-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeasure.py
128 lines (111 loc) · 5.29 KB
/
measure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import logging
import numpy as np
import os
from scipy.stats import rankdata
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
class Measure:
def __init__(self, all_list=None, name="measure", verbose=True):
self.name = name
self.ranks = []
self.raws = None
self.verbose = verbose
if all_list is not None:
for l in all_list:
self.ranks.extend(l.ranks)
def update(self, y_preds, y_true, to_excluded=None, update_row=False, relations=None):
if len(y_preds.shape) == 1:
y_preds = y_preds.reshape(1, y_preds.shape[0])
if to_excluded is not None:
y_mins = y_preds.min(axis=-1)
for i, ids in enumerate(to_excluded):
y_preds[i, ids] = y_mins[i]
if update_row:
if self.raws is None:
self.raws = y_preds
else:
self.raws = np.row_stack((self.raws, y_preds))
results_with_id = rankdata(-y_preds, method='min', axis=-1)
# if len(results_with_id.shape) == 1:
# results_with_id = results_with_id.reshape(1, results_with_id.shape[0])
for i, j in enumerate(y_true):
self.ranks.append(results_with_id[i, j].item())
if relations is not None:
if not hasattr(self, 'relations'):
self.relations = dict()
for i, j in enumerate(y_true):
if relations[i] not in self.relations.keys():
self.relations[relations[i]] = [results_with_id[i, j].item()]
else:
self.relations[relations[i]].append(results_with_id[i, j].item())
def summary(self):
ranks = np.asarray(self.ranks)
self.report = dict()
self.report['mr'] = np.mean(ranks)
self.report['mrr'] = np.mean(1.0 / ranks)
self.report['hits1'] = np.mean(ranks <= 1)
self.report['hits3'] = np.mean(ranks <= 3)
self.report['hits10'] = np.mean(ranks <= 10)
if hasattr(self, 'relations'):
self.report_rels = dict()
for rel, ranks in self.relations.items():
self.report_rels[rel] = dict()
ranks = np.asarray(ranks)
self.report_rels[rel]['mr'] = np.mean(ranks)
self.report_rels[rel]['mrr'] = np.mean(1.0 / ranks)
self.report_rels[rel]['hits1'] = np.mean(ranks <= 1)
self.report_rels[rel]['hits3'] = np.mean(ranks <= 3)
self.report_rels[rel]['hits10'] = np.mean(ranks <= 10)
if self.verbose:
self.print_()
def print_(self):
logger.info("Measurement for {}:".format(self.name))
for key, val in self.report.items():
logger.info("\t{} = {}".format(key, val))
if hasattr(self, 'relations'):
for rel, ranks in self.report_rels.items():
logger.info('Relation: {}'.format(rel))
for key, val in ranks.items():
logger.info("\t{} = {}".format(key, val))
def save(self, file_dir, file_prefix):
file_name = file_prefix + self.name + ".txt"
with open(os.path.join(file_dir, file_name), 'w') as filehandle:
for listitem in self.ranks:
filehandle.write('%s\n' % listitem)
np.save(os.path.join(file_dir, file_prefix + self.name + "raws.npy"), self.raws)
if hasattr(self, 'relations'):
# for rel, ranks in self.relations.items():
# file_name = file_prefix + self.name + "_rel_{}.txt".format(rel)
# with open(os.path.join(file_dir, file_name), 'w') as filehandle:
# for listitem in ranks:
# filehandle.write('%s\n' % listitem)
file_name = file_prefix + self.name + '_rel_summary.txt'
with open(os.path.join(file_dir, file_name), 'w') as filehandle:
for rel, ranks in self.report_rels.items():
filehandle.write('Relation: {}'.format(rel))
for key, val in ranks.items():
filehandle.write("\t{} = {}".format(key, val))
filehandle.write("\n")
def load(self, file_dir, file_prefixes):
if isinstance(file_prefixes, str):
file_prefixes = [file_prefixes]
for file_prefix in file_prefixes:
with open(os.path.join(file_dir, file_prefix), 'r') as filehandle:
rank = [int(current_place.rstrip()) for current_place in filehandle.readlines()]
self.ranks.extend(rank)
raw_scores = np.load(file_prefix.split(".")[0] + "raws.npy")
if self.raws is None:
self.raws = raw_scores
else:
self.raws = np.row_stack((self.raws, raw_scores))
# if hasattr(self, 'relations'):
# file_name = file_prefix + self.name + "_rels.txt"
# with open(os.path.join(file_dir, file_name), 'r') as filehandle:
# for rel, ranks in self.report_rels.items():
# filehandle.write('%s\n' % rel)
# for listitem in ranks:
# filehandle.write('%s\n' % listitem)