[self.k_star1, :] # k_starのZの座標N*L(L=2
self.Z2 = self.Zeta2[self.k_star2, :] # k_starのZの座標N*L(L=2
self.history['y'][epoch, :, :] = self.Y
self.history['z1'][epoch, :] = self.Z1
self.history['z2'][epoch, :] = self.Z2
self.history['sigma1'][epoch] = sigma1
self.history['sigma2'][epoch] = sigma2
self.history['sigma'][epoch] = sigma2
if __name__ == '__main__':
print("main")
nb_epoch = 50
sigma_max = 2.2
sigma_min = 0.2
tau = 50
latent_dim = 2
seed = 1
resolution=10
model_name="TSOM"
X = np.array(np.arange(100*600).reshape(100, 600), dtype=np.float64)
mm = ManifoldModeling(
X,
latent_dim=latent_dim,
resolution=resolution,
sigma_max=sigma_max,
sigma_min=sigma_min,
model_name=model_name,
tau=tau,
init='parafac'
)
mm.fit(nb_epoch=nb_epoch)