-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtiny_images.py
187 lines (157 loc) · 7.84 KB
/
tiny_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
from opacus import PrivacyEngine
from train_utils import get_device, train, test
from data import get_data, SemiSupervisedSampler, get_scatter_transform, \
get_scattered_loader, get_scattered_dataset
from models import CNNS, get_num_params, ScatterLinear
from dp_utils import ORDERS, get_privacy_spent, get_renyi_divergence, scatter_normalization
from log import Logger
def main(tiny_images=None, model="cnn", augment=False, use_scattering=False,
batch_size=2048, mini_batch_size=256, lr=1, lr_start=None, optim="SGD",
momentum=0.9, noise_multiplier=1, max_grad_norm=0.1,
epochs=100, bn_noise_multiplier=None, max_epsilon=None,
data_size=550000, delta=1e-6, logdir=None):
logger = Logger(logdir)
device = get_device()
bs = batch_size
assert bs % mini_batch_size == 0
n_acc_steps = bs // mini_batch_size
train_data, test_data = get_data("cifar10", augment=augment)
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=100, shuffle=False, num_workers=4, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
test_data, batch_size=100, shuffle=False, num_workers=4, pin_memory=True)
if isinstance(tiny_images, torch.utils.data.Dataset):
train_data_aug = tiny_images
else:
print("loading tiny images...")
train_data_aug, _ = get_data("cifar10_500K", augment=augment,
aux_data_filename=tiny_images)
scattering, K, (h, w) = None, None, (None, None)
pre_scattered = False
if use_scattering:
scattering, K, (h, w) = get_scatter_transform("cifar10_500K")
scattering.to(device)
# if the whole data fits in memory, pre-compute the scattering
if use_scattering and data_size <= 50000:
loader = torch.utils.data.DataLoader(train_data_aug, batch_size=100, shuffle=False, num_workers=4)
train_data_aug = get_scattered_dataset(loader, scattering, device, data_size)
pre_scattered = True
assert data_size <= len(train_data_aug)
num_sup = min(data_size, 50000)
num_batches = int(np.ceil(50000 / mini_batch_size)) # cifar-10 equivalent
train_batch_sampler = SemiSupervisedSampler(data_size, num_batches, mini_batch_size)
train_loader_aug = torch.utils.data.DataLoader(train_data_aug,
batch_sampler=train_batch_sampler,
num_workers=0 if pre_scattered else 4,
pin_memory=not pre_scattered)
rdp_norm = 0
if model == "cnn":
if use_scattering:
save_dir = f"bn_stats/cifar10_500K"
os.makedirs(save_dir, exist_ok=True)
bn_stats, rdp_norm = scatter_normalization(train_loader,
scattering,
K,
device,
data_size,
num_sup,
noise_multiplier=bn_noise_multiplier,
orders=ORDERS,
save_dir=save_dir)
model = CNNS["cifar10"](K, input_norm="BN", bn_stats=bn_stats)
model = model.to(device)
if not pre_scattered:
model = nn.Sequential(scattering, model)
else:
model = CNNS["cifar10"](in_channels=3, internal_norm=False)
elif model == "linear":
save_dir = f"bn_stats/cifar10_500K"
os.makedirs(save_dir, exist_ok=True)
bn_stats, rdp_norm = scatter_normalization(train_loader,
scattering,
K,
device,
data_size,
num_sup,
noise_multiplier=bn_noise_multiplier,
orders=ORDERS,
save_dir=save_dir)
model = ScatterLinear(K, (h, w), input_norm="BN", bn_stats=bn_stats)
model = model.to(device)
if not pre_scattered:
model = nn.Sequential(scattering, model)
else:
raise ValueError(f"Unknown model {model}")
model.to(device)
if pre_scattered:
test_loader = get_scattered_loader(test_loader, scattering, device)
print(f"model has {get_num_params(model)} parameters")
if optim == "SGD":
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
privacy_engine = PrivacyEngine(
model,
sample_rate=bs / data_size,
alphas=ORDERS,
noise_multiplier=noise_multiplier,
max_grad_norm=max_grad_norm,
)
privacy_engine.attach(optimizer)
best_acc = 0
flat_count = 0
for epoch in range(0, epochs):
print(f"\nEpoch: {epoch} ({privacy_engine.steps} steps)")
train_loss, train_acc = train(model, train_loader_aug, optimizer, n_acc_steps=n_acc_steps)
test_loss, test_acc = test(model, test_loader)
if noise_multiplier > 0:
print(f"sample_rate={privacy_engine.sample_rate}, "
f"mul={privacy_engine.noise_multiplier}, "
f"steps={privacy_engine.steps}")
rdp_sgd = get_renyi_divergence(
privacy_engine.sample_rate, privacy_engine.noise_multiplier
) * privacy_engine.steps
epsilon, _ = get_privacy_spent(rdp_norm + rdp_sgd, target_delta=delta)
epsilon2, _ = get_privacy_spent(rdp_sgd, target_delta=delta)
print(f"ε = {epsilon:.3f} (sgd only: ε = {epsilon2:.3f})")
if max_epsilon is not None and epsilon >= max_epsilon:
return
else:
epsilon = None
logger.log_epoch(epoch, train_loss, train_acc, test_loss, test_acc, epsilon)
logger.log_scalar("epsilon/train", epsilon, epoch)
logger.log_scalar("cifar10k_loss/train", train_loss, epoch)
logger.log_scalar("cifar10k_acc/train", train_acc, epoch)
if test_acc > best_acc:
best_acc = test_acc
flat_count = 0
else:
flat_count += 1
if flat_count >= 20:
print("plateau...")
return
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--augment', action="store_true")
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--optim', type=str, default="SGD", choices=["SGD", "Adam"])
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--lr_start', type=float, default=None)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--noise_multiplier', type=float, default=0)
parser.add_argument('--max_grad_norm', type=float, default=0.1)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--model', choices=["cnn", "resnet", "linear"], default="cnn")
parser.add_argument('--tiny_images', default="ti_500K_pseudo_labeled.pickle")
parser.add_argument('--use_scattering', action="store_true")
parser.add_argument('--bn_noise_multiplier', type=float, default=0)
parser.add_argument('--logdir', default=None)
parser.add_argument('--data_size', type=int, default=550_000)
parser.add_argument('--delta', type=float, default=1e-6)
args = parser.parse_args()
main(**vars(args))