-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathsat.nim
368 lines (303 loc) · 9.53 KB
/
sat.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import nico
import nico/vec
type Object = ref object
color: int
pos: Vec2f
rawPoints: seq[Vec2f]
angle: float32
highlightEdgeIndex: int
highlightVertIndex: int
highlightColor: int
bestSupport: Vec2f
supportDir: Vec2f
mass: float32
vel: Vec2f
avel: float32
type Line = array[2, Vec2f]
type ContactData = object
normal: Vec2f
nPoints: int
points: array[2, Vec2f]
penetration: float32
clipEdge: Line
var objs: seq[Object]
var overlapping = false
var overlapAxis: Vec2f
var overlapAmount: float32
var overlapContactData: ContactData
proc normal(self: Line): Vec2f =
return (self[1] - self[0]).normal()
iterator points(self: Object): Vec2f =
let pos = self.pos
for p in self.rawPoints:
let rotated = p.rotate(self.angle)
yield pos + rotated
proc edge(self: Object, i: int): Line =
let pos = self.pos
let a = self.rawPoints[wrap(i, self.rawPoints.len)].rotate(self.angle)
let b = self.rawPoints[wrap(i+1,self.rawPoints.len)].rotate(self.angle)
return [pos + a, pos + b]
iterator edges(self: Object): Line =
let pos = self.pos
for i in 1..<self.rawPoints.len:
let a = self.rawPoints[i-1].rotate(self.angle)
let b = self.rawPoints[i].rotate(self.angle)
yield [pos + a, pos + b]
block:
let a = self.rawPoints[self.rawPoints.high].rotate(self.angle)
let b = self.rawPoints[0].rotate(self.angle)
yield [pos + a, pos + b]
proc getAxes(a,b: Object): seq[Vec2f] =
for edge in a.edges:
let axis = edge.normal()
if axis notin result:
result.add(axis)
for edge in b.edges:
let axis = edge.normal()
if axis notin result:
result.add(axis)
proc getSupport(self: Object, n: Vec2f): (Vec2f,int) =
var bestProj = -Inf
var i = 0
for p in self.points:
let proj = dot(p, n)
if proj > bestProj:
bestProj = proj
result = (p, i)
i.inc()
proc isLeftOf(p: Vec2f, edge: Line): bool =
## returns true if p is left of edge
let tmp1 = edge[1] - edge[0]
let tmp2 = p - edge[1]
let x = (tmp1.x * tmp2.y) - (tmp1.y * tmp2.x)
if x < 0:
return false
elif x > 0:
return true
else:
# colinear points
return false
proc getIntersect(a,b: Line): Vec2f =
## returns the intersection of two lines
let adir = a[1] - a[0]
let bdir = b[1] - b[0]
let dotPerp = (adir.x * bdir.y) - (adir.y * bdir.x)
if abs(dotPerp) < 0.0001f:
# parallel
return
let c = b[0] - a[0]
let t = (c.x * bdir.y - c.y * bdir.x) / dotPerp
return a[0] + (t * adir)
proc clip(ln: Line, plane: Line): Line =
# returns ln clipped by plane
result = ln
# get intersection of ln and plane
let i = getIntersect(ln, plane)
let aOK = ln[0].isLeftOf(plane)
let bOK = ln[1].isLeftOf(plane)
if not aOK and not bOK:
# both on wrong side of plane
result[0] = i
result[1] = i
elif not aOK:
result[0] = i
result[1] = ln[1]
elif not bOK:
result[0] = ln[0]
result[1] = i
proc getContactData(a,b: Object, collisionNormal: Vec2f, penetration: float32): ContactData =
## returns the indices of the significant edges on A and B
let vertA = a.getSupport(collisionNormal)
let vertB = b.getSupport(-collisionNormal)
var bestAEdgeDot: float32 = -Inf
var bestAEdge: int = -1
var bestBEdgeDot: float32 = -Inf
var bestBEdge: int = -1
block:
var i = 0
for edge in a.edges:
if vertA[0] in edge:
let d = dot(edge.normal, collisionNormal)
if abs(d) > bestAEdgeDot:
bestAEdgeDot = abs(d)
bestAEdge = i
i.inc()
block:
var i = 0
for edge in b.edges:
if vertB[0] in edge:
let d = dot(edge.normal, -collisionNormal)
if abs(d) > bestBEdgeDot:
bestBEdgeDot = abs(d)
bestBEdge = i
i.inc()
a.highlightVertIndex = vertA[1]
b.highlightVertIndex = vertB[1]
a.highlightEdgeIndex = bestAEdge
b.highlightEdgeIndex = bestBEdge
var reference,incident: Line
var refAdjacentA: Line
var refAdjacentB: Line
var flipped = false
if bestAEdgeDot < bestBEdgeDot:
reference = a.edge(bestAEdge)
refAdjacentA = a.edge(bestAEdge-1)
refAdjacentB = a.edge(bestAEdge+1)
a.highlightColor = 12
incident = b.edge(bestBEdge)
b.highlightColor = 8
else:
reference = b.edge(bestBEdge)
refAdjacentA = b.edge(bestBEdge-1)
refAdjacentB = b.edge(bestBEdge+1)
b.highlightColor = 12
incident = a.edge(bestAEdge)
a.highlightColor = 8
flipped = true
## We now clip the incident with all the adjacent faces of the reference. This is done by taking the
## adjacent faces normal and any vertex that it contains to produce a plane equation.
if flipped:
incident = incident.clip(refAdjacentA)
incident = incident.clip(refAdjacentB)
else:
incident = incident.clip(refAdjacentA)
incident = incident.clip(refAdjacentB)
result.clipEdge = incident
# final clipping, remove points behind reference
if incident[0].isLeftOf(reference):
result.points[result.nPoints] = incident[0]
result.nPoints += 1
if incident[1].isLeftOf(reference):
result.points[result.nPoints] = incident[1]
result.nPoints += 1
proc sat(a,b: Object): (bool,Vec2f,float32) =
## return true if objects are overlapping, if overlapping returns the axis of min overlap
var axisOfMinOverlap: Vec2f
var minOverlap: float32 = Inf
for axis in getAxes(a,b):
var amin = Inf
var bmin = Inf
var amax = -Inf
var bmax = -Inf
# project each edge against the current axis
for edge in a.edges:
for p in edge:
var v = dot(p,axis)
if v < amin:
amin = v
if v > amax:
amax = v
for edge in b.edges:
for p in edge:
var v = dot(p,axis)
if v < bmin:
bmin = v
if v > bmax:
bmax = v
if bmin > amax or amin > bmax:
# found axis of separation, we can exit early
result[0] = false
return
var overlap = 0f
if amax > bmin:
overlap = abs(bmin - amax)
elif bmax > amin:
overlap = abs(amin - bmax)
if abs(overlap) < abs(minOverlap):
minOverlap = overlap
axisOfMinOverlap = axis
return (true, axisOfMinOverlap, minOverlap)
proc addTorque(self: Object, torque: float32) =
self.avel += torque / self.mass
proc addForceAtPos(self: Object, force: Vec2f, point: Vec2f) =
self.vel += force / self.mass
self.addTorque(cross(point - self.pos, force))
proc update(self: Object, dt: float32) =
self.angle += self.avel * dt
self.pos += self.vel * dt
self.avel *= 0.9f
self.vel *= 0.999f
proc draw(self: Object) =
var i = 0
for edge in self.edges:
#if self.highlightEdgeIndex == i:
# setColor(self.highlightColor)
#else:
setColor(self.color)
line(edge[0], edge[1])
i.inc
setColor(self.color)
line(self.pos, self.pos + self.angle.angleToVec(10f))
setColor(8)
line(self.pos, self.pos + self.vel)
#if self.highlightVertIndex >= 0:
# setColor(self.highlightColor)
# let p = self.point(self.highlightVertIndex)
# circfill(p.x, p.y, 2)
proc gameInit() =
# we want a fixed sized screen with perfect square pixels
fixedSize(true)
integerScale(true)
# create the window
nico.createWindow("nico",128,128,4)
objs = @[]
objs.add(Object(color: 6, mass: 1f, pos: vec2f(20,64), rawPoints: @[vec2f(-16f, -16f), vec2f(16f, -16f), vec2f(16f, 16f), vec2f(-16f, 16f)]))
objs.add(Object(color: 5, mass: 3f, pos: vec2f(82,64), rawPoints: @[vec2f(-32f, -16f), vec2f(16f, -16f), vec2f(16f, 16f), vec2f(-16f, 16f)]))
objs.add(Object(color: 5, mass: 8f, pos: vec2f(0,100), rawPoints: @[vec2f(-32f, -16f), vec2f(16f, -16f), vec2f(16f, 16f), vec2f(-16f, 16f)]))
proc gameUpdate(dt: float32) =
if btnp(pcStart):
gameInit()
return
if btn(pcLeft):
objs[0].addTorque(-30f * dt)
if btn(pcRight):
objs[0].addTorque(30f * dt)
if btn(pcUp):
objs[0].vel += objs[0].angle.angleToVec(36f) * dt
if btn(pcDown):
objs[0].vel -= objs[0].angle.angleToVec(36f) * dt
for s in 0..<4:
for obj in objs:
obj.update(dt * 0.25f)
obj.highlightVertIndex = -1
obj.highlightEdgeIndex = -1
for i in 0..<objs.len-1:
for j in i+1..<objs.len:
let hit = sat(objs[i], objs[j])
if hit[0]:
let cd = getContactData(objs[i], objs[j], hit[1], hit[2])
# push them apart
objs[i].pos -= hit[1] * (hit[2] * 0.5f)
objs[j].pos += hit[1] * (hit[2] * 0.5f)
if cd.nPoints == 1:
objs[i].addForceAtPos(-hit[1] * hit[2] * 0.5f, cd.points[0])
objs[j].addForceAtPos( hit[1] * hit[2] * 0.5f, cd.points[0])
elif cd.nPoints == 2:
objs[i].addForceAtPos(-hit[1] * hit[2] * 0.25f, cd.points[0])
objs[i].addForceAtPos(-hit[1] * hit[2] * 0.25f, cd.points[1])
objs[j].addForceAtPos( hit[1] * hit[2] * 0.25f, cd.points[0])
objs[j].addForceAtPos( hit[1] * hit[2] * 0.25f, cd.points[1])
proc gameDraw() =
cls()
for i,obj in objs:
obj.draw()
if i == 0:
setColor(7)
print("A", obj.pos.x - 2, obj.pos.y - 4)
elif i == 1:
setColor(7)
print("B", obj.pos.x - 2, obj.pos.y - 4)
if overlapping:
setColor(8)
print("overlapping", 4, 4)
if overlapping:
setColor(8)
line(objs[0].pos, objs[0].pos - overlapAxis * overlapAmount)
setColor(11)
line(overlapContactData.clipEdge[0], overlapContactData.clipEdge[1])
for i in 0..<overlapContactData.nPoints:
circfill(overlapContactData.points[i].x, overlapContactData.points[i].y, 3)
# initialization
nico.init("nico", "sat")
# start, say which functions to use for init, update and draw
nico.run(gameInit, gameUpdate, gameDraw)